file.c 52.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 */


#include <linux/time.h>
#include <linux/reiserfs_fs.h>
#include <linux/reiserfs_acl.h>
#include <linux/reiserfs_xattr.h>
#include <linux/smp_lock.h>
#include <asm/uaccess.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/quotaops.h>

/*
** We pack the tails of files on file close, not at the time they are written.
** This implies an unnecessary copy of the tail and an unnecessary indirect item
** insertion/balancing, for files that are written in one write.
** It avoids unnecessary tail packings (balances) for files that are written in
** multiple writes and are small enough to have tails.
** 
** file_release is called by the VFS layer when the file is closed.  If
** this is the last open file descriptor, and the file
** small enough to have a tail, and the tail is currently in an
** unformatted node, the tail is converted back into a direct item.
** 
** We use reiserfs_truncate_file to pack the tail, since it already has
** all the conditions coded.  
*/
static int reiserfs_file_release (struct inode * inode, struct file * filp)
{

    struct reiserfs_transaction_handle th ;
    int err;
    int jbegin_failure = 0;

    if (!S_ISREG (inode->i_mode))
	BUG ();

    /* fast out for when nothing needs to be done */
    if ((atomic_read(&inode->i_count) > 1 ||
	!(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || 
         !tail_has_to_be_packed(inode))       && 
	REISERFS_I(inode)->i_prealloc_count <= 0) {
	return 0;
    }    
    
    reiserfs_write_lock(inode->i_sb);
    down (&inode->i_sem); 
    /* freeing preallocation only involves relogging blocks that
     * are already in the current transaction.  preallocation gets
     * freed at the end of each transaction, so it is impossible for
     * us to log any additional blocks (including quota blocks)
     */
    err = journal_begin(&th, inode->i_sb, 1);
    if (err) {
	/* uh oh, we can't allow the inode to go away while there
	 * is still preallocation blocks pending.  Try to join the
	 * aborted transaction
	 */
	jbegin_failure = err;
	err = journal_join_abort(&th, inode->i_sb, 1);

	if (err) {
	    /* hmpf, our choices here aren't good.  We can pin the inode
	     * which will disallow unmount from every happening, we can
	     * do nothing, which will corrupt random memory on unmount,
	     * or we can forcibly remove the file from the preallocation
	     * list, which will leak blocks on disk.  Lets pin the inode
	     * and let the admin know what is going on.
	     */
	    igrab(inode);
	    reiserfs_warning(inode->i_sb, "pinning inode %lu because the "
	                     "preallocation can't be freed");
	    goto out;
	}
    }
    reiserfs_update_inode_transaction(inode) ;

#ifdef REISERFS_PREALLOCATE
    reiserfs_discard_prealloc (&th, inode);
#endif
    err = journal_end(&th, inode->i_sb, 1);

    /* copy back the error code from journal_begin */
    if (!err)
        err = jbegin_failure;

    if (!err && atomic_read(&inode->i_count) <= 1 &&
	(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
        tail_has_to_be_packed (inode)) {
	/* if regular file is released by last holder and it has been
	   appended (we append by unformatted node only) or its direct
	   item(s) had to be converted, then it may have to be
	   indirect2direct converted */
	err = reiserfs_truncate_file(inode, 0) ;
    }
out:
    up (&inode->i_sem); 
    reiserfs_write_unlock(inode->i_sb);
    return err;
}

static void reiserfs_vfs_truncate_file(struct inode *inode) {
    reiserfs_truncate_file(inode, 1) ;
}

/* Sync a reiserfs file. */

/*
 * FIXME: sync_mapping_buffers() never has anything to sync.  Can
 * be removed...
 */

static int reiserfs_sync_file(
			      struct file   * p_s_filp,
			      struct dentry * p_s_dentry,
			      int datasync
			      ) {
  struct inode * p_s_inode = p_s_dentry->d_inode;
  int n_err;
  int barrier_done;

  if (!S_ISREG(p_s_inode->i_mode))
      BUG ();
  n_err = sync_mapping_buffers(p_s_inode->i_mapping) ;
  reiserfs_write_lock(p_s_inode->i_sb);
  barrier_done = reiserfs_commit_for_inode(p_s_inode);
  reiserfs_write_unlock(p_s_inode->i_sb);
  if (barrier_done != 1)
      blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
  if (barrier_done < 0)
    return barrier_done;
  return ( n_err < 0 ) ? -EIO : 0;
}

/* I really do not want to play with memory shortage right now, so
   to simplify the code, we are not going to write more than this much pages at
   a time. This still should considerably improve performance compared to 4k
   at a time case. This is 32 pages of 4k size. */
#define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE

/* Allocates blocks for a file to fulfil write request.
   Maps all unmapped but prepared pages from the list.
   Updates metadata with newly allocated blocknumbers as needed */
static int reiserfs_allocate_blocks_for_region(
				struct reiserfs_transaction_handle *th,
				struct inode *inode, /* Inode we work with */
				loff_t pos, /* Writing position */
				int num_pages, /* number of pages write going
						  to touch */
				int write_bytes, /* amount of bytes to write */
				struct page **prepared_pages, /* array of
							         prepared pages
							       */
				int blocks_to_allocate /* Amount of blocks we
							  need to allocate to
							  fit the data into file
							 */
				)
{
    struct cpu_key key; // cpu key of item that we are going to deal with
    struct item_head *ih; // pointer to item head that we are going to deal with
    struct buffer_head *bh; // Buffer head that contains items that we are going to deal with
169
    __le32 * item; // pointer to item we are going to deal with
L
Linus Torvalds 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    INITIALIZE_PATH(path); // path to item, that we are going to deal with.
    b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored.
    reiserfs_blocknr_hint_t hint; // hint structure for block allocator.
    size_t res; // return value of various functions that we call.
    int curr_block; // current block used to keep track of unmapped blocks.
    int i; // loop counter
    int itempos; // position in item
    unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in
						       // first page
    unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */
    __u64 hole_size ; // amount of blocks for a file hole, if it needed to be created.
    int modifying_this_item = 0; // Flag for items traversal code to keep track
				 // of the fact that we already prepared
				 // current block for journal
    int will_prealloc = 0;
    RFALSE(!blocks_to_allocate, "green-9004: tried to allocate zero blocks?");

    /* only preallocate if this is a small write */
    if (REISERFS_I(inode)->i_prealloc_count ||
       (!(write_bytes & (inode->i_sb->s_blocksize -1)) &&
        blocks_to_allocate <
        REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
        will_prealloc = REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;

    allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
    					sizeof(b_blocknr_t), GFP_NOFS);

    /* First we compose a key to point at the writing position, we want to do
       that outside of any locking region. */
    make_cpu_key (&key, inode, pos+1, TYPE_ANY, 3/*key length*/);

    /* If we came here, it means we absolutely need to open a transaction,
       since we need to allocate some blocks */
    reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that.
204
    res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough
L
Linus Torvalds 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    if (res)
        goto error_exit;
    reiserfs_update_inode_transaction(inode) ;

    /* Look for the in-tree position of our write, need path for block allocator */
    res = search_for_position_by_key(inode->i_sb, &key, &path);
    if ( res == IO_ERROR ) {
	res = -EIO;
	goto error_exit;
    }
   
    /* Allocate blocks */
    /* First fill in "hint" structure for block allocator */
    hint.th = th; // transaction handle.
    hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine.
    hint.inode = inode; // Inode is needed by block allocator too.
    hint.search_start = 0; // We have no hint on where to search free blocks for block allocator.
    hint.key = key.on_disk_key; // on disk key of file.
    hint.block = inode->i_blocks>>(inode->i_sb->s_blocksize_bits-9); // Number of disk blocks this file occupies already.
    hint.formatted_node = 0; // We are allocating blocks for unformatted node.
    hint.preallocate = will_prealloc;

    /* Call block allocator to allocate blocks */
    res = reiserfs_allocate_blocknrs(&hint, allocated_blocks, blocks_to_allocate, blocks_to_allocate);
    if ( res != CARRY_ON ) {
	if ( res == NO_DISK_SPACE ) {
	    /* We flush the transaction in case of no space. This way some
	       blocks might become free */
	    SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
	    res = restart_transaction(th, inode, &path);
            if (res)
                goto error_exit;

	    /* We might have scheduled, so search again */
	    res = search_for_position_by_key(inode->i_sb, &key, &path);
	    if ( res == IO_ERROR ) {
		res = -EIO;
		goto error_exit;
	    }

	    /* update changed info for hint structure. */
	    res = reiserfs_allocate_blocknrs(&hint, allocated_blocks, blocks_to_allocate, blocks_to_allocate);
	    if ( res != CARRY_ON ) {
		res = -ENOSPC; 
		pathrelse(&path);
		goto error_exit;
	    }
	} else {
	    res = -ENOSPC;
	    pathrelse(&path);
	    goto error_exit;
	}
    }

#ifdef __BIG_ENDIAN
        // Too bad, I have not found any way to convert a given region from
        // cpu format to little endian format
    {
        int i;
        for ( i = 0; i < blocks_to_allocate ; i++)
            allocated_blocks[i]=cpu_to_le32(allocated_blocks[i]);
    }
#endif

    /* Blocks allocating well might have scheduled and tree might have changed,
       let's search the tree again */
    /* find where in the tree our write should go */
    res = search_for_position_by_key(inode->i_sb, &key, &path);
    if ( res == IO_ERROR ) {
	res = -EIO;
	goto error_exit_free_blocks;
    }

    bh = get_last_bh( &path ); // Get a bufferhead for last element in path.
    ih = get_ih( &path );      // Get a pointer to last item head in path.
    item = get_item( &path );  // Get a pointer to last item in path

    /* Let's see what we have found */
    if ( res != POSITION_FOUND ) { /* position not found, this means that we
				      might need to append file with holes
				      first */
	// Since we are writing past the file's end, we need to find out if
	// there is a hole that needs to be inserted before our writing
	// position, and how many blocks it is going to cover (we need to
	//  populate pointers to file blocks representing the hole with zeros)

	{
	    int item_offset = 1;
	    /*
	     * if ih is stat data, its offset is 0 and we don't want to
	     * add 1 to pos in the hole_size calculation
	     */
	    if (is_statdata_le_ih(ih))
	        item_offset = 0;
	    hole_size = (pos + item_offset -
	            (le_key_k_offset( get_inode_item_key_version(inode),
		    &(ih->ih_key)) +
		    op_bytes_number(ih, inode->i_sb->s_blocksize))) >>
		    inode->i_sb->s_blocksize_bits;
	}

	if ( hole_size > 0 ) {
	    int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize)/UNFM_P_SIZE ); // How much data to insert first time.
	    /* area filled with zeroes, to supply as list of zero blocknumbers
	       We allocate it outside of loop just in case loop would spin for
	       several iterations. */
	    char *zeros = kmalloc(to_paste*UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway.
	    if ( !zeros ) {
		res = -ENOMEM;
		goto error_exit_free_blocks;
	    }
	    memset ( zeros, 0, to_paste*UNFM_P_SIZE);
	    do {
		to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize)/UNFM_P_SIZE );
		if ( is_indirect_le_ih(ih) ) {
		    /* Ok, there is existing indirect item already. Need to append it */
		    /* Calculate position past inserted item */
		    make_cpu_key( &key, inode, le_key_k_offset( get_inode_item_key_version(inode), &(ih->ih_key)) + op_bytes_number(ih, inode->i_sb->s_blocksize), TYPE_INDIRECT, 3);
		    res = reiserfs_paste_into_item( th, &path, &key, inode, (char *)zeros, UNFM_P_SIZE*to_paste);
		    if ( res ) {
			kfree(zeros);
			goto error_exit_free_blocks;
		    }
		} else if ( is_statdata_le_ih(ih) ) {
		    /* No existing item, create it */
		    /* item head for new item */
		    struct item_head ins_ih;

		    /* create a key for our new item */
		    make_cpu_key( &key, inode, 1, TYPE_INDIRECT, 3);

		    /* Create new item head for our new item */
		    make_le_item_head (&ins_ih, &key, key.version, 1,
				       TYPE_INDIRECT, to_paste*UNFM_P_SIZE,
				       0 /* free space */);

		    /* Find where such item should live in the tree */
		    res = search_item (inode->i_sb, &key, &path);
		    if ( res != ITEM_NOT_FOUND ) {
			/* item should not exist, otherwise we have error */
			if ( res != -ENOSPC ) {
			    reiserfs_warning (inode->i_sb,
				"green-9008: search_by_key (%K) returned %d",
					      &key, res);
			}
			res = -EIO;
		        kfree(zeros);
			goto error_exit_free_blocks;
		    }
		    res = reiserfs_insert_item( th, &path, &key, &ins_ih, inode, (char *)zeros);
		} else {
		    reiserfs_panic(inode->i_sb, "green-9011: Unexpected key type %K\n", &key);
		}
		if ( res ) {
		    kfree(zeros);
		    goto error_exit_free_blocks;
		}
		/* Now we want to check if transaction is too full, and if it is
		   we restart it. This will also free the path. */
		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
		    res = restart_transaction(th, inode, &path);
                    if (res) {
                        pathrelse (&path);
                        kfree(zeros);
                        goto error_exit;
                    }
                }

		/* Well, need to recalculate path and stuff */
		set_cpu_key_k_offset( &key, cpu_key_k_offset(&key) + (to_paste << inode->i_blkbits));
		res = search_for_position_by_key(inode->i_sb, &key, &path);
		if ( res == IO_ERROR ) {
		    res = -EIO;
		    kfree(zeros);
		    goto error_exit_free_blocks;
		}
		bh=get_last_bh(&path);
		ih=get_ih(&path);
		item = get_item(&path);
		hole_size -= to_paste;
	    } while ( hole_size );
	    kfree(zeros);
	}
    }

    // Go through existing indirect items first
    // replace all zeroes with blocknumbers from list
    // Note that if no corresponding item was found, by previous search,
    // it means there are no existing in-tree representation for file area
    // we are going to overwrite, so there is nothing to scan through for holes.
    for ( curr_block = 0, itempos = path.pos_in_item ; curr_block < blocks_to_allocate && res == POSITION_FOUND ; ) {
retry:

	if ( itempos >= ih_item_len(ih)/UNFM_P_SIZE ) {
	    /* We run out of data in this indirect item, let's look for another
	       one. */
	    /* First if we are already modifying current item, log it */
	    if ( modifying_this_item ) {
		journal_mark_dirty (th, inode->i_sb, bh);
		modifying_this_item = 0;
	    }
	    /* Then set the key to look for a new indirect item (offset of old
	       item is added to old item length */
	    set_cpu_key_k_offset( &key, le_key_k_offset( get_inode_item_key_version(inode), &(ih->ih_key)) + op_bytes_number(ih, inode->i_sb->s_blocksize));
	    /* Search ofor position of new key in the tree. */
	    res = search_for_position_by_key(inode->i_sb, &key, &path);
	    if ( res == IO_ERROR) {
		res = -EIO;
		goto error_exit_free_blocks;
	    }
	    bh=get_last_bh(&path);
	    ih=get_ih(&path);
	    item = get_item(&path);
	    itempos = path.pos_in_item;
	    continue; // loop to check all kinds of conditions and so on.
	}
	/* Ok, we have correct position in item now, so let's see if it is
	   representing file hole (blocknumber is zero) and fill it if needed */
	if ( !item[itempos] ) {
	    /* Ok, a hole. Now we need to check if we already prepared this
	       block to be journaled */
	    while ( !modifying_this_item ) { // loop until succeed
		/* Well, this item is not journaled yet, so we must prepare
		   it for journal first, before we can change it */
		struct item_head tmp_ih; // We copy item head of found item,
					 // here to detect if fs changed under
					 // us while we were preparing for
					 // journal.
		int fs_gen; // We store fs generation here to find if someone
			    // changes fs under our feet

		copy_item_head (&tmp_ih, ih); // Remember itemhead
		fs_gen = get_generation (inode->i_sb); // remember fs generation
		reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing.
		if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
		    // Sigh, fs was changed under us, we need to look for new
		    // location of item we are working with

		    /* unmark prepaerd area as journaled and search for it's
		       new position */
		    reiserfs_restore_prepared_buffer(inode->i_sb, bh);
		    res = search_for_position_by_key(inode->i_sb, &key, &path);
		    if ( res == IO_ERROR) {
			res = -EIO;
			goto error_exit_free_blocks;
		    }
		    bh=get_last_bh(&path);
		    ih=get_ih(&path);
		    item = get_item(&path);
		    itempos = path.pos_in_item;
		    goto retry;
		}
		modifying_this_item = 1;
	    }
	    item[itempos] = allocated_blocks[curr_block]; // Assign new block
	    curr_block++;
	}
	itempos++;
    }

    if ( modifying_this_item ) { // We need to log last-accessed block, if it
				 // was modified, but not logged yet.
	journal_mark_dirty (th, inode->i_sb, bh);
    }

    if ( curr_block < blocks_to_allocate ) {
	// Oh, well need to append to indirect item, or to create indirect item
	// if there weren't any
	if ( is_indirect_le_ih(ih) ) {
	    // Existing indirect item - append. First calculate key for append
	    // position. We do not need to recalculate path as it should
	    // already point to correct place.
	    make_cpu_key( &key, inode, le_key_k_offset( get_inode_item_key_version(inode), &(ih->ih_key)) + op_bytes_number(ih, inode->i_sb->s_blocksize), TYPE_INDIRECT, 3);
	    res = reiserfs_paste_into_item( th, &path, &key, inode, (char *)(allocated_blocks+curr_block), UNFM_P_SIZE*(blocks_to_allocate-curr_block));
	    if ( res ) {
		goto error_exit_free_blocks;
	    }
	} else if (is_statdata_le_ih(ih) ) {
	    // Last found item was statdata. That means we need to create indirect item.
	    struct item_head ins_ih; /* itemhead for new item */

	    /* create a key for our new item */
	    make_cpu_key( &key, inode, 1, TYPE_INDIRECT, 3); // Position one,
							    // because that's
							    // where first
							    // indirect item
							    // begins
	    /* Create new item head for our new item */
	    make_le_item_head (&ins_ih, &key, key.version, 1, TYPE_INDIRECT,
			       (blocks_to_allocate-curr_block)*UNFM_P_SIZE,
			       0 /* free space */);
	    /* Find where such item should live in the tree */
	    res = search_item (inode->i_sb, &key, &path);
	    if ( res != ITEM_NOT_FOUND ) {
		/* Well, if we have found such item already, or some error
		   occured, we need to warn user and return error */
		if ( res != -ENOSPC ) {
		    reiserfs_warning (inode->i_sb,
				      "green-9009: search_by_key (%K) "
				      "returned %d", &key, res);
		}
		res = -EIO;
		goto error_exit_free_blocks;
	    }
	    /* Insert item into the tree with the data as its body */
	    res = reiserfs_insert_item( th, &path, &key, &ins_ih, inode, (char *)(allocated_blocks+curr_block));
	} else {
	    reiserfs_panic(inode->i_sb, "green-9010: unexpected item type for key %K\n",&key);
	}
    }

    // the caller is responsible for closing the transaction
    // unless we return an error, they are also responsible for logging
    // the inode.
    //
    pathrelse(&path);
    /*
     * cleanup prellocation from previous writes
     * if this is a partial block write
     */
    if (write_bytes & (inode->i_sb->s_blocksize -1))
        reiserfs_discard_prealloc(th, inode);
    reiserfs_write_unlock(inode->i_sb);

    // go through all the pages/buffers and map the buffers to newly allocated
    // blocks (so that system knows where to write these pages later).
    curr_block = 0;
    for ( i = 0; i < num_pages ; i++ ) {
	struct page *page=prepared_pages[i]; //current page
	struct buffer_head *head = page_buffers(page);// first buffer for a page
	int block_start, block_end; // in-page offsets for buffers.

	if (!page_buffers(page))
	    reiserfs_panic(inode->i_sb, "green-9005: No buffers for prepared page???");

	/* For each buffer in page */
	for(bh = head, block_start = 0; bh != head || !block_start;
	    block_start=block_end, bh = bh->b_this_page) {
	    if (!bh)
		reiserfs_panic(inode->i_sb, "green-9006: Allocated but absent buffer for a page?");
	    block_end = block_start+inode->i_sb->s_blocksize;
	    if (i == 0 && block_end <= from )
		/* if this buffer is before requested data to map, skip it */
		continue;
	    if (i == num_pages - 1 && block_start >= to)
		/* If this buffer is after requested data to map, abort
		   processing of current page */
		break;

	    if ( !buffer_mapped(bh) ) { // Ok, unmapped buffer, need to map it
		map_bh( bh, inode->i_sb, le32_to_cpu(allocated_blocks[curr_block]));
		curr_block++;
		set_buffer_new(bh);
	    }
	}
    }

    RFALSE( curr_block > blocks_to_allocate, "green-9007: Used too many blocks? weird");

    kfree(allocated_blocks);
    return 0;

// Need to deal with transaction here.
error_exit_free_blocks:
    pathrelse(&path);
    // free blocks
    for( i = 0; i < blocks_to_allocate; i++ )
	reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), 1);

error_exit:
    if (th->t_trans_id) {
        int err;
        // update any changes we made to blk count
        reiserfs_update_sd(th, inode);
579
        err = journal_end(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
L
Linus Torvalds 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
        if (err)
            res = err;
    }
    reiserfs_write_unlock(inode->i_sb);
    kfree(allocated_blocks);

    return res;
}

/* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */
			      size_t num_pages /* amount of pages */) {
    int i; // loop counter

    for (i=0; i < num_pages ; i++) {
	struct page *page = prepared_pages[i];

	try_to_free_buffers(page);
	unlock_page(page);
	page_cache_release(page);
    }
}

/* This function will copy data from userspace to specified pages within
   supplied byte range */
static int reiserfs_copy_from_user_to_file_region(
				loff_t pos, /* In-file position */
				int num_pages, /* Number of pages affected */
				int write_bytes, /* Amount of bytes to write */
				struct page **prepared_pages, /* pointer to 
								 array to
								 prepared pages
								*/
				const char __user *buf /* Pointer to user-supplied
						   data*/
				)
{
    long page_fault=0; // status of copy_from_user.
    int i; // loop counter.
    int offset; // offset in page

    for ( i = 0, offset = (pos & (PAGE_CACHE_SIZE-1)); i < num_pages ; i++,offset=0) {
	size_t count = min_t(size_t,PAGE_CACHE_SIZE-offset,write_bytes); // How much of bytes to write to this page
	struct page *page=prepared_pages[i]; // Current page we process.

	fault_in_pages_readable( buf, count);

	/* Copy data from userspace to the current page */
	kmap(page);
	page_fault = __copy_from_user(page_address(page)+offset, buf, count); // Copy the data.
	/* Flush processor's dcache for this page */
	flush_dcache_page(page);
	kunmap(page);
	buf+=count;
	write_bytes-=count;

	if (page_fault)
	    break; // Was there a fault? abort.
    }

    return page_fault?-EFAULT:0;
}

/* taken fs/buffer.c:__block_commit_write */
int reiserfs_commit_page(struct inode *inode, struct page *page,
		unsigned from, unsigned to)
{
    unsigned block_start, block_end;
    int partial = 0;
    unsigned blocksize;
    struct buffer_head *bh, *head;
    unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
    int new;
    int logit = reiserfs_file_data_log(inode);
    struct super_block *s = inode->i_sb;
    int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
    struct reiserfs_transaction_handle th;
    int ret = 0;

    th.t_trans_id = 0;
    blocksize = 1 << inode->i_blkbits;

    if (logit) {
	reiserfs_write_lock(s);
	ret = journal_begin(&th, s, bh_per_page + 1);
	if (ret)
	    goto drop_write_lock;
	reiserfs_update_inode_transaction(inode);
    }
    for(bh = head = page_buffers(page), block_start = 0;
        bh != head || !block_start;
	block_start=block_end, bh = bh->b_this_page)
    {

	new = buffer_new(bh);
	clear_buffer_new(bh);
	block_end = block_start + blocksize;
	if (block_end <= from || block_start >= to) {
	    if (!buffer_uptodate(bh))
		    partial = 1;
	} else {
	    set_buffer_uptodate(bh);
	    if (logit) {
		reiserfs_prepare_for_journal(s, bh, 1);
		journal_mark_dirty(&th, s, bh);
	    } else if (!buffer_dirty(bh)) {
		mark_buffer_dirty(bh);
		/* do data=ordered on any page past the end
		 * of file and any buffer marked BH_New.
		 */
		if (reiserfs_data_ordered(inode->i_sb) &&
		    (new || page->index >= i_size_index)) {
		    reiserfs_add_ordered_list(inode, bh);
	        }
	    }
	}
    }
    if (logit) {
	ret = journal_end(&th, s, bh_per_page + 1);
drop_write_lock:
	reiserfs_write_unlock(s);
    }
    /*
     * If this is a partial write which happened to make all buffers
     * uptodate then we can optimize away a bogus readpage() for
     * the next read(). Here we 'discover' whether the page went
     * uptodate as a result of this (potentially partial) write.
     */
    if (!partial)
	SetPageUptodate(page);
    return ret;
}


/* Submit pages for write. This was separated from actual file copying
   because we might want to allocate block numbers in-between.
   This function assumes that caller will adjust file size to correct value. */
static int reiserfs_submit_file_region_for_write(
				struct reiserfs_transaction_handle *th,
				struct inode *inode,
				loff_t pos, /* Writing position offset */
				size_t num_pages, /* Number of pages to write */
				size_t write_bytes, /* number of bytes to write */
				struct page **prepared_pages /* list of pages */
				)
{
    int status; // return status of block_commit_write.
    int retval = 0; // Return value we are going to return.
    int i; // loop counter
    int offset; // Writing offset in page.
    int orig_write_bytes = write_bytes;
    int sd_update = 0;

    for ( i = 0, offset = (pos & (PAGE_CACHE_SIZE-1)); i < num_pages ; i++,offset=0) {
	int count = min_t(int,PAGE_CACHE_SIZE-offset,write_bytes); // How much of bytes to write to this page
	struct page *page=prepared_pages[i]; // Current page we process.

	status = reiserfs_commit_page(inode, page, offset, offset+count);
	if ( status )
	    retval = status; // To not overcomplicate matters We are going to
			     // submit all the pages even if there was error.
			     // we only remember error status to report it on
			     // exit.
	write_bytes-=count;
    }
    /* now that we've gotten all the ordered buffers marked dirty,
     * we can safely update i_size and close any running transaction
     */
    if ( pos + orig_write_bytes > inode->i_size) {
	inode->i_size = pos + orig_write_bytes; // Set new size
	/* If the file have grown so much that tail packing is no
	 * longer possible, reset "need to pack" flag */
	if ( (have_large_tails (inode->i_sb) &&
	      inode->i_size > i_block_size (inode)*4) ||
	     (have_small_tails (inode->i_sb) &&
	     inode->i_size > i_block_size(inode)) )
	    REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask ;
        else if ( (have_large_tails (inode->i_sb) &&
	          inode->i_size < i_block_size (inode)*4) ||
	          (have_small_tails (inode->i_sb) &&
		  inode->i_size < i_block_size(inode)) )
	    REISERFS_I(inode)->i_flags |= i_pack_on_close_mask ;

	if (th->t_trans_id) {
	    reiserfs_write_lock(inode->i_sb);
	    reiserfs_update_sd(th, inode); // And update on-disk metadata
	    reiserfs_write_unlock(inode->i_sb);
	} else
	    inode->i_sb->s_op->dirty_inode(inode);

        sd_update = 1;
    }
    if (th->t_trans_id) {
	reiserfs_write_lock(inode->i_sb);
	if (!sd_update)
	    reiserfs_update_sd(th, inode);
	status = journal_end(th, th->t_super, th->t_blocks_allocated);
        if (status)
            retval = status;
	reiserfs_write_unlock(inode->i_sb);
    }
    th->t_trans_id = 0;

    /* 
     * we have to unlock the pages after updating i_size, otherwise
     * we race with writepage
     */
    for ( i = 0; i < num_pages ; i++) {
	struct page *page=prepared_pages[i];
	unlock_page(page); 
	mark_page_accessed(page);
	page_cache_release(page);
    }
    return retval;
}

/* Look if passed writing region is going to touch file's tail
   (if it is present). And if it is, convert the tail to unformatted node */
static int reiserfs_check_for_tail_and_convert( struct inode *inode, /* inode to deal with */
					 loff_t pos, /* Writing position */
					 int write_bytes /* amount of bytes to write */
				        )
{
    INITIALIZE_PATH(path); // needed for search_for_position
    struct cpu_key key; // Key that would represent last touched writing byte.
    struct item_head *ih; // item header of found block;
    int res; // Return value of various functions we call.
    int cont_expand_offset; // We will put offset for generic_cont_expand here
			    // This can be int just because tails are created
			    // only for small files.
 
/* this embodies a dependency on a particular tail policy */
    if ( inode->i_size >= inode->i_sb->s_blocksize*4 ) {
	/* such a big files do not have tails, so we won't bother ourselves
	   to look for tails, simply return */
	return 0;
    }

    reiserfs_write_lock(inode->i_sb);
    /* find the item containing the last byte to be written, or if
     * writing past the end of the file then the last item of the
     * file (and then we check its type). */
    make_cpu_key (&key, inode, pos+write_bytes+1, TYPE_ANY, 3/*key length*/);
    res = search_for_position_by_key(inode->i_sb, &key, &path);
    if ( res == IO_ERROR ) {
        reiserfs_write_unlock(inode->i_sb);
	return -EIO;
    }
    ih = get_ih(&path);
    res = 0;
    if ( is_direct_le_ih(ih) ) {
	/* Ok, closest item is file tail (tails are stored in "direct"
	 * items), so we need to unpack it. */
	/* To not overcomplicate matters, we just call generic_cont_expand
	   which will in turn call other stuff and finally will boil down to
	    reiserfs_get_block() that would do necessary conversion. */
	cont_expand_offset = le_key_k_offset(get_inode_item_key_version(inode), &(ih->ih_key));
	pathrelse(&path);
	res = generic_cont_expand( inode, cont_expand_offset);
    } else
	pathrelse(&path);

    reiserfs_write_unlock(inode->i_sb);
    return res;
}

/* This function locks pages starting from @pos for @inode.
   @num_pages pages are locked and stored in
   @prepared_pages array. Also buffers are allocated for these pages.
   First and last page of the region is read if it is overwritten only
   partially. If last page did not exist before write (file hole or file
   append), it is zeroed, then. 
   Returns number of unallocated blocks that should be allocated to cover
   new file data.*/
static int reiserfs_prepare_file_region_for_write(
				struct inode *inode /* Inode of the file */,
				loff_t pos, /* position in the file */
				size_t num_pages, /* number of pages to
					          prepare */
				size_t write_bytes, /* Amount of bytes to be
						    overwritten from
						    @pos */
				struct page **prepared_pages /* pointer to array
							       where to store
							       prepared pages */
					   )
{
    int res=0; // Return values of different functions we call.
    unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages.
    int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page
    int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
					 /* offset of last modified byte in last
				            page */
    struct address_space *mapping = inode->i_mapping; // Pages are mapped here.
    int i; // Simple counter
    int blocks = 0; /* Return value (blocks that should be allocated) */
    struct buffer_head *bh, *head; // Current bufferhead and first bufferhead
				   // of a page.
    unsigned block_start, block_end; // Starting and ending offsets of current
				     // buffer in the page.
    struct buffer_head *wait[2], **wait_bh=wait; // Buffers for page, if
						 // Page appeared to be not up
						 // to date. Note how we have
						 // at most 2 buffers, this is
						 // because we at most may
						 // partially overwrite two
						 // buffers for one page. One at                                                 // the beginning of write area
						 // and one at the end.
						 // Everything inthe middle gets                                                 // overwritten totally.

    struct cpu_key key; // cpu key of item that we are going to deal with
    struct item_head *ih = NULL; // pointer to item head that we are going to deal with
    struct buffer_head *itembuf=NULL; // Buffer head that contains items that we are going to deal with
    INITIALIZE_PATH(path); // path to item, that we are going to deal with.
894
    __le32 * item=NULL; // pointer to item we are going to deal with
L
Linus Torvalds 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    int item_pos=-1; /* Position in indirect item */


    if ( num_pages < 1 ) {
	reiserfs_warning (inode->i_sb,
			  "green-9001: reiserfs_prepare_file_region_for_write "
			  "called with zero number of pages to process");
	return -EFAULT;
    }

    /* We have 2 loops for pages. In first loop we grab and lock the pages, so
       that nobody would touch these until we release the pages. Then
       we'd start to deal with mapping buffers to blocks. */
    for ( i = 0; i < num_pages; i++) {
	prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page
	if ( !prepared_pages[i]) {
	    res = -ENOMEM;
	    goto failed_page_grabbing;
	}
	if (!page_has_buffers(prepared_pages[i]))
	    create_empty_buffers(prepared_pages[i], inode->i_sb->s_blocksize, 0);
    }

    /* Let's count amount of blocks for a case where all the blocks
       overwritten are new (we will substract already allocated blocks later)*/
    if ( num_pages > 2 )
	/* These are full-overwritten pages so we count all the blocks in
	   these pages are counted as needed to be allocated */
	blocks = (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);

    /* count blocks needed for first page (possibly partially written) */
    blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) +
	   !!(from & (inode->i_sb->s_blocksize-1)); /* roundup */

    /* Now we account for last page. If last page == first page (we
       overwrite only one page), we substract all the blocks past the
       last writing position in a page out of already calculated number
       of blocks */
    blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT-inode->i_blkbits)) -
	   ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
	   /* Note how we do not roundup here since partial blocks still
		   should be allocated */

    /* Now if all the write area lies past the file end, no point in
       maping blocks, since there is none, so we just zero out remaining
       parts of first and last pages in write area (if needed) */
    if ( (pos & ~((loff_t)PAGE_CACHE_SIZE - 1)) > inode->i_size ) {
	if ( from != 0 ) {/* First page needs to be partially zeroed */
	    char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0);
	    memset(kaddr, 0, from);
	    kunmap_atomic( kaddr, KM_USER0);
	}
	if ( to != PAGE_CACHE_SIZE ) { /* Last page needs to be partially zeroed */
	    char *kaddr = kmap_atomic(prepared_pages[num_pages-1], KM_USER0);
	    memset(kaddr+to, 0, PAGE_CACHE_SIZE - to);
	    kunmap_atomic( kaddr, KM_USER0);
	}

	/* Since all blocks are new - use already calculated value */
	return blocks;
    }

    /* Well, since we write somewhere into the middle of a file, there is
       possibility we are writing over some already allocated blocks, so
       let's map these blocks and substract number of such blocks out of blocks
       we need to allocate (calculated above) */
    /* Mask write position to start on blocksize, we do it out of the
       loop for performance reasons */
    pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
    /* Set cpu key to the starting position in a file (on left block boundary)*/
    make_cpu_key (&key, inode, 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), TYPE_ANY, 3/*key length*/);

    reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key()
    for ( i = 0; i < num_pages ; i++ ) { 

	head = page_buffers(prepared_pages[i]);
	/* For each buffer in the page */
	for(bh = head, block_start = 0; bh != head || !block_start;
	    block_start=block_end, bh = bh->b_this_page) {
		if (!bh)
		    reiserfs_panic(inode->i_sb, "green-9002: Allocated but absent buffer for a page?");
		/* Find where this buffer ends */
		block_end = block_start+inode->i_sb->s_blocksize;
		if (i == 0 && block_end <= from )
		    /* if this buffer is before requested data to map, skip it*/
		    continue;

		if (i == num_pages - 1 && block_start >= to) {
		    /* If this buffer is after requested data to map, abort
		       processing of current page */
		    break;
		}

		if ( buffer_mapped(bh) && bh->b_blocknr !=0 ) {
		    /* This is optimisation for a case where buffer is mapped
		       and have blocknumber assigned. In case significant amount
		       of such buffers are present, we may avoid some amount
		       of search_by_key calls.
		       Probably it would be possible to move parts of this code
		       out of BKL, but I afraid that would overcomplicate code
		       without any noticeable benefit.
		    */
		    item_pos++;
		    /* Update the key */
		    set_cpu_key_k_offset( &key, cpu_key_k_offset(&key) + inode->i_sb->s_blocksize);
		    blocks--; // Decrease the amount of blocks that need to be
			      // allocated
		    continue; // Go to the next buffer
		}

		if ( !itembuf || /* if first iteration */
		     item_pos >= ih_item_len(ih)/UNFM_P_SIZE)
					     { /* or if we progressed past the
						  current unformatted_item */
			/* Try to find next item */
			res = search_for_position_by_key(inode->i_sb, &key, &path);
			/* Abort if no more items */
			if ( res != POSITION_FOUND ) {
			    /* make sure later loops don't use this item */
			    itembuf = NULL;
			    item = NULL;
			    break;
			}

			/* Update information about current indirect item */
			itembuf = get_last_bh( &path );
			ih = get_ih( &path );
			item = get_item( &path );
			item_pos = path.pos_in_item;

			RFALSE( !is_indirect_le_ih (ih), "green-9003: indirect item expected");
		}

		/* See if there is some block associated with the file
		   at that position, map the buffer to this block */
		if ( get_block_num(item,item_pos) ) {
		    map_bh(bh, inode->i_sb, get_block_num(item,item_pos));
		    blocks--; // Decrease the amount of blocks that need to be
			      // allocated
		}
		item_pos++;
		/* Update the key */
		set_cpu_key_k_offset( &key, cpu_key_k_offset(&key) + inode->i_sb->s_blocksize);
	}
    }
    pathrelse(&path); // Free the path
    reiserfs_write_unlock(inode->i_sb);

	/* Now zero out unmappend buffers for the first and last pages of
	   write area or issue read requests if page is mapped. */
	/* First page, see if it is not uptodate */
	if ( !PageUptodate(prepared_pages[0]) ) {
	    head = page_buffers(prepared_pages[0]);

	    /* For each buffer in page */
	    for(bh = head, block_start = 0; bh != head || !block_start;
		block_start=block_end, bh = bh->b_this_page) {

		if (!bh)
		    reiserfs_panic(inode->i_sb, "green-9002: Allocated but absent buffer for a page?");
		/* Find where this buffer ends */
		block_end = block_start+inode->i_sb->s_blocksize;
		if ( block_end <= from )
		    /* if this buffer is before requested data to map, skip it*/
		    continue;
		if ( block_start < from ) { /* Aha, our partial buffer */
		    if ( buffer_mapped(bh) ) { /* If it is mapped, we need to
						  issue READ request for it to
						  not loose data */
			ll_rw_block(READ, 1, &bh);
			*wait_bh++=bh;
		    } else { /* Not mapped, zero it */
			char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0);
			memset(kaddr+block_start, 0, from-block_start);
			kunmap_atomic( kaddr, KM_USER0);
			set_buffer_uptodate(bh);
		    }
		}
	    }
	}

	/* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
	if ( !PageUptodate(prepared_pages[num_pages-1]) || 
	    ((pos+write_bytes)>>PAGE_CACHE_SHIFT) > (inode->i_size>>PAGE_CACHE_SHIFT) ) {
	    head = page_buffers(prepared_pages[num_pages-1]);

	    /* for each buffer in page */
	    for(bh = head, block_start = 0; bh != head || !block_start;
		block_start=block_end, bh = bh->b_this_page) {

		if (!bh)
		    reiserfs_panic(inode->i_sb, "green-9002: Allocated but absent buffer for a page?");
		/* Find where this buffer ends */
		block_end = block_start+inode->i_sb->s_blocksize;
		if ( block_start >= to )
		    /* if this buffer is after requested data to map, skip it*/
		    break;
		if ( block_end > to ) { /* Aha, our partial buffer */
		    if ( buffer_mapped(bh) ) { /* If it is mapped, we need to
						  issue READ request for it to
						  not loose data */
			ll_rw_block(READ, 1, &bh);
			*wait_bh++=bh;
		    } else { /* Not mapped, zero it */
			char *kaddr = kmap_atomic(prepared_pages[num_pages-1], KM_USER0);
			memset(kaddr+to, 0, block_end-to);
			kunmap_atomic( kaddr, KM_USER0);
			set_buffer_uptodate(bh);
		    }
		}
	    }
	}

    /* Wait for read requests we made to happen, if necessary */
    while(wait_bh > wait) {
	wait_on_buffer(*--wait_bh);
	if (!buffer_uptodate(*wait_bh)) {
	    res = -EIO;
	    goto failed_read;
	}
    }

    return blocks;
failed_page_grabbing:
    num_pages = i;
failed_read:
    reiserfs_unprepare_pages(prepared_pages, num_pages);
    return res;
}

/* Write @count bytes at position @ppos in a file indicated by @file
   from the buffer @buf.  

   generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
   something simple that works.  It is not for serious use by general purpose filesystems, excepting the one that it was
   written for (ext2/3).  This is for several reasons:

   * It has no understanding of any filesystem specific optimizations.

   * It enters the filesystem repeatedly for each page that is written.

   * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
   * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
   * to reiserfs which allows for fewer tree traversals.

   * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.

   * Asking the block allocation code for blocks one at a time is slightly less efficient.

   All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
   use it, but we were in a hurry to make code freeze, and so it couldn't be revised then.  This new code should make
   things right finally.

   Future Features: providing search_by_key with hints.

*/
static ssize_t reiserfs_file_write( struct file *file, /* the file we are going to write into */
                             const char __user *buf, /*  pointer to user supplied data
(in userspace) */
                             size_t count, /* amount of bytes to write */
                             loff_t *ppos /* pointer to position in file that we start writing at. Should be updated to
                                           * new current position before returning. */ )
{
    size_t already_written = 0; // Number of bytes already written to the file.
    loff_t pos; // Current position in the file.
    ssize_t res; // return value of various functions that we call.
    int err = 0;
    struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to.
				/* To simplify coding at this time, we store
				   locked pages in array for now */
    struct page * prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
    struct reiserfs_transaction_handle th;
    th.t_trans_id = 0;

    if ( file->f_flags & O_DIRECT) { // Direct IO needs treatment
	ssize_t result, after_file_end = 0;
	if ( (*ppos + count >= inode->i_size) || (file->f_flags & O_APPEND) ) {
	    /* If we are appending a file, we need to put this savelink in here.
	       If we will crash while doing direct io, finish_unfinished will
	       cut the garbage from the file end. */
	    reiserfs_write_lock(inode->i_sb);
	    err = journal_begin(&th, inode->i_sb,  JOURNAL_PER_BALANCE_CNT );
            if (err) {
		reiserfs_write_unlock (inode->i_sb);
		return err;
	    }
	    reiserfs_update_inode_transaction(inode);
	    add_save_link (&th, inode, 1 /* Truncate */);
	    after_file_end = 1;
	    err = journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT );
            reiserfs_write_unlock(inode->i_sb);
	    if (err)
		return err;
	}
	result = generic_file_write(file, buf, count, ppos);

	if ( after_file_end ) { /* Now update i_size and remove the savelink */
	    struct reiserfs_transaction_handle th;
	    reiserfs_write_lock(inode->i_sb);
	    err = journal_begin(&th, inode->i_sb, 1);
            if (err) {
                reiserfs_write_unlock (inode->i_sb);
                return err;
            }
	    reiserfs_update_inode_transaction(inode);
	    reiserfs_update_sd(&th, inode);
	    err = journal_end(&th, inode->i_sb, 1);
            if (err) {
                reiserfs_write_unlock (inode->i_sb);
                return err;
            }
	    err = remove_save_link (inode, 1/* truncate */);
	    reiserfs_write_unlock(inode->i_sb);
            if (err)
                return err;
	}

	return result;
    }

    if ( unlikely((ssize_t) count < 0 ))
        return -EINVAL;

    if (unlikely(!access_ok(VERIFY_READ, buf, count)))
        return -EFAULT;

    down(&inode->i_sem); // locks the entire file for just us

    pos = *ppos;

    /* Check if we can write to specified region of file, file
       is not overly big and this kind of stuff. Adjust pos and
       count, if needed */
    res = generic_write_checks(file, &pos, &count, 0);
    if (res)
	goto out;

    if ( count == 0 )
	goto out;

    res = remove_suid(file->f_dentry);
    if (res)
	goto out;

    inode_update_time(inode, 1); /* Both mtime and ctime */

    // Ok, we are done with all the checks.

    // Now we should start real work

    /* If we are going to write past the file's packed tail or if we are going
       to overwrite part of the tail, we need that tail to be converted into
       unformatted node */
    res = reiserfs_check_for_tail_and_convert( inode, pos, count);
    if (res)
	goto out;

    while ( count > 0) {
	/* This is the main loop in which we running until some error occures
	   or until we write all of the data. */
	size_t num_pages;/* amount of pages we are going to write this iteration */
	size_t write_bytes; /* amount of bytes to write during this iteration */
	size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */
        
        /*  (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos*/
	num_pages = !!((pos+count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial
							  pages */
		    ((count + (pos & (PAGE_CACHE_SIZE-1))) >> PAGE_CACHE_SHIFT); 
						/* convert size to amount of
						   pages */
	reiserfs_write_lock(inode->i_sb);
	if ( num_pages > REISERFS_WRITE_PAGES_AT_A_TIME 
		|| num_pages > reiserfs_can_fit_pages(inode->i_sb) ) {
	    /* If we were asked to write more data than we want to or if there
	       is not that much space, then we shorten amount of data to write
	       for this iteration. */
	    num_pages = min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, reiserfs_can_fit_pages(inode->i_sb));
	    /* Also we should not forget to set size in bytes accordingly */
	    write_bytes = (num_pages << PAGE_CACHE_SHIFT) - 
			    (pos & (PAGE_CACHE_SIZE-1));
					 /* If position is not on the
					    start of the page, we need
					    to substract the offset
					    within page */
	} else
	    write_bytes = count;

	/* reserve the blocks to be allocated later, so that later on
	   we still have the space to write the blocks to */
	reiserfs_claim_blocks_to_be_allocated(inode->i_sb, num_pages << (PAGE_CACHE_SHIFT - inode->i_blkbits));
	reiserfs_write_unlock(inode->i_sb);

1287 1288 1289 1290 1291
	if ( !num_pages ) { /* If we do not have enough space even for a single page... */
	    if ( pos > inode->i_size+inode->i_sb->s_blocksize-(pos & (inode->i_sb->s_blocksize-1))) {
		res = -ENOSPC;
		break; // In case we are writing past the end of the last file block, break.
	    }
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	    // Otherwise we are possibly overwriting the file, so
	    // let's set write size to be equal or less than blocksize.
	    // This way we get it correctly for file holes.
	    // But overwriting files on absolutelly full volumes would not
	    // be very efficient. Well, people are not supposed to fill
	    // 100% of disk space anyway.
	    write_bytes = min_t(size_t, count, inode->i_sb->s_blocksize - (pos & (inode->i_sb->s_blocksize - 1)));
	    num_pages = 1;
	    // No blocks were claimed before, so do it now.
	    reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1 << (PAGE_CACHE_SHIFT - inode->i_blkbits));
	}

	/* Prepare for writing into the region, read in all the
	   partially overwritten pages, if needed. And lock the pages,
	   so that nobody else can access these until we are done.
	   We get number of actual blocks needed as a result.*/
	blocks_to_allocate = reiserfs_prepare_file_region_for_write(inode, pos, num_pages, write_bytes, prepared_pages);
	if ( blocks_to_allocate < 0 ) {
	    res = blocks_to_allocate;
	    reiserfs_release_claimed_blocks(inode->i_sb, num_pages << (PAGE_CACHE_SHIFT - inode->i_blkbits));
	    break;
	}

	/* First we correct our estimate of how many blocks we need */
	reiserfs_release_claimed_blocks(inode->i_sb, (num_pages << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits)) - blocks_to_allocate );

	if ( blocks_to_allocate > 0) {/*We only allocate blocks if we need to*/
	    /* Fill in all the possible holes and append the file if needed */
	    res = reiserfs_allocate_blocks_for_region(&th, inode, pos, num_pages, write_bytes, prepared_pages, blocks_to_allocate);
	}

	/* well, we have allocated the blocks, so it is time to free
	   the reservation we made earlier. */
	reiserfs_release_claimed_blocks(inode->i_sb, blocks_to_allocate);
	if ( res ) {
	    reiserfs_unprepare_pages(prepared_pages, num_pages);
	    break;
	}

/* NOTE that allocating blocks and filling blocks can be done in reverse order
   and probably we would do that just to get rid of garbage in files after a
   crash */

	/* Copy data from user-supplied buffer to file's pages */
	res = reiserfs_copy_from_user_to_file_region(pos, num_pages, write_bytes, prepared_pages, buf);
	if ( res ) {
	    reiserfs_unprepare_pages(prepared_pages, num_pages);
	    break;
	}

	/* Send the pages to disk and unlock them. */
	res = reiserfs_submit_file_region_for_write(&th, inode, pos, num_pages,
	                                            write_bytes,prepared_pages);
	if ( res )
	    break;

	already_written += write_bytes;
	buf += write_bytes;
	*ppos = pos += write_bytes;
	count -= write_bytes;
	balance_dirty_pages_ratelimited(inode->i_mapping);
    }

    /* this is only true on error */
    if (th.t_trans_id) {
        reiserfs_write_lock(inode->i_sb);
        err = journal_end(&th, th.t_super, th.t_blocks_allocated);
        reiserfs_write_unlock(inode->i_sb);
        if (err) {
            res = err;
            goto out;
        }
    }

    if ((file->f_flags & O_SYNC) || IS_SYNC(inode))
	res = generic_osync_inode(inode, file->f_mapping, OSYNC_METADATA|OSYNC_DATA);

    up(&inode->i_sem);
    reiserfs_async_progress_wait(inode->i_sb);
    return (already_written != 0)?already_written:res;

out:
    up(&inode->i_sem); // unlock the file on exit.
    return res;
}

static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user *buf,
			       size_t count, loff_t pos)
{
    return generic_file_aio_write(iocb, buf, count, pos);
}



struct file_operations reiserfs_file_operations = {
    .read	= generic_file_read,
    .write	= reiserfs_file_write,
    .ioctl	= reiserfs_ioctl,
    .mmap	= generic_file_mmap,
    .release	= reiserfs_file_release,
    .fsync	= reiserfs_sync_file,
    .sendfile	= generic_file_sendfile,
    .aio_read   = generic_file_aio_read,
    .aio_write  = reiserfs_aio_write,
};


struct  inode_operations reiserfs_file_inode_operations = {
    .truncate	= reiserfs_vfs_truncate_file,
    .setattr    = reiserfs_setattr,
    .setxattr   = reiserfs_setxattr,
    .getxattr   = reiserfs_getxattr,
    .listxattr  = reiserfs_listxattr,
    .removexattr = reiserfs_removexattr,
    .permission = reiserfs_permission,
};