clocksource.c 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/kernel/time/clocksource.c
 *
 * This file contains the functions which manage clocksource drivers.
 *
 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * TODO WishList:
 *   o Allow clocksource drivers to be unregistered
 */

#include <linux/clocksource.h>
#include <linux/sysdev.h>
#include <linux/init.h>
#include <linux/module.h>
30
#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31
#include <linux/tick.h>
32
#include <linux/kthread.h>
33

34 35 36 37 38 39 40 41
void timecounter_init(struct timecounter *tc,
		      const struct cyclecounter *cc,
		      u64 start_tstamp)
{
	tc->cc = cc;
	tc->cycle_last = cc->read(cc);
	tc->nsec = start_tstamp;
}
42
EXPORT_SYMBOL_GPL(timecounter_init);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

/**
 * timecounter_read_delta - get nanoseconds since last call of this function
 * @tc:         Pointer to time counter
 *
 * When the underlying cycle counter runs over, this will be handled
 * correctly as long as it does not run over more than once between
 * calls.
 *
 * The first call to this function for a new time counter initializes
 * the time tracking and returns an undefined result.
 */
static u64 timecounter_read_delta(struct timecounter *tc)
{
	cycle_t cycle_now, cycle_delta;
	u64 ns_offset;

	/* read cycle counter: */
	cycle_now = tc->cc->read(tc->cc);

	/* calculate the delta since the last timecounter_read_delta(): */
	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;

	/* convert to nanoseconds: */
	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);

	/* update time stamp of timecounter_read_delta() call: */
	tc->cycle_last = cycle_now;

	return ns_offset;
}

u64 timecounter_read(struct timecounter *tc)
{
	u64 nsec;

	/* increment time by nanoseconds since last call */
	nsec = timecounter_read_delta(tc);
	nsec += tc->nsec;
	tc->nsec = nsec;

	return nsec;
}
86
EXPORT_SYMBOL_GPL(timecounter_read);
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

u64 timecounter_cyc2time(struct timecounter *tc,
			 cycle_t cycle_tstamp)
{
	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
	u64 nsec;

	/*
	 * Instead of always treating cycle_tstamp as more recent
	 * than tc->cycle_last, detect when it is too far in the
	 * future and treat it as old time stamp instead.
	 */
	if (cycle_delta > tc->cc->mask / 2) {
		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
	} else {
		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
	}

	return nsec;
}
108
EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109

110 111 112 113 114 115
/**
 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
 * @mult:	pointer to mult variable
 * @shift:	pointer to shift variable
 * @from:	frequency to convert from
 * @to:		frequency to convert to
116
 * @maxsec:	guaranteed runtime conversion range in seconds
117 118 119 120 121 122 123 124
 *
 * The function evaluates the shift/mult pair for the scaled math
 * operations of clocksources and clockevents.
 *
 * @to and @from are frequency values in HZ. For clock sources @to is
 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
 * event @to is the counter frequency and @from is NSEC_PER_SEC.
 *
125
 * The @maxsec conversion range argument controls the time frame in
126 127 128 129 130 131 132 133
 * seconds which must be covered by the runtime conversion with the
 * calculated mult and shift factors. This guarantees that no 64bit
 * overflow happens when the input value of the conversion is
 * multiplied with the calculated mult factor. Larger ranges may
 * reduce the conversion accuracy by chosing smaller mult and shift
 * factors.
 */
void
134
clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
135 136 137 138 139 140 141 142
{
	u64 tmp;
	u32 sft, sftacc= 32;

	/*
	 * Calculate the shift factor which is limiting the conversion
	 * range:
	 */
143
	tmp = ((u64)maxsec * from) >> 32;
144 145 146 147 148 149 150 151 152 153 154
	while (tmp) {
		tmp >>=1;
		sftacc--;
	}

	/*
	 * Find the conversion shift/mult pair which has the best
	 * accuracy and fits the maxsec conversion range:
	 */
	for (sft = 32; sft > 0; sft--) {
		tmp = (u64) to << sft;
155
		tmp += from / 2;
156 157 158 159 160 161 162 163
		do_div(tmp, from);
		if ((tmp >> sftacc) == 0)
			break;
	}
	*mult = tmp;
	*shift = sft;
}

164 165
/*[Clocksource internal variables]---------
 * curr_clocksource:
166
 *	currently selected clocksource.
167 168
 * clocksource_list:
 *	linked list with the registered clocksources
169 170
 * clocksource_mutex:
 *	protects manipulations to curr_clocksource and the clocksource_list
171 172 173
 * override_name:
 *	Name of the user-specified clocksource.
 */
174
static struct clocksource *curr_clocksource;
175
static LIST_HEAD(clocksource_list);
176
static DEFINE_MUTEX(clocksource_mutex);
177
static char override_name[32];
178
static int finished_booting;
179

180
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
181 182
static void clocksource_watchdog_work(struct work_struct *work);

183 184 185
static LIST_HEAD(watchdog_list);
static struct clocksource *watchdog;
static struct timer_list watchdog_timer;
186
static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
187 188
static DEFINE_SPINLOCK(watchdog_lock);
static cycle_t watchdog_last;
189
static int watchdog_running;
T
Thomas Gleixner 已提交
190

191
static int clocksource_watchdog_kthread(void *data);
192
static void __clocksource_change_rating(struct clocksource *cs, int rating);
193

194
/*
195
 * Interval: 0.5sec Threshold: 0.0625s
196 197
 */
#define WATCHDOG_INTERVAL (HZ >> 1)
198
#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
199

200 201 202 203 204 205 206 207 208
static void clocksource_watchdog_work(struct work_struct *work)
{
	/*
	 * If kthread_run fails the next watchdog scan over the
	 * watchdog_list will find the unstable clock again.
	 */
	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
}

209
static void __clocksource_unstable(struct clocksource *cs)
210 211
{
	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
212
	cs->flags |= CLOCK_SOURCE_UNSTABLE;
213 214
	if (finished_booting)
		schedule_work(&watchdog_work);
215 216
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
static void clocksource_unstable(struct clocksource *cs, int64_t delta)
{
	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
	       cs->name, delta);
	__clocksource_unstable(cs);
}

/**
 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 * @cs:		clocksource to be marked unstable
 *
 * This function is called instead of clocksource_change_rating from
 * cpu hotplug code to avoid a deadlock between the clocksource mutex
 * and the cpu hotplug mutex. It defers the update of the clocksource
 * to the watchdog thread.
 */
void clocksource_mark_unstable(struct clocksource *cs)
{
	unsigned long flags;

	spin_lock_irqsave(&watchdog_lock, flags);
	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
		if (list_empty(&cs->wd_list))
			list_add(&cs->wd_list, &watchdog_list);
		__clocksource_unstable(cs);
	}
	spin_unlock_irqrestore(&watchdog_lock, flags);
}

246 247
static void clocksource_watchdog(unsigned long data)
{
248
	struct clocksource *cs;
249 250
	cycle_t csnow, wdnow;
	int64_t wd_nsec, cs_nsec;
251
	int next_cpu;
252 253

	spin_lock(&watchdog_lock);
254 255
	if (!watchdog_running)
		goto out;
256

257
	wdnow = watchdog->read(watchdog);
258 259
	wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask,
				     watchdog->mult, watchdog->shift);
260 261
	watchdog_last = wdnow;

262 263 264
	list_for_each_entry(cs, &watchdog_list, wd_list) {

		/* Clocksource already marked unstable? */
265
		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
266 267
			if (finished_booting)
				schedule_work(&watchdog_work);
268
			continue;
269
		}
270

271
		csnow = cs->read(cs);
T
Thomas Gleixner 已提交
272

273 274 275
		/* Clocksource initialized ? */
		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
			cs->flags |= CLOCK_SOURCE_WATCHDOG;
T
Thomas Gleixner 已提交
276 277 278 279
			cs->wd_last = csnow;
			continue;
		}

280
		/* Check the deviation from the watchdog clocksource. */
281 282
		cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) &
					     cs->mask, cs->mult, cs->shift);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
		cs->wd_last = csnow;
		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
			clocksource_unstable(cs, cs_nsec - wd_nsec);
			continue;
		}

		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
			/*
			 * We just marked the clocksource as highres-capable,
			 * notify the rest of the system as well so that we
			 * transition into high-res mode:
			 */
			tick_clock_notify();
299 300 301
		}
	}

302 303 304 305 306 307 308 309 310
	/*
	 * Cycle through CPUs to check if the CPUs stay synchronized
	 * to each other.
	 */
	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
	if (next_cpu >= nr_cpu_ids)
		next_cpu = cpumask_first(cpu_online_mask);
	watchdog_timer.expires += WATCHDOG_INTERVAL;
	add_timer_on(&watchdog_timer, next_cpu);
311
out:
312 313
	spin_unlock(&watchdog_lock);
}
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static inline void clocksource_start_watchdog(void)
{
	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
		return;
	init_timer(&watchdog_timer);
	watchdog_timer.function = clocksource_watchdog;
	watchdog_last = watchdog->read(watchdog);
	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
	watchdog_running = 1;
}

static inline void clocksource_stop_watchdog(void)
{
	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
		return;
	del_timer(&watchdog_timer);
	watchdog_running = 0;
}

335 336 337 338 339 340 341 342
static inline void clocksource_reset_watchdog(void)
{
	struct clocksource *cs;

	list_for_each_entry(cs, &watchdog_list, wd_list)
		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
}

T
Thomas Gleixner 已提交
343 344
static void clocksource_resume_watchdog(void)
{
345 346
	unsigned long flags;

347 348 349 350 351 352 353 354 355 356 357 358 359
	/*
	 * We use trylock here to avoid a potential dead lock when
	 * kgdb calls this code after the kernel has been stopped with
	 * watchdog_lock held. When watchdog_lock is held we just
	 * return and accept, that the watchdog might trigger and mark
	 * the monitored clock source (usually TSC) unstable.
	 *
	 * This does not affect the other caller clocksource_resume()
	 * because at this point the kernel is UP, interrupts are
	 * disabled and nothing can hold watchdog_lock.
	 */
	if (!spin_trylock_irqsave(&watchdog_lock, flags))
		return;
360 361
	clocksource_reset_watchdog();
	spin_unlock_irqrestore(&watchdog_lock, flags);
T
Thomas Gleixner 已提交
362 363
}

364
static void clocksource_enqueue_watchdog(struct clocksource *cs)
365 366 367 368 369
{
	unsigned long flags;

	spin_lock_irqsave(&watchdog_lock, flags);
	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
370
		/* cs is a clocksource to be watched. */
371
		list_add(&cs->wd_list, &watchdog_list);
372
		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
373
	} else {
374
		/* cs is a watchdog. */
375
		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
376
			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
377
		/* Pick the best watchdog. */
378 379 380
		if (!watchdog || cs->rating > watchdog->rating) {
			watchdog = cs;
			/* Reset watchdog cycles */
381
			clocksource_reset_watchdog();
382 383
		}
	}
384 385
	/* Check if the watchdog timer needs to be started. */
	clocksource_start_watchdog();
386 387
	spin_unlock_irqrestore(&watchdog_lock, flags);
}
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

static void clocksource_dequeue_watchdog(struct clocksource *cs)
{
	struct clocksource *tmp;
	unsigned long flags;

	spin_lock_irqsave(&watchdog_lock, flags);
	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
		/* cs is a watched clocksource. */
		list_del_init(&cs->wd_list);
	} else if (cs == watchdog) {
		/* Reset watchdog cycles */
		clocksource_reset_watchdog();
		/* Current watchdog is removed. Find an alternative. */
		watchdog = NULL;
		list_for_each_entry(tmp, &clocksource_list, list) {
			if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
				continue;
			if (!watchdog || tmp->rating > watchdog->rating)
				watchdog = tmp;
		}
	}
	cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
	/* Check if the watchdog timer needs to be stopped. */
	clocksource_stop_watchdog();
	spin_unlock_irqrestore(&watchdog_lock, flags);
}

416
static int clocksource_watchdog_kthread(void *data)
417 418 419
{
	struct clocksource *cs, *tmp;
	unsigned long flags;
420
	LIST_HEAD(unstable);
421

422
	mutex_lock(&clocksource_mutex);
423 424 425 426
	spin_lock_irqsave(&watchdog_lock, flags);
	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
			list_del_init(&cs->wd_list);
427
			list_add(&cs->wd_list, &unstable);
428 429 430
		}
	/* Check if the watchdog timer needs to be stopped. */
	clocksource_stop_watchdog();
431 432 433 434 435
	spin_unlock_irqrestore(&watchdog_lock, flags);

	/* Needs to be done outside of watchdog lock */
	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
		list_del_init(&cs->wd_list);
436
		__clocksource_change_rating(cs, 0);
437
	}
438
	mutex_unlock(&clocksource_mutex);
439
	return 0;
440 441
}

442 443 444
#else /* CONFIG_CLOCKSOURCE_WATCHDOG */

static void clocksource_enqueue_watchdog(struct clocksource *cs)
445 446 447 448
{
	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
}
T
Thomas Gleixner 已提交
449

450
static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
T
Thomas Gleixner 已提交
451
static inline void clocksource_resume_watchdog(void) { }
452
static inline int clocksource_watchdog_kthread(void *data) { return 0; }
453 454

#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
455

M
Magnus Damm 已提交
456 457 458 459 460 461 462 463 464 465 466 467
/**
 * clocksource_suspend - suspend the clocksource(s)
 */
void clocksource_suspend(void)
{
	struct clocksource *cs;

	list_for_each_entry_reverse(cs, &clocksource_list, list)
		if (cs->suspend)
			cs->suspend(cs);
}

T
Thomas Gleixner 已提交
468 469 470 471 472
/**
 * clocksource_resume - resume the clocksource(s)
 */
void clocksource_resume(void)
{
473
	struct clocksource *cs;
T
Thomas Gleixner 已提交
474

475
	list_for_each_entry(cs, &clocksource_list, list)
T
Thomas Gleixner 已提交
476
		if (cs->resume)
477
			cs->resume(cs);
T
Thomas Gleixner 已提交
478 479 480 481

	clocksource_resume_watchdog();
}

J
Jason Wessel 已提交
482 483 484 485
/**
 * clocksource_touch_watchdog - Update watchdog
 *
 * Update the watchdog after exception contexts such as kgdb so as not
486 487
 * to incorrectly trip the watchdog. This might fail when the kernel
 * was stopped in code which holds watchdog_lock.
J
Jason Wessel 已提交
488 489 490 491 492 493
 */
void clocksource_touch_watchdog(void)
{
	clocksource_resume_watchdog();
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**
 * clocksource_max_deferment - Returns max time the clocksource can be deferred
 * @cs:         Pointer to clocksource
 *
 */
static u64 clocksource_max_deferment(struct clocksource *cs)
{
	u64 max_nsecs, max_cycles;

	/*
	 * Calculate the maximum number of cycles that we can pass to the
	 * cyc2ns function without overflowing a 64-bit signed result. The
	 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
	 * is equivalent to the below.
	 * max_cycles < (2^63)/cs->mult
	 * max_cycles < 2^(log2((2^63)/cs->mult))
	 * max_cycles < 2^(log2(2^63) - log2(cs->mult))
	 * max_cycles < 2^(63 - log2(cs->mult))
	 * max_cycles < 1 << (63 - log2(cs->mult))
	 * Please note that we add 1 to the result of the log2 to account for
	 * any rounding errors, ensure the above inequality is satisfied and
	 * no overflow will occur.
	 */
	max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));

	/*
	 * The actual maximum number of cycles we can defer the clocksource is
	 * determined by the minimum of max_cycles and cs->mask.
	 */
	max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
	max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);

	/*
	 * To ensure that the clocksource does not wrap whilst we are idle,
	 * limit the time the clocksource can be deferred by 12.5%. Please
	 * note a margin of 12.5% is used because this can be computed with
	 * a shift, versus say 10% which would require division.
	 */
	return max_nsecs - (max_nsecs >> 5);
}

J
John Stultz 已提交
535
#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
536 537

/**
538
 * clocksource_select - Select the best clocksource available
539
 *
540
 * Private function. Must hold clocksource_mutex when called.
541
 *
542 543
 * Select the clocksource with the best rating, or the clocksource,
 * which is selected by userspace override.
544
 */
545
static void clocksource_select(void)
546
{
547
	struct clocksource *best, *cs;
548

549
	if (!finished_booting || list_empty(&clocksource_list))
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		return;
	/* First clocksource on the list has the best rating. */
	best = list_first_entry(&clocksource_list, struct clocksource, list);
	/* Check for the override clocksource. */
	list_for_each_entry(cs, &clocksource_list, list) {
		if (strcmp(cs->name, override_name) != 0)
			continue;
		/*
		 * Check to make sure we don't switch to a non-highres
		 * capable clocksource if the tick code is in oneshot
		 * mode (highres or nohz)
		 */
		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
		    tick_oneshot_mode_active()) {
			/* Override clocksource cannot be used. */
			printk(KERN_WARNING "Override clocksource %s is not "
			       "HRT compatible. Cannot switch while in "
			       "HRT/NOHZ mode\n", cs->name);
			override_name[0] = 0;
		} else
			/* Override clocksource can be used. */
			best = cs;
		break;
	}
574 575 576 577 578
	if (curr_clocksource != best) {
		printk(KERN_INFO "Switching to clocksource %s\n", best->name);
		curr_clocksource = best;
		timekeeping_notify(curr_clocksource);
	}
579
}
580

J
John Stultz 已提交
581
#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
582 583 584 585 586

static inline void clocksource_select(void) { }

#endif

587 588 589 590 591 592 593 594 595
/*
 * clocksource_done_booting - Called near the end of core bootup
 *
 * Hack to avoid lots of clocksource churn at boot time.
 * We use fs_initcall because we want this to start before
 * device_initcall but after subsys_initcall.
 */
static int __init clocksource_done_booting(void)
{
596 597 598 599
	mutex_lock(&clocksource_mutex);
	curr_clocksource = clocksource_default_clock();
	mutex_unlock(&clocksource_mutex);

600
	finished_booting = 1;
601 602 603 604 605 606

	/*
	 * Run the watchdog first to eliminate unstable clock sources
	 */
	clocksource_watchdog_kthread(NULL);

607
	mutex_lock(&clocksource_mutex);
608
	clocksource_select();
609
	mutex_unlock(&clocksource_mutex);
610 611 612 613
	return 0;
}
fs_initcall(clocksource_done_booting);

614 615
/*
 * Enqueue the clocksource sorted by rating
616
 */
617
static void clocksource_enqueue(struct clocksource *cs)
618
{
619 620
	struct list_head *entry = &clocksource_list;
	struct clocksource *tmp;
621

622
	list_for_each_entry(tmp, &clocksource_list, list)
623
		/* Keep track of the place, where to insert */
624 625 626
		if (tmp->rating >= cs->rating)
			entry = &tmp->list;
	list_add(&cs->list, entry);
627 628
}

629
/**
630
 * __clocksource_updatefreq_scale - Used update clocksource with new freq
631 632 633 634
 * @t:		clocksource to be registered
 * @scale:	Scale factor multiplied against freq to get clocksource hz
 * @freq:	clocksource frequency (cycles per second) divided by scale
 *
635
 * This should only be called from the clocksource->enable() method.
636 637
 *
 * This *SHOULD NOT* be called directly! Please use the
638
 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
639
 */
640
void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
641
{
642 643
	unsigned long sec;

644
	/*
645 646 647 648 649 650 651 652
	 * Calc the maximum number of seconds which we can run before
	 * wrapping around. For clocksources which have a mask > 32bit
	 * we need to limit the max sleep time to have a good
	 * conversion precision. 10 minutes is still a reasonable
	 * amount. That results in a shift value of 24 for a
	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
	 * margin as we do in clocksource_max_deferment()
653
	 */
654 655 656 657 658 659 660 661
	sec = (cs->mask - (cs->mask >> 5));
	do_div(sec, freq);
	do_div(sec, scale);
	if (!sec)
		sec = 1;
	else if (sec > 600 && cs->mask > UINT_MAX)
		sec = 600;

662
	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
663
			       NSEC_PER_SEC / scale, sec * scale);
664
	cs->max_idle_ns = clocksource_max_deferment(cs);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
}
EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);

/**
 * __clocksource_register_scale - Used to install new clocksources
 * @t:		clocksource to be registered
 * @scale:	Scale factor multiplied against freq to get clocksource hz
 * @freq:	clocksource frequency (cycles per second) divided by scale
 *
 * Returns -EBUSY if registration fails, zero otherwise.
 *
 * This *SHOULD NOT* be called directly! Please use the
 * clocksource_register_hz() or clocksource_register_khz helper functions.
 */
int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
{

682
	/* Initialize mult/shift and max_idle_ns */
683
	__clocksource_updatefreq_scale(cs, scale, freq);
684

685
	/* Add clocksource to the clcoksource list */
686 687 688
	mutex_lock(&clocksource_mutex);
	clocksource_enqueue(cs);
	clocksource_enqueue_watchdog(cs);
689
	clocksource_select();
690 691 692 693 694 695
	mutex_unlock(&clocksource_mutex);
	return 0;
}
EXPORT_SYMBOL_GPL(__clocksource_register_scale);


696
/**
697
 * clocksource_register - Used to install new clocksources
698 699 700 701
 * @t:		clocksource to be registered
 *
 * Returns -EBUSY if registration fails, zero otherwise.
 */
702
int clocksource_register(struct clocksource *cs)
703
{
704 705 706
	/* calculate max idle time permitted for this clocksource */
	cs->max_idle_ns = clocksource_max_deferment(cs);

707
	mutex_lock(&clocksource_mutex);
708
	clocksource_enqueue(cs);
709
	clocksource_enqueue_watchdog(cs);
710
	clocksource_select();
711
	mutex_unlock(&clocksource_mutex);
712
	return 0;
713
}
714
EXPORT_SYMBOL(clocksource_register);
715

716 717 718 719 720 721 722 723
static void __clocksource_change_rating(struct clocksource *cs, int rating)
{
	list_del(&cs->list);
	cs->rating = rating;
	clocksource_enqueue(cs);
	clocksource_select();
}

724
/**
725
 * clocksource_change_rating - Change the rating of a registered clocksource
726
 */
727
void clocksource_change_rating(struct clocksource *cs, int rating)
728
{
729
	mutex_lock(&clocksource_mutex);
730
	__clocksource_change_rating(cs, rating);
731
	mutex_unlock(&clocksource_mutex);
732
}
733
EXPORT_SYMBOL(clocksource_change_rating);
734

735 736 737 738 739
/**
 * clocksource_unregister - remove a registered clocksource
 */
void clocksource_unregister(struct clocksource *cs)
{
740
	mutex_lock(&clocksource_mutex);
741
	clocksource_dequeue_watchdog(cs);
742
	list_del(&cs->list);
743
	clocksource_select();
744
	mutex_unlock(&clocksource_mutex);
745
}
746
EXPORT_SYMBOL(clocksource_unregister);
747

748
#ifdef CONFIG_SYSFS
749 750 751 752 753 754 755 756
/**
 * sysfs_show_current_clocksources - sysfs interface for current clocksource
 * @dev:	unused
 * @buf:	char buffer to be filled with clocksource list
 *
 * Provides sysfs interface for listing current clocksource.
 */
static ssize_t
757 758
sysfs_show_current_clocksources(struct sys_device *dev,
				struct sysdev_attribute *attr, char *buf)
759
{
760
	ssize_t count = 0;
761

762
	mutex_lock(&clocksource_mutex);
763
	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
764
	mutex_unlock(&clocksource_mutex);
765

766
	return count;
767 768 769 770 771 772 773 774 775
}

/**
 * sysfs_override_clocksource - interface for manually overriding clocksource
 * @dev:	unused
 * @buf:	name of override clocksource
 * @count:	length of buffer
 *
 * Takes input from sysfs interface for manually overriding the default
776
 * clocksource selection.
777 778
 */
static ssize_t sysfs_override_clocksource(struct sys_device *dev,
779
					  struct sysdev_attribute *attr,
780 781 782
					  const char *buf, size_t count)
{
	size_t ret = count;
783

784 785 786 787 788 789 790 791
	/* strings from sysfs write are not 0 terminated! */
	if (count >= sizeof(override_name))
		return -EINVAL;

	/* strip of \n: */
	if (buf[count-1] == '\n')
		count--;

792
	mutex_lock(&clocksource_mutex);
793

794 795
	if (count > 0)
		memcpy(override_name, buf, count);
796
	override_name[count] = 0;
797
	clocksource_select();
798

799
	mutex_unlock(&clocksource_mutex);
800 801 802 803 804 805 806 807 808 809 810 811

	return ret;
}

/**
 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
 * @dev:	unused
 * @buf:	char buffer to be filled with clocksource list
 *
 * Provides sysfs interface for listing registered clocksources
 */
static ssize_t
812 813 814
sysfs_show_available_clocksources(struct sys_device *dev,
				  struct sysdev_attribute *attr,
				  char *buf)
815
{
816
	struct clocksource *src;
817
	ssize_t count = 0;
818

819
	mutex_lock(&clocksource_mutex);
820
	list_for_each_entry(src, &clocksource_list, list) {
821 822 823 824 825 826
		/*
		 * Don't show non-HRES clocksource if the tick code is
		 * in one shot mode (highres=on or nohz=on)
		 */
		if (!tick_oneshot_mode_active() ||
		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
827
			count += snprintf(buf + count,
828 829
				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
				  "%s ", src->name);
830
	}
831
	mutex_unlock(&clocksource_mutex);
832

833 834
	count += snprintf(buf + count,
			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
835

836
	return count;
837 838 839 840 841
}

/*
 * Sysfs setup bits:
 */
842
static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
D
Daniel Walker 已提交
843
		   sysfs_override_clocksource);
844

845
static SYSDEV_ATTR(available_clocksource, 0444,
D
Daniel Walker 已提交
846
		   sysfs_show_available_clocksources, NULL);
847 848

static struct sysdev_class clocksource_sysclass = {
849
	.name = "clocksource",
850 851 852 853 854 855 856
};

static struct sys_device device_clocksource = {
	.id	= 0,
	.cls	= &clocksource_sysclass,
};

857
static int __init init_clocksource_sysfs(void)
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
{
	int error = sysdev_class_register(&clocksource_sysclass);

	if (!error)
		error = sysdev_register(&device_clocksource);
	if (!error)
		error = sysdev_create_file(
				&device_clocksource,
				&attr_current_clocksource);
	if (!error)
		error = sysdev_create_file(
				&device_clocksource,
				&attr_available_clocksource);
	return error;
}

device_initcall(init_clocksource_sysfs);
875
#endif /* CONFIG_SYSFS */
876 877 878 879 880 881 882 883 884 885

/**
 * boot_override_clocksource - boot clock override
 * @str:	override name
 *
 * Takes a clocksource= boot argument and uses it
 * as the clocksource override name.
 */
static int __init boot_override_clocksource(char* str)
{
886
	mutex_lock(&clocksource_mutex);
887 888
	if (str)
		strlcpy(override_name, str, sizeof(override_name));
889
	mutex_unlock(&clocksource_mutex);
890 891 892 893 894 895 896 897 898 899 900 901 902 903
	return 1;
}

__setup("clocksource=", boot_override_clocksource);

/**
 * boot_override_clock - Compatibility layer for deprecated boot option
 * @str:	override name
 *
 * DEPRECATED! Takes a clock= boot argument and uses it
 * as the clocksource override name
 */
static int __init boot_override_clock(char* str)
{
904 905 906 907 908 909 910
	if (!strcmp(str, "pmtmr")) {
		printk("Warning: clock=pmtmr is deprecated. "
			"Use clocksource=acpi_pm.\n");
		return boot_override_clocksource("acpi_pm");
	}
	printk("Warning! clock= boot option is deprecated. "
		"Use clocksource=xyz\n");
911 912 913 914
	return boot_override_clocksource(str);
}

__setup("clock=", boot_override_clock);