rfd_ftl.c 18.4 KB
Newer Older
1 2 3
/*
 * rfd_ftl.c -- resident flash disk (flash translation layer)
 *
D
David Woodhouse 已提交
4
 * Copyright © 2005  Sean Young <sean@mess.org>
5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This type of flash translation layer (FTL) is used by the Embedded BIOS
 * by General Software. It is known as the Resident Flash Disk (RFD), see:
 *
 *	http://www.gensw.com/pages/prod/bios/rfd.htm
 *
 * based on ftl.c
 */

#include <linux/hdreg.h>
#include <linux/init.h>
#include <linux/mtd/blktrans.h>
#include <linux/mtd/mtd.h>
#include <linux/vmalloc.h>
19
#include <linux/slab.h>
A
Andrew Morton 已提交
20
#include <linux/jiffies.h>
21
#include <linux/module.h>
22 23 24 25 26 27 28 29 30

#include <asm/types.h>

static int block_size = 0;
module_param(block_size, int, 0);
MODULE_PARM_DESC(block_size, "Block size to use by RFD, defaults to erase unit size");

#define PREFIX "rfd_ftl: "

31
/* This major has been assigned by device@lanana.org */
32
#ifndef RFD_FTL_MAJOR
33
#define RFD_FTL_MAJOR		256
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#endif

/* Maximum number of partitions in an FTL region */
#define PART_BITS		4

/* An erase unit should start with this value */
#define RFD_MAGIC		0x9193

/* the second value is 0xffff or 0xffc8; function unknown */

/* the third value is always 0xffff, ignored */

/* next is an array of mapping for each corresponding sector */
#define HEADER_MAP_OFFSET	3
#define SECTOR_DELETED		0x0000
#define SECTOR_ZERO		0xfffe
#define SECTOR_FREE		0xffff

#define SECTOR_SIZE		512

#define SECTORS_PER_TRACK	63

struct block {
	enum {
		BLOCK_OK,
		BLOCK_ERASING,
		BLOCK_ERASED,
61
		BLOCK_UNUSED,
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
		BLOCK_FAILED
	} state;
	int free_sectors;
	int used_sectors;
	int erases;
	u_long offset;
};

struct partition {
	struct mtd_blktrans_dev mbd;

	u_int block_size;		/* size of erase unit */
	u_int total_blocks;		/* number of erase units */
	u_int header_sectors_per_block;	/* header sectors in erase unit */
	u_int data_sectors_per_block;	/* data sectors in erase unit */
	u_int sector_count;		/* sectors in translated disk */
	u_int header_size;		/* bytes in header sector */
	int reserved_block;		/* block next up for reclaim */
	int current_block;		/* block to write to */
	u16 *header_cache;		/* cached header */

	int is_reclaiming;
	int cylinders;
	int errors;
	u_long *sector_map;
	struct block *blocks;
};

static int rfd_ftl_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf);

static int build_block_map(struct partition *part, int block_no)
{
	struct block *block = &part->blocks[block_no];
	int i;
96

97 98 99
	block->offset = part->block_size * block_no;

	if (le16_to_cpu(part->header_cache[0]) != RFD_MAGIC) {
100 101
		block->state = BLOCK_UNUSED;
		return -ENOENT;
102 103 104 105 106 107
	}

	block->state = BLOCK_OK;

	for (i=0; i<part->data_sectors_per_block; i++) {
		u16 entry;
108

109 110 111 112
		entry = le16_to_cpu(part->header_cache[HEADER_MAP_OFFSET + i]);

		if (entry == SECTOR_DELETED)
			continue;
113

114 115 116 117 118 119 120
		if (entry == SECTOR_FREE) {
			block->free_sectors++;
			continue;
		}

		if (entry == SECTOR_ZERO)
			entry = 0;
121

122
		if (entry >= part->sector_count) {
123
			printk(KERN_WARNING PREFIX
124 125 126 127 128 129 130
				"'%s': unit #%d: entry %d corrupt, "
				"sector %d out of range\n",
				part->mbd.mtd->name, block_no, i, entry);
			continue;
		}

		if (part->sector_map[entry] != -1) {
131
			printk(KERN_WARNING PREFIX
132 133 134 135 136 137
				"'%s': more than one entry for sector %d\n",
				part->mbd.mtd->name, entry);
			part->errors = 1;
			continue;
		}

138
		part->sector_map[entry] = block->offset +
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
			(i + part->header_sectors_per_block) * SECTOR_SIZE;

		block->used_sectors++;
	}

	if (block->free_sectors == part->data_sectors_per_block)
		part->reserved_block = block_no;

	return 0;
}

static int scan_header(struct partition *part)
{
	int sectors_per_block;
	int i, rc = -ENOMEM;
	int blocks_found;
	size_t retlen;

	sectors_per_block = part->block_size / SECTOR_SIZE;
158
	part->total_blocks = (u32)part->mbd.mtd->size / part->block_size;
159 160 161 162 163

	if (part->total_blocks < 2)
		return -ENOENT;

	/* each erase block has three bytes header, followed by the map */
164 165
	part->header_sectors_per_block =
			((HEADER_MAP_OFFSET + sectors_per_block) *
166
			sizeof(u16) + SECTOR_SIZE - 1) / SECTOR_SIZE;
167

168
	part->data_sectors_per_block = sectors_per_block -
169 170
			part->header_sectors_per_block;

171
	part->header_size = (HEADER_MAP_OFFSET +
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
			part->data_sectors_per_block) * sizeof(u16);

	part->cylinders = (part->data_sectors_per_block *
			(part->total_blocks - 1) - 1) / SECTORS_PER_TRACK;

	part->sector_count = part->cylinders * SECTORS_PER_TRACK;

	part->current_block = -1;
	part->reserved_block = -1;
	part->is_reclaiming = 0;

	part->header_cache = kmalloc(part->header_size, GFP_KERNEL);
	if (!part->header_cache)
		goto err;

187
	part->blocks = kcalloc(part->total_blocks, sizeof(struct block),
188 189 190 191 192 193 194 195 196 197 198
			GFP_KERNEL);
	if (!part->blocks)
		goto err;

	part->sector_map = vmalloc(part->sector_count * sizeof(u_long));
	if (!part->sector_map) {
		printk(KERN_ERR PREFIX "'%s': unable to allocate memory for "
			"sector map", part->mbd.mtd->name);
		goto err;
	}

199
	for (i=0; i<part->sector_count; i++)
200 201 202
		part->sector_map[i] = -1;

	for (i=0, blocks_found=0; i<part->total_blocks; i++) {
203
		rc = part->mbd.mtd->read(part->mbd.mtd,
204 205 206 207 208 209
				i * part->block_size, part->header_size,
				&retlen, (u_char*)part->header_cache);

		if (!rc && retlen != part->header_size)
			rc = -EIO;

210
		if (rc)
211 212 213 214 215 216 217 218 219 220 221 222 223 224
			goto err;

		if (!build_block_map(part, i))
			blocks_found++;
	}

	if (blocks_found == 0) {
		printk(KERN_NOTICE PREFIX "no RFD magic found in '%s'\n",
				part->mbd.mtd->name);
		rc = -ENOENT;
		goto err;
	}

	if (part->reserved_block == -1) {
225
		printk(KERN_WARNING PREFIX "'%s': no empty erase unit found\n",
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
				part->mbd.mtd->name);

		part->errors = 1;
	}

	return 0;

err:
	vfree(part->sector_map);
	kfree(part->header_cache);
	kfree(part->blocks);

	return rc;
}

static int rfd_ftl_readsect(struct mtd_blktrans_dev *dev, u_long sector, char *buf)
{
	struct partition *part = (struct partition*)dev;
	u_long addr;
	size_t retlen;
	int rc;
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if (sector >= part->sector_count)
		return -EIO;

	addr = part->sector_map[sector];
	if (addr != -1) {
		rc = part->mbd.mtd->read(part->mbd.mtd, addr, SECTOR_SIZE,
						&retlen, (u_char*)buf);
		if (!rc && retlen != SECTOR_SIZE)
			rc = -EIO;

		if (rc) {
			printk(KERN_WARNING PREFIX "error reading '%s' at "
				"0x%lx\n", part->mbd.mtd->name, addr);
			return rc;
		}
	} else
		memset(buf, 0, SECTOR_SIZE);
265

266
	return 0;
267
}
268 269 270 271 272 273 274 275 276 277

static void erase_callback(struct erase_info *erase)
{
	struct partition *part;
	u16 magic;
	int i, rc;
	size_t retlen;

	part = (struct partition*)erase->priv;

278 279 280 281 282
	i = (u32)erase->addr / part->block_size;
	if (i >= part->total_blocks || part->blocks[i].offset != erase->addr ||
	    erase->addr > UINT_MAX) {
		printk(KERN_ERR PREFIX "erase callback for unknown offset %llx "
				"on '%s'\n", (unsigned long long)erase->addr, part->mbd.mtd->name);
283 284 285 286
		return;
	}

	if (erase->state != MTD_ERASE_DONE) {
287 288
		printk(KERN_WARNING PREFIX "erase failed at 0x%llx on '%s', "
				"state %d\n", (unsigned long long)erase->addr,
289 290 291 292 293 294 295 296 297 298 299
				part->mbd.mtd->name, erase->state);

		part->blocks[i].state = BLOCK_FAILED;
		part->blocks[i].free_sectors = 0;
		part->blocks[i].used_sectors = 0;

		kfree(erase);

		return;
	}

300
	magic = cpu_to_le16(RFD_MAGIC);
301 302 303 304 305 306

	part->blocks[i].state = BLOCK_ERASED;
	part->blocks[i].free_sectors = part->data_sectors_per_block;
	part->blocks[i].used_sectors = 0;
	part->blocks[i].erases++;

307 308
	rc = part->mbd.mtd->write(part->mbd.mtd,
		part->blocks[i].offset, sizeof(magic), &retlen,
309
		(u_char*)&magic);
310

311 312 313 314
	if (!rc && retlen != sizeof(magic))
		rc = -EIO;

	if (rc) {
315
		printk(KERN_ERR PREFIX "'%s': unable to write RFD "
316
				"header at 0x%lx\n",
317
				part->mbd.mtd->name,
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
				part->blocks[i].offset);
		part->blocks[i].state = BLOCK_FAILED;
	}
	else
		part->blocks[i].state = BLOCK_OK;

	kfree(erase);
}

static int erase_block(struct partition *part, int block)
{
	struct erase_info *erase;
	int rc = -ENOMEM;

	erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL);
	if (!erase)
		goto err;

	erase->mtd = part->mbd.mtd;
	erase->callback = erase_callback;
	erase->addr = part->blocks[block].offset;
	erase->len = part->block_size;
	erase->priv = (u_long)part;

	part->blocks[block].state = BLOCK_ERASING;
	part->blocks[block].free_sectors = 0;

345
	rc = mtd_erase(part->mbd.mtd, erase);
346 347

	if (rc) {
348 349 350
		printk(KERN_ERR PREFIX "erase of region %llx,%llx on '%s' "
				"failed\n", (unsigned long long)erase->addr,
				(unsigned long long)erase->len, part->mbd.mtd->name);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		kfree(erase);
	}

err:
	return rc;
}

static int move_block_contents(struct partition *part, int block_no, u_long *old_sector)
{
	void *sector_data;
	u16 *map;
	size_t retlen;
	int i, rc = -ENOMEM;

	part->is_reclaiming = 1;

	sector_data = kmalloc(SECTOR_SIZE, GFP_KERNEL);
	if (!sector_data)
		goto err3;

	map = kmalloc(part->header_size, GFP_KERNEL);
	if (!map)
		goto err2;
374 375 376

	rc = part->mbd.mtd->read(part->mbd.mtd,
		part->blocks[block_no].offset, part->header_size,
377
		&retlen, (u_char*)map);
378

379 380 381 382
	if (!rc && retlen != part->header_size)
		rc = -EIO;

	if (rc) {
383
		printk(KERN_ERR PREFIX "error reading '%s' at "
384
			"0x%lx\n", part->mbd.mtd->name,
385 386 387 388 389 390 391 392 393 394 395 396 397
			part->blocks[block_no].offset);

		goto err;
	}

	for (i=0; i<part->data_sectors_per_block; i++) {
		u16 entry = le16_to_cpu(map[HEADER_MAP_OFFSET + i]);
		u_long addr;


		if (entry == SECTOR_FREE || entry == SECTOR_DELETED)
			continue;

398
		if (entry == SECTOR_ZERO)
399 400 401
			entry = 0;

		/* already warned about and ignored in build_block_map() */
402
		if (entry >= part->sector_count)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
			continue;

		addr = part->blocks[block_no].offset +
			(i + part->header_sectors_per_block) * SECTOR_SIZE;

		if (*old_sector == addr) {
			*old_sector = -1;
			if (!part->blocks[block_no].used_sectors--) {
				rc = erase_block(part, block_no);
				break;
			}
			continue;
		}
		rc = part->mbd.mtd->read(part->mbd.mtd, addr,
			SECTOR_SIZE, &retlen, sector_data);
418

419 420 421 422
		if (!rc && retlen != SECTOR_SIZE)
			rc = -EIO;

		if (rc) {
423
			printk(KERN_ERR PREFIX "'%s': Unable to "
424 425 426 427 428
				"read sector for relocation\n",
				part->mbd.mtd->name);

			goto err;
		}
429

430 431
		rc = rfd_ftl_writesect((struct mtd_blktrans_dev*)part,
				entry, sector_data);
432 433

		if (rc)
434 435 436 437 438 439 440 441 442 443 444 445 446
			goto err;
	}

err:
	kfree(map);
err2:
	kfree(sector_data);
err3:
	part->is_reclaiming = 0;

	return rc;
}

447
static int reclaim_block(struct partition *part, u_long *old_sector)
448 449 450
{
	int block, best_block, score, old_sector_block;
	int rc;
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	/* we have a race if sync doesn't exist */
	if (part->mbd.mtd->sync)
		part->mbd.mtd->sync(part->mbd.mtd);

	score = 0x7fffffff; /* MAX_INT */
	best_block = -1;
	if (*old_sector != -1)
		old_sector_block = *old_sector / part->block_size;
	else
		old_sector_block = -1;

	for (block=0; block<part->total_blocks; block++) {
		int this_score;

		if (block == part->reserved_block)
			continue;

		/*
		 * Postpone reclaiming if there is a free sector as
		 * more removed sectors is more efficient (have to move
		 * less).
		 */
474
		if (part->blocks[block].free_sectors)
475 476 477 478
			return 0;

		this_score = part->blocks[block].used_sectors;

479
		if (block == old_sector_block)
480 481 482
			this_score--;
		else {
			/* no point in moving a full block */
483
			if (part->blocks[block].used_sectors ==
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
					part->data_sectors_per_block)
				continue;
		}

		this_score += part->blocks[block].erases;

		if (this_score < score) {
			best_block = block;
			score = this_score;
		}
	}

	if (best_block == -1)
		return -ENOSPC;

	part->current_block = -1;
	part->reserved_block = best_block;

	pr_debug("reclaim_block: reclaiming block #%d with %d used "
		 "%d free sectors\n", best_block,
		 part->blocks[best_block].used_sectors,
		 part->blocks[best_block].free_sectors);

	if (part->blocks[best_block].used_sectors)
		rc = move_block_contents(part, best_block, old_sector);
	else
		rc = erase_block(part, best_block);

	return rc;
}

/*
 * IMPROVE: It would be best to choose the block with the most deleted sectors,
 * because if we fill that one up first it'll have the most chance of having
 * the least live sectors at reclaim.
 */
520
static int find_free_block(struct partition *part)
521 522 523 524 525 526 527 528
{
	int block, stop;

	block = part->current_block == -1 ?
			jiffies % part->total_blocks : part->current_block;
	stop = block;

	do {
529
		if (part->blocks[block].free_sectors &&
530 531 532
				block != part->reserved_block)
			return block;

533 534 535
		if (part->blocks[block].state == BLOCK_UNUSED)
			erase_block(part, block);

536 537 538 539 540 541 542 543
		if (++block >= part->total_blocks)
			block = 0;

	} while (block != stop);

	return -1;
}

544
static int find_writable_block(struct partition *part, u_long *old_sector)
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
{
	int rc, block;
	size_t retlen;

	block = find_free_block(part);

	if (block == -1) {
		if (!part->is_reclaiming) {
			rc = reclaim_block(part, old_sector);
			if (rc)
				goto err;

			block = find_free_block(part);
		}

		if (block == -1) {
			rc = -ENOSPC;
			goto err;
		}
	}

566
	rc = part->mbd.mtd->read(part->mbd.mtd, part->blocks[block].offset,
567 568 569 570 571 572
		part->header_size, &retlen, (u_char*)part->header_cache);

	if (!rc && retlen != part->header_size)
		rc = -EIO;

	if (rc) {
573
		printk(KERN_ERR PREFIX "'%s': unable to read header at "
574
				"0x%lx\n", part->mbd.mtd->name,
575 576 577 578 579 580 581 582
				part->blocks[block].offset);
		goto err;
	}

	part->current_block = block;

err:
	return rc;
583
}
584 585 586 587 588 589

static int mark_sector_deleted(struct partition *part, u_long old_addr)
{
	int block, offset, rc;
	u_long addr;
	size_t retlen;
590
	u16 del = cpu_to_le16(SECTOR_DELETED);
591 592

	block = old_addr / part->block_size;
593
	offset = (old_addr % part->block_size) / SECTOR_SIZE -
594 595 596 597 598 599 600 601 602 603 604
		part->header_sectors_per_block;

	addr = part->blocks[block].offset +
			(HEADER_MAP_OFFSET + offset) * sizeof(u16);
	rc = part->mbd.mtd->write(part->mbd.mtd, addr,
		sizeof(del), &retlen, (u_char*)&del);

	if (!rc && retlen != sizeof(del))
		rc = -EIO;

	if (rc) {
605
		printk(KERN_ERR PREFIX "error writing '%s' at "
606
			"0x%lx\n", part->mbd.mtd->name, addr);
607
		if (rc)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
			goto err;
	}
	if (block == part->current_block)
		part->header_cache[offset + HEADER_MAP_OFFSET] = del;

	part->blocks[block].used_sectors--;

	if (!part->blocks[block].used_sectors &&
	    !part->blocks[block].free_sectors)
		rc = erase_block(part, block);

err:
	return rc;
}

static int find_free_sector(const struct partition *part, const struct block *block)
{
	int i, stop;

	i = stop = part->data_sectors_per_block - block->free_sectors;

	do {
630
		if (le16_to_cpu(part->header_cache[HEADER_MAP_OFFSET + i])
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
				== SECTOR_FREE)
			return i;

		if (++i == part->data_sectors_per_block)
			i = 0;
	}
	while(i != stop);

	return -1;
}

static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, ulong *old_addr)
{
	struct partition *part = (struct partition*)dev;
	struct block *block;
	u_long addr;
	int i;
	int rc;
	size_t retlen;
	u16 entry;

	if (part->current_block == -1 ||
		!part->blocks[part->current_block].free_sectors) {

655
		rc = find_writable_block(part, old_addr);
656
		if (rc)
657 658 659 660 661 662 663 664 665 666 667
			goto err;
	}

	block = &part->blocks[part->current_block];

	i = find_free_sector(part, block);

	if (i < 0) {
		rc = -ENOSPC;
		goto err;
	}
668 669

	addr = (i + part->header_sectors_per_block) * SECTOR_SIZE +
670
		block->offset;
671
	rc = part->mbd.mtd->write(part->mbd.mtd,
672 673 674 675 676 677
		addr, SECTOR_SIZE, &retlen, (u_char*)buf);

	if (!rc && retlen != SECTOR_SIZE)
		rc = -EIO;

	if (rc) {
678
		printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n",
679
				part->mbd.mtd->name, addr);
680
		if (rc)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
			goto err;
	}

	part->sector_map[sector] = addr;

	entry = cpu_to_le16(sector == 0 ? SECTOR_ZERO : sector);

	part->header_cache[i + HEADER_MAP_OFFSET] = entry;

	addr = block->offset + (HEADER_MAP_OFFSET + i) * sizeof(u16);
	rc = part->mbd.mtd->write(part->mbd.mtd, addr,
			sizeof(entry), &retlen, (u_char*)&entry);

	if (!rc && retlen != sizeof(entry))
		rc = -EIO;

	if (rc) {
698
		printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n",
699
				part->mbd.mtd->name, addr);
700
		if (rc)
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
			goto err;
	}
	block->used_sectors++;
	block->free_sectors--;

err:
	return rc;
}

static int rfd_ftl_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf)
{
	struct partition *part = (struct partition*)dev;
	u_long old_addr;
	int i;
	int rc = 0;

	pr_debug("rfd_ftl_writesect(sector=0x%lx)\n", sector);

	if (part->reserved_block == -1) {
		rc = -EACCES;
		goto err;
	}

	if (sector >= part->sector_count) {
		rc = -EIO;
		goto err;
	}

	old_addr = part->sector_map[sector];

	for (i=0; i<SECTOR_SIZE; i++) {
		if (!buf[i])
			continue;

		rc = do_writesect(dev, sector, buf, &old_addr);
		if (rc)
			goto err;
		break;
	}

741
	if (i == SECTOR_SIZE)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
		part->sector_map[sector] = -1;

	if (old_addr != -1)
		rc = mark_sector_deleted(part, old_addr);

err:
	return rc;
}

static int rfd_ftl_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo)
{
	struct partition *part = (struct partition*)dev;

	geo->heads = 1;
	geo->sectors = SECTORS_PER_TRACK;
	geo->cylinders = part->cylinders;

	return 0;
}

static void rfd_ftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
{
	struct partition *part;

766
	if (mtd->type != MTD_NORFLASH || mtd->size > UINT_MAX)
767 768
		return;

769
	part = kzalloc(sizeof(struct partition), GFP_KERNEL);
770 771 772 773 774 775 776 777 778
	if (!part)
		return;

	part->mbd.mtd = mtd;

	if (block_size)
		part->block_size = block_size;
	else {
		if (!mtd->erasesize) {
779
			printk(KERN_WARNING PREFIX "please provide block_size");
780 781
			goto out;
		} else
782 783 784 785 786 787 788 789 790 791
			part->block_size = mtd->erasesize;
	}

	if (scan_header(part) == 0) {
		part->mbd.size = part->sector_count;
		part->mbd.tr = tr;
		part->mbd.devnum = -1;
		if (!(mtd->flags & MTD_WRITEABLE))
			part->mbd.readonly = 1;
		else if (part->errors) {
792 793
			printk(KERN_WARNING PREFIX "'%s': errors found, "
					"setting read-only\n", mtd->name);
794 795 796 797 798 799 800 801
			part->mbd.readonly = 1;
		}

		printk(KERN_INFO PREFIX "name: '%s' type: %d flags %x\n",
				mtd->name, mtd->type, mtd->flags);

		if (!add_mtd_blktrans_dev((void*)part))
			return;
802
	}
803
out:
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	kfree(part);
}

static void rfd_ftl_remove_dev(struct mtd_blktrans_dev *dev)
{
	struct partition *part = (struct partition*)dev;
	int i;

	for (i=0; i<part->total_blocks; i++) {
		pr_debug("rfd_ftl_remove_dev:'%s': erase unit #%02d: %d erases\n",
			part->mbd.mtd->name, i, part->blocks[i].erases);
	}

	del_mtd_blktrans_dev(dev);
	vfree(part->sector_map);
	kfree(part->header_cache);
	kfree(part->blocks);
}

823
static struct mtd_blktrans_ops rfd_ftl_tr = {
824 825 826
	.name		= "rfd",
	.major		= RFD_FTL_MAJOR,
	.part_bits	= PART_BITS,
827 828
	.blksize 	= SECTOR_SIZE,

829
	.readsect	= rfd_ftl_readsect,
830
	.writesect	= rfd_ftl_writesect,
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	.getgeo		= rfd_ftl_getgeo,
	.add_mtd	= rfd_ftl_add_mtd,
	.remove_dev	= rfd_ftl_remove_dev,
	.owner		= THIS_MODULE,
};

static int __init init_rfd_ftl(void)
{
	return register_mtd_blktrans(&rfd_ftl_tr);
}

static void __exit cleanup_rfd_ftl(void)
{
	deregister_mtd_blktrans(&rfd_ftl_tr);
}

module_init(init_rfd_ftl);
module_exit(cleanup_rfd_ftl);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sean Young <sean@mess.org>");
MODULE_DESCRIPTION("Support code for RFD Flash Translation Layer, "
		"used by General Software's Embedded BIOS");