smtc.c 33.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (C) 2004 Mips Technologies, Inc */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h>
7
#include <linux/kernel_stat.h>
8
#include <linux/module.h>
9 10 11 12 13 14 15 16 17

#include <asm/cpu.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/hardirq.h>
#include <asm/hazards.h>
#include <asm/mmu_context.h>
#include <asm/smp.h>
18
#include <asm/mips-boards/maltaint.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#include <asm/mipsregs.h>
#include <asm/cacheflush.h>
#include <asm/time.h>
#include <asm/addrspace.h>
#include <asm/smtc.h>
#include <asm/smtc_ipi.h>
#include <asm/smtc_proc.h>

/*
 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
 */

#define MIPS_CPU_IPI_IRQ	1

#define LOCK_MT_PRA() \
	local_irq_save(flags); \
	mtflags = dmt()

#define UNLOCK_MT_PRA() \
	emt(mtflags); \
	local_irq_restore(flags)

#define LOCK_CORE_PRA() \
	local_irq_save(flags); \
	mtflags = dvpe()

#define UNLOCK_CORE_PRA() \
	evpe(mtflags); \
	local_irq_restore(flags)

/*
 * Data structures purely associated with SMTC parallelism
 */


/*
 * Table for tracking ASIDs whose lifetime is prolonged.
 */

asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];

/*
 * Clock interrupt "latch" buffers, per "CPU"
 */

unsigned int ipi_timer_latch[NR_CPUS];

/*
 * Number of InterProcessor Interupt (IPI) message buffers to allocate
 */

#define IPIBUF_PER_CPU 4

72 73
static struct smtc_ipi_q IPIQ[NR_CPUS];
static struct smtc_ipi_q freeIPIq;
74 75 76 77


/* Forward declarations */

78
void ipi_decode(struct smtc_ipi *);
79
static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
80
static void setup_cross_vpe_interrupts(unsigned int nvpe);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
void init_smtc_stats(void);

/* Global SMTC Status */

unsigned int smtc_status = 0;

/* Boot command line configuration overrides */

static int vpelimit = 0;
static int tclimit = 0;
static int ipibuffers = 0;
static int nostlb = 0;
static int asidmask = 0;
unsigned long smtc_asid_mask = 0xff;

static int __init maxvpes(char *str)
{
	get_option(&str, &vpelimit);
	return 1;
}

static int __init maxtcs(char *str)
{
	get_option(&str, &tclimit);
	return 1;
}

static int __init ipibufs(char *str)
{
	get_option(&str, &ipibuffers);
	return 1;
}

static int __init stlb_disable(char *s)
{
	nostlb = 1;
	return 1;
}

static int __init asidmask_set(char *str)
{
	get_option(&str, &asidmask);
123
	switch (asidmask) {
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	case 0x1:
	case 0x3:
	case 0x7:
	case 0xf:
	case 0x1f:
	case 0x3f:
	case 0x7f:
	case 0xff:
		smtc_asid_mask = (unsigned long)asidmask;
		break;
	default:
		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
	}
	return 1;
}

__setup("maxvpes=", maxvpes);
__setup("maxtcs=", maxtcs);
__setup("ipibufs=", ipibufs);
__setup("nostlb", stlb_disable);
__setup("asidmask=", asidmask_set);

146
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

static int hang_trig = 0;

static int __init hangtrig_enable(char *s)
{
	hang_trig = 1;
	return 1;
}


__setup("hangtrig", hangtrig_enable);

#define DEFAULT_BLOCKED_IPI_LIMIT 32

static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;

static int __init tintq(char *str)
{
	get_option(&str, &timerq_limit);
	return 1;
}

__setup("tintq=", tintq);

int imstuckcount[2][8];
/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
173 174 175 176
int vpemask[2][8] = {
	{0, 0, 1, 0, 0, 0, 0, 1},
	{0, 0, 0, 0, 0, 0, 0, 1}
};
177 178 179 180
int tcnoprog[NR_CPUS];
static atomic_t idle_hook_initialized = {0};
static int clock_hang_reported[NR_CPUS];

181
#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
182 183 184 185 186 187 188 189 190 191 192 193 194

/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */

void __init sanitize_tlb_entries(void)
{
	printk("Deprecated sanitize_tlb_entries() invoked\n");
}


/*
 * Configure shared TLB - VPC configuration bit must be set by caller
 */

195
static void smtc_configure_tlb(void)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
{
	int i,tlbsiz,vpes;
	unsigned long mvpconf0;
	unsigned long config1val;

	/* Set up ASID preservation table */
	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
		smtc_live_asid[vpes][i] = 0;
	    }
	}
	mvpconf0 = read_c0_mvpconf0();

	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
	    /* If we have multiple VPEs, try to share the TLB */
	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
		/*
		 * If TLB sizing is programmable, shared TLB
		 * size is the total available complement.
		 * Otherwise, we have to take the sum of all
		 * static VPE TLB entries.
		 */
		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
		    /*
		     * If there's more than one VPE, there had better
		     * be more than one TC, because we need one to bind
		     * to each VPE in turn to be able to read
		     * its configuration state!
		     */
		    settc(1);
		    /* Stop the TC from doing anything foolish */
		    write_tc_c0_tchalt(TCHALT_H);
		    mips_ihb();
		    /* No need to un-Halt - that happens later anyway */
		    for (i=0; i < vpes; i++) {
		    	write_tc_c0_tcbind(i);
			/*
			 * To be 100% sure we're really getting the right
			 * information, we exit the configuration state
			 * and do an IHB after each rebinding.
			 */
			write_c0_mvpcontrol(
				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
			mips_ihb();
			/*
			 * Only count if the MMU Type indicated is TLB
			 */
245
			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
246 247 248 249 250 251 252 253 254 255 256
				config1val = read_vpe_c0_config1();
				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
			}

			/* Put core back in configuration state */
			write_c0_mvpcontrol(
				read_c0_mvpcontrol() | MVPCONTROL_VPC );
			mips_ihb();
		    }
		}
		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
R
Ralf Baechle 已提交
257
		ehb();
258 259 260 261 262 263 264 265

		/*
		 * Setup kernel data structures to use software total,
		 * rather than read the per-VPE Config1 value. The values
		 * for "CPU 0" gets copied to all the other CPUs as part
		 * of their initialization in smtc_cpu_setup().
		 */

266 267 268 269
		/* MIPS32 limits TLB indices to 64 */
		if (tlbsiz > 64)
			tlbsiz = 64;
		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
270
		smtc_status |= SMTC_TLB_SHARED;
271
		local_flush_tlb_all();
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

		printk("TLB of %d entry pairs shared by %d VPEs\n",
			tlbsiz, vpes);
	    } else {
		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
	    }
	}
}


/*
 * Incrementally build the CPU map out of constituent MIPS MT cores,
 * using the specified available VPEs and TCs.  Plaform code needs
 * to ensure that each MIPS MT core invokes this routine on reset,
 * one at a time(!).
 *
 * This version of the build_cpu_map and prepare_cpus routines assumes
 * that *all* TCs of a MIPS MT core will be used for Linux, and that
 * they will be spread across *all* available VPEs (to minimise the
 * loss of efficiency due to exception service serialization).
 * An improved version would pick up configuration information and
 * possibly leave some TCs/VPEs as "slave" processors.
 *
 * Use c0_MVPConf0 to find out how many TCs are available, setting up
 * phys_cpu_present_map and the logical/physical mappings.
 */

int __init mipsmt_build_cpu_map(int start_cpu_slot)
{
	int i, ntcs;

	/*
	 * The CPU map isn't actually used for anything at this point,
	 * so it's not clear what else we should do apart from set
	 * everything up so that "logical" = "physical".
	 */
	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
		cpu_set(i, phys_cpu_present_map);
		__cpu_number_map[i] = i;
		__cpu_logical_map[i] = i;
	}
	/* Initialize map of CPUs with FPUs */
	cpus_clear(mt_fpu_cpumask);

	/* One of those TC's is the one booting, and not a secondary... */
	printk("%i available secondary CPU TC(s)\n", i - 1);

	return i;
}

/*
 * Common setup before any secondaries are started
 * Make sure all CPU's are in a sensible state before we boot any of the
 * secondaries.
 *
 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
 * as possible across the available VPEs.
 */

static void smtc_tc_setup(int vpe, int tc, int cpu)
{
	settc(tc);
	write_tc_c0_tchalt(TCHALT_H);
	mips_ihb();
	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
			| TCSTATUS_A);
	write_tc_c0_tccontext(0);
	/* Bind tc to vpe */
	write_tc_c0_tcbind(vpe);
	/* In general, all TCs should have the same cpu_data indications */
	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
	if (cpu_data[0].cputype == CPU_34K)
		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
	cpu_data[cpu].vpe_id = vpe;
	cpu_data[cpu].tc_id = tc;
}


void mipsmt_prepare_cpus(void)
{
	int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
	unsigned long flags;
	unsigned long val;
	int nipi;
	struct smtc_ipi *pipi;

	/* disable interrupts so we can disable MT */
	local_irq_save(flags);
	/* disable MT so we can configure */
	dvpe();
	dmt();

I
Ingo Molnar 已提交
367
	spin_lock_init(&freeIPIq.lock);
368 369 370 371 372 373 374

	/*
	 * We probably don't have as many VPEs as we do SMP "CPUs",
	 * but it's possible - and in any case we'll never use more!
	 */
	for (i=0; i<NR_CPUS; i++) {
		IPIQ[i].head = IPIQ[i].tail = NULL;
I
Ingo Molnar 已提交
375
		spin_lock_init(&IPIQ[i].lock);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		IPIQ[i].depth = 0;
		ipi_timer_latch[i] = 0;
	}

	/* cpu_data index starts at zero */
	cpu = 0;
	cpu_data[cpu].vpe_id = 0;
	cpu_data[cpu].tc_id = 0;
	cpu++;

	/* Report on boot-time options */
	mips_mt_set_cpuoptions ();
	if (vpelimit > 0)
		printk("Limit of %d VPEs set\n", vpelimit);
	if (tclimit > 0)
		printk("Limit of %d TCs set\n", tclimit);
	if (nostlb) {
		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
	}
	if (asidmask)
		printk("ASID mask value override to 0x%x\n", asidmask);

	/* Temporary */
399
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
400 401
	if (hang_trig)
		printk("Logic Analyser Trigger on suspected TC hang\n");
402
#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

	/* Put MVPE's into 'configuration state' */
	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );

	val = read_c0_mvpconf0();
	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
	if (vpelimit > 0 && nvpe > vpelimit)
		nvpe = vpelimit;
	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
	if (ntc > NR_CPUS)
		ntc = NR_CPUS;
	if (tclimit > 0 && ntc > tclimit)
		ntc = tclimit;
	tcpervpe = ntc / nvpe;
	slop = ntc % nvpe;	/* Residual TCs, < NVPE */

	/* Set up shared TLB */
	smtc_configure_tlb();

	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
		/*
		 * Set the MVP bits.
		 */
		settc(tc);
		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
		if (vpe != 0)
			printk(", ");
		printk("VPE %d: TC", vpe);
		for (i = 0; i < tcpervpe; i++) {
			/*
			 * TC 0 is bound to VPE 0 at reset,
			 * and is presumably executing this
			 * code.  Leave it alone!
			 */
			if (tc != 0) {
				smtc_tc_setup(vpe,tc, cpu);
				cpu++;
			}
			printk(" %d", tc);
			tc++;
		}
		if (slop) {
			if (tc != 0) {
				smtc_tc_setup(vpe,tc, cpu);
				cpu++;
			}
			printk(" %d", tc);
			tc++;
			slop--;
		}
		if (vpe != 0) {
			/*
			 * Clear any stale software interrupts from VPE's Cause
			 */
			write_vpe_c0_cause(0);

			/*
			 * Clear ERL/EXL of VPEs other than 0
			 * and set restricted interrupt enable/mask.
			 */
			write_vpe_c0_status((read_vpe_c0_status()
				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
				| ST0_IE));
			/*
			 * set config to be the same as vpe0,
			 *  particularly kseg0 coherency alg
			 */
			write_vpe_c0_config(read_c0_config());
			/* Clear any pending timer interrupt */
			write_vpe_c0_compare(0);
			/* Propagate Config7 */
			write_vpe_c0_config7(read_c0_config7());
476
			write_vpe_c0_count(read_c0_count());
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		}
		/* enable multi-threading within VPE */
		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
		/* enable the VPE */
		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
	}

	/*
	 * Pull any physically present but unused TCs out of circulation.
	 */
	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
		cpu_clear(tc, phys_cpu_present_map);
		cpu_clear(tc, cpu_present_map);
		tc++;
	}

	/* release config state */
	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );

	printk("\n");

	/* Set up coprocessor affinity CPU mask(s) */

	for (tc = 0; tc < ntc; tc++) {
501
		if (cpu_data[tc].options & MIPS_CPU_FPU)
502 503 504 505 506 507 508
			cpu_set(tc, mt_fpu_cpumask);
	}

	/* set up ipi interrupts... */

	/* If we have multiple VPEs running, set up the cross-VPE interrupt */

509
	setup_cross_vpe_interrupts(nvpe);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

	/* Set up queue of free IPI "messages". */
	nipi = NR_CPUS * IPIBUF_PER_CPU;
	if (ipibuffers > 0)
		nipi = ipibuffers;

	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
	if (pipi == NULL)
		panic("kmalloc of IPI message buffers failed\n");
	else
		printk("IPI buffer pool of %d buffers\n", nipi);
	for (i = 0; i < nipi; i++) {
		smtc_ipi_nq(&freeIPIq, pipi);
		pipi++;
	}

	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
	emt(EMT_ENABLE);
	evpe(EVPE_ENABLE);
	local_irq_restore(flags);
	/* Initialize SMTC /proc statistics/diagnostics */
	init_smtc_stats();
}


/*
 * Setup the PC, SP, and GP of a secondary processor and start it
 * running!
 * smp_bootstrap is the place to resume from
 * __KSTK_TOS(idle) is apparently the stack pointer
 * (unsigned long)idle->thread_info the gp
 *
 */
void smtc_boot_secondary(int cpu, struct task_struct *idle)
{
	extern u32 kernelsp[NR_CPUS];
	long flags;
	int mtflags;

	LOCK_MT_PRA();
	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
		dvpe();
	}
	settc(cpu_data[cpu].tc_id);

	/* pc */
	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);

	/* stack pointer */
	kernelsp[cpu] = __KSTK_TOS(idle);
	write_tc_gpr_sp(__KSTK_TOS(idle));

	/* global pointer */
R
Roman Zippel 已提交
563
	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
564 565 566 567 568 569 570 571 572 573 574 575 576

	smtc_status |= SMTC_MTC_ACTIVE;
	write_tc_c0_tchalt(0);
	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
		evpe(EVPE_ENABLE);
	}
	UNLOCK_MT_PRA();
}

void smtc_init_secondary(void)
{
	/*
	 * Start timer on secondary VPEs if necessary.
577
	 * plat_timer_setup has already have been invoked by init/main
578 579 580 581
	 * on "boot" TC.  Like per_cpu_trap_init() hack, this assumes that
	 * SMTC init code assigns TCs consdecutively and in ascending order
	 * to across available VPEs.
	 */
582 583
	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
	    ((read_c0_tcbind() & TCBIND_CURVPE)
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	    != cpu_data[smp_processor_id() - 1].vpe_id)){
		write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
	}

	local_irq_enable();
}

void smtc_smp_finish(void)
{
	printk("TC %d going on-line as CPU %d\n",
		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
}

void smtc_cpus_done(void)
{
}

/*
 * Support for SMTC-optimized driver IRQ registration
 */

/*
 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 * in do_IRQ. These are passed in setup_irq_smtc() and stored
 * in this table.
 */

int setup_irq_smtc(unsigned int irq, struct irqaction * new,
			unsigned long hwmask)
{
R
Ralf Baechle 已提交
614
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
615 616 617 618
	unsigned int vpe = current_cpu_data.vpe_id;

	vpemask[vpe][irq - MIPSCPU_INT_BASE] = 1;
#endif
R
Ralf Baechle 已提交
619
	irq_hwmask[irq] = hwmask;
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

	return setup_irq(irq, new);
}

/*
 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
 * Within a VPE one TC can interrupt another by different approaches.
 * The easiest to get right would probably be to make all TCs except
 * the target IXMT and set a software interrupt, but an IXMT-based
 * scheme requires that a handler must run before a new IPI could
 * be sent, which would break the "broadcast" loops in MIPS MT.
 * A more gonzo approach within a VPE is to halt the TC, extract
 * its Restart, Status, and a couple of GPRs, and program the Restart
 * address to emulate an interrupt.
 *
 * Within a VPE, one can be confident that the target TC isn't in
 * a critical EXL state when halted, since the write to the Halt
 * register could not have issued on the writing thread if the
 * halting thread had EXL set. So k0 and k1 of the target TC
 * can be used by the injection code.  Across VPEs, one can't
 * be certain that the target TC isn't in a critical exception
 * state. So we try a two-step process of sending a software
 * interrupt to the target VPE, which either handles the event
 * itself (if it was the target) or injects the event within
 * the VPE.
 */

647
static void smtc_ipi_qdump(void)
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
{
	int i;

	for (i = 0; i < NR_CPUS ;i++) {
		printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
			IPIQ[i].depth);
	}
}

/*
 * The standard atomic.h primitives don't quite do what we want
 * here: We need an atomic add-and-return-previous-value (which
 * could be done with atomic_add_return and a decrement) and an
 * atomic set/zero-and-return-previous-value (which can't really
 * be done with the atomic.h primitives). And since this is
 * MIPS MT, we can assume that we have LL/SC.
 */
static __inline__ int atomic_postincrement(unsigned int *pv)
{
	unsigned long result;

	unsigned long temp;

	__asm__ __volatile__(
	"1:	ll	%0, %2					\n"
	"	addu	%1, %0, 1				\n"
	"	sc	%1, %2					\n"
	"	beqz	%1, 1b					\n"
	"	sync						\n"
	: "=&r" (result), "=&r" (temp), "=m" (*pv)
	: "m" (*pv)
	: "memory");

	return result;
}

void smtc_send_ipi(int cpu, int type, unsigned int action)
{
	int tcstatus;
	struct smtc_ipi *pipi;
	long flags;
	int mtflags;

	if (cpu == smp_processor_id()) {
		printk("Cannot Send IPI to self!\n");
		return;
	}
	/* Set up a descriptor, to be delivered either promptly or queued */
	pipi = smtc_ipi_dq(&freeIPIq);
	if (pipi == NULL) {
		bust_spinlocks(1);
		mips_mt_regdump(dvpe());
		panic("IPI Msg. Buffers Depleted\n");
	}
	pipi->type = type;
	pipi->arg = (void *)action;
	pipi->dest = cpu;
	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
		/* If not on same VPE, enqueue and send cross-VPE interupt */
		smtc_ipi_nq(&IPIQ[cpu], pipi);
		LOCK_CORE_PRA();
		settc(cpu_data[cpu].tc_id);
		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
		UNLOCK_CORE_PRA();
	} else {
		/*
		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
		 * since ASID shootdown on the other VPE may
		 * collide with this operation.
		 */
		LOCK_CORE_PRA();
		settc(cpu_data[cpu].tc_id);
		/* Halt the targeted TC */
		write_tc_c0_tchalt(TCHALT_H);
		mips_ihb();

		/*
	 	 * Inspect TCStatus - if IXMT is set, we have to queue
		 * a message. Otherwise, we set up the "interrupt"
		 * of the other TC
	 	 */
		tcstatus = read_tc_c0_tcstatus();

		if ((tcstatus & TCSTATUS_IXMT) != 0) {
			/*
			 * Spin-waiting here can deadlock,
			 * so we queue the message for the target TC.
			 */
			write_tc_c0_tchalt(0);
			UNLOCK_CORE_PRA();
			/* Try to reduce redundant timer interrupt messages */
740 741
			if (type == SMTC_CLOCK_TICK) {
			    if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
				smtc_ipi_nq(&freeIPIq, pipi);
				return;
			    }
			}
			smtc_ipi_nq(&IPIQ[cpu], pipi);
		} else {
			post_direct_ipi(cpu, pipi);
			write_tc_c0_tchalt(0);
			UNLOCK_CORE_PRA();
		}
	}
}

/*
 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
 */
758
static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
{
	struct pt_regs *kstack;
	unsigned long tcstatus;
	unsigned long tcrestart;
	extern u32 kernelsp[NR_CPUS];
	extern void __smtc_ipi_vector(void);

	/* Extract Status, EPC from halted TC */
	tcstatus = read_tc_c0_tcstatus();
	tcrestart = read_tc_c0_tcrestart();
	/* If TCRestart indicates a WAIT instruction, advance the PC */
	if ((tcrestart & 0x80000000)
	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
		tcrestart += 4;
	}
	/*
	 * Save on TC's future kernel stack
	 *
	 * CU bit of Status is indicator that TC was
	 * already running on a kernel stack...
	 */
780
	if (tcstatus & ST0_CU0)  {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		/* Note that this "- 1" is pointer arithmetic */
		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
	} else {
		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
	}

	kstack->cp0_epc = (long)tcrestart;
	/* Save TCStatus */
	kstack->cp0_tcstatus = tcstatus;
	/* Pass token of operation to be performed kernel stack pad area */
	kstack->pad0[4] = (unsigned long)pipi;
	/* Pass address of function to be called likewise */
	kstack->pad0[5] = (unsigned long)&ipi_decode;
	/* Set interrupt exempt and kernel mode */
	tcstatus |= TCSTATUS_IXMT;
	tcstatus &= ~TCSTATUS_TKSU;
	write_tc_c0_tcstatus(tcstatus);
	ehb();
	/* Set TC Restart address to be SMTC IPI vector */
	write_tc_c0_tcrestart(__smtc_ipi_vector);
}

803
static void ipi_resched_interrupt(void)
804 805 806 807 808
{
	/* Return from interrupt should be enough to cause scheduler check */
}


809
static void ipi_call_interrupt(void)
810 811 812 813 814
{
	/* Invoke generic function invocation code in smp.c */
	smp_call_function_interrupt();
}

815
void ipi_decode(struct smtc_ipi *pipi)
816 817 818 819 820 821 822
{
	void *arg_copy = pipi->arg;
	int type_copy = pipi->type;
	int dest_copy = pipi->dest;

	smtc_ipi_nq(&freeIPIq, pipi);
	switch (type_copy) {
823
	case SMTC_CLOCK_TICK:
824 825
		irq_enter();
		kstat_this_cpu.irqs[MIPSCPU_INT_BASE + MIPSCPU_INT_CPUCTR]++;
826 827
		/* Invoke Clock "Interrupt" */
		ipi_timer_latch[dest_copy] = 0;
828
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
829
		clock_hang_reported[dest_copy] = 0;
830
#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
831
		local_timer_interrupt(0, NULL);
832
		irq_exit();
833 834 835 836
		break;
	case LINUX_SMP_IPI:
		switch ((int)arg_copy) {
		case SMP_RESCHEDULE_YOURSELF:
837
			ipi_resched_interrupt();
838
			break;
839
		case SMP_CALL_FUNCTION:
840
			ipi_call_interrupt();
841 842
			break;
		default:
843 844
			printk("Impossible SMTC IPI Argument 0x%x\n",
				(int)arg_copy);
845
			break;
846 847 848 849 850
		}
		break;
	default:
		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
		break;
851 852 853
	}
}

854
void deferred_smtc_ipi(void)
855 856 857 858 859 860 861 862 863 864
{
	struct smtc_ipi *pipi;
	unsigned long flags;
/* DEBUG */
	int q = smp_processor_id();

	/*
	 * Test is not atomic, but much faster than a dequeue,
	 * and the vast majority of invocations will have a null queue.
	 */
865
	if (IPIQ[q].head != NULL) {
866 867 868
		while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
			/* ipi_decode() should be called with interrupts off */
			local_irq_save(flags);
869
			ipi_decode(pipi);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
			local_irq_restore(flags);
		}
	}
}

/*
 * Send clock tick to all TCs except the one executing the funtion
 */

void smtc_timer_broadcast(int vpe)
{
	int cpu;
	int myTC = cpu_data[smp_processor_id()].tc_id;
	int myVPE = cpu_data[smp_processor_id()].vpe_id;

	smtc_cpu_stats[smp_processor_id()].timerints++;

	for_each_online_cpu(cpu) {
		if (cpu_data[cpu].vpe_id == myVPE &&
		    cpu_data[cpu].tc_id != myTC)
			smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
	}
}

/*
 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
 * set via cross-VPE MTTR manipulation of the Cause register. It would be
 * in some regards preferable to have external logic for "doorbell" hardware
 * interrupts.
 */

901
static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
902

903
static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
{
	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
	int my_tc = cpu_data[smp_processor_id()].tc_id;
	int cpu;
	struct smtc_ipi *pipi;
	unsigned long tcstatus;
	int sent;
	long flags;
	unsigned int mtflags;
	unsigned int vpflags;

	/*
	 * So long as cross-VPE interrupts are done via
	 * MFTR/MTTR read-modify-writes of Cause, we need
	 * to stop other VPEs whenever the local VPE does
	 * anything similar.
	 */
	local_irq_save(flags);
	vpflags = dvpe();
	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
	irq_enable_hazard();
	evpe(vpflags);
	local_irq_restore(flags);

	/*
	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
	 * queued for TCs on this VPE other than the current one.
	 * Return-from-interrupt should cause us to drain the queue
	 * for the current TC, so we ought not to have to do it explicitly here.
	 */

	for_each_online_cpu(cpu) {
		if (cpu_data[cpu].vpe_id != my_vpe)
			continue;

		pipi = smtc_ipi_dq(&IPIQ[cpu]);
		if (pipi != NULL) {
			if (cpu_data[cpu].tc_id != my_tc) {
				sent = 0;
				LOCK_MT_PRA();
				settc(cpu_data[cpu].tc_id);
				write_tc_c0_tchalt(TCHALT_H);
				mips_ihb();
				tcstatus = read_tc_c0_tcstatus();
				if ((tcstatus & TCSTATUS_IXMT) == 0) {
					post_direct_ipi(cpu, pipi);
					sent = 1;
				}
				write_tc_c0_tchalt(0);
				UNLOCK_MT_PRA();
				if (!sent) {
					smtc_ipi_req(&IPIQ[cpu], pipi);
				}
			} else {
				/*
				 * ipi_decode() should be called
				 * with interrupts off
				 */
				local_irq_save(flags);
964
				ipi_decode(pipi);
965 966 967 968 969 970 971 972
				local_irq_restore(flags);
			}
		}
	}

	return IRQ_HANDLED;
}

973
static void ipi_irq_dispatch(void)
974
{
975
	do_IRQ(cpu_ipi_irq);
976 977 978 979
}

static struct irqaction irq_ipi;

980
static void setup_cross_vpe_interrupts(unsigned int nvpe)
981
{
982 983 984
	if (nvpe < 1)
		return;

985 986 987 988 989 990
	if (!cpu_has_vint)
		panic("SMTC Kernel requires Vectored Interupt support");

	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);

	irq_ipi.handler = ipi_interrupt;
991
	irq_ipi.flags = IRQF_DISABLED;
992 993 994 995 996
	irq_ipi.name = "SMTC_IPI";

	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));

	irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
997
	set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
998 999 1000 1001
}

/*
 * SMTC-specific hacks invoked from elsewhere in the kernel.
1002 1003 1004 1005 1006
 *
 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
 * called with interrupts disabled.  We do rely on interrupts being disabled
 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
 * result in a recursive call to raw_local_irq_restore().
1007 1008
 */

1009
static void __smtc_ipi_replay(void)
R
Ralf Baechle 已提交
1010
{
1011 1012
	unsigned int cpu = smp_processor_id();

R
Ralf Baechle 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * To the extent that we've ever turned interrupts off,
	 * we may have accumulated deferred IPIs.  This is subtle.
	 * If we use the smtc_ipi_qdepth() macro, we'll get an
	 * exact number - but we'll also disable interrupts
	 * and create a window of failure where a new IPI gets
	 * queued after we test the depth but before we re-enable
	 * interrupts. So long as IXMT never gets set, however,
	 * we should be OK:  If we pick up something and dispatch
	 * it here, that's great. If we see nothing, but concurrent
	 * with this operation, another TC sends us an IPI, IXMT
	 * is clear, and we'll handle it as a real pseudo-interrupt
	 * and not a pseudo-pseudo interrupt.
	 */
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	if (IPIQ[cpu].depth > 0) {
		while (1) {
			struct smtc_ipi_q *q = &IPIQ[cpu];
			struct smtc_ipi *pipi;
			extern void self_ipi(struct smtc_ipi *);

			spin_lock(&q->lock);
			pipi = __smtc_ipi_dq(q);
			spin_unlock(&q->lock);
			if (!pipi)
				break;
R
Ralf Baechle 已提交
1038 1039

			self_ipi(pipi);
1040
			smtc_cpu_stats[cpu].selfipis++;
R
Ralf Baechle 已提交
1041 1042 1043 1044
		}
	}
}

1045 1046 1047 1048 1049 1050
void smtc_ipi_replay(void)
{
	raw_local_irq_disable();
	__smtc_ipi_replay();
}

1051 1052
EXPORT_SYMBOL(smtc_ipi_replay);

1053 1054
void smtc_idle_loop_hook(void)
{
1055
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	int im;
	int flags;
	int mtflags;
	int bit;
	int vpe;
	int tc;
	int hook_ntcs;
	/*
	 * printk within DMT-protected regions can deadlock,
	 * so buffer diagnostic messages for later output.
	 */
	char *pdb_msg;
	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */

	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
			int mvpconf0;
			/* Tedious stuff to just do once */
			mvpconf0 = read_c0_mvpconf0();
			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
			if (hook_ntcs > NR_CPUS)
				hook_ntcs = NR_CPUS;
			for (tc = 0; tc < hook_ntcs; tc++) {
				tcnoprog[tc] = 0;
				clock_hang_reported[tc] = 0;
	    		}
			for (vpe = 0; vpe < 2; vpe++)
				for (im = 0; im < 8; im++)
					imstuckcount[vpe][im] = 0;
			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
			atomic_set(&idle_hook_initialized, 1000);
		} else {
			/* Someone else is initializing in parallel - let 'em finish */
			while (atomic_read(&idle_hook_initialized) < 1000)
				;
		}
	}

	/* Have we stupidly left IXMT set somewhere? */
	if (read_c0_tcstatus() & 0x400) {
		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
		ehb();
		printk("Dangling IXMT in cpu_idle()\n");
	}

	/* Have we stupidly left an IM bit turned off? */
#define IM_LIMIT 2000
	local_irq_save(flags);
	mtflags = dmt();
	pdb_msg = &id_ho_db_msg[0];
	im = read_c0_status();
	vpe = cpu_data[smp_processor_id()].vpe_id;
	for (bit = 0; bit < 8; bit++) {
		/*
		 * In current prototype, I/O interrupts
		 * are masked for VPE > 0
		 */
		if (vpemask[vpe][bit]) {
			if (!(im & (0x100 << bit)))
				imstuckcount[vpe][bit]++;
			else
				imstuckcount[vpe][bit] = 0;
			if (imstuckcount[vpe][bit] > IM_LIMIT) {
				set_c0_status(0x100 << bit);
				ehb();
				imstuckcount[vpe][bit] = 0;
				pdb_msg += sprintf(pdb_msg,
					"Dangling IM %d fixed for VPE %d\n", bit,
					vpe);
			}
		}
	}

	/*
	 * Now that we limit outstanding timer IPIs, check for hung TC
	 */
	for (tc = 0; tc < NR_CPUS; tc++) {
		/* Don't check ourself - we'll dequeue IPIs just below */
		if ((tc != smp_processor_id()) &&
		    ipi_timer_latch[tc] > timerq_limit) {
		    if (clock_hang_reported[tc] == 0) {
			pdb_msg += sprintf(pdb_msg,
				"TC %d looks hung with timer latch at %d\n",
				tc, ipi_timer_latch[tc]);
			clock_hang_reported[tc]++;
			}
		}
	}
	emt(mtflags);
	local_irq_restore(flags);
	if (pdb_msg != &id_ho_db_msg[0])
		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1148
#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
R
Ralf Baechle 已提交
1149

1150
	/*
R
Ralf Baechle 已提交
1151 1152
	 * Replay any accumulated deferred IPIs. If "Instant Replay"
	 * is in use, there should never be any.
1153
	 */
R
Ralf Baechle 已提交
1154
#ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1155 1156 1157 1158 1159 1160 1161
	{
		unsigned long flags;

		local_irq_save(flags);
		__smtc_ipi_replay();
		local_irq_restore(flags);
	}
R
Ralf Baechle 已提交
1162
#endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
}

void smtc_soft_dump(void)
{
	int i;

	printk("Counter Interrupts taken per CPU (TC)\n");
	for (i=0; i < NR_CPUS; i++) {
		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
	}
	printk("Self-IPI invocations:\n");
	for (i=0; i < NR_CPUS; i++) {
		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
	}
	smtc_ipi_qdump();
	printk("Timer IPI Backlogs:\n");
	for (i=0; i < NR_CPUS; i++) {
		printk("%d: %d\n", i, ipi_timer_latch[i]);
	}
	printk("%d Recoveries of \"stolen\" FPU\n",
	       atomic_read(&smtc_fpu_recoveries));
}


/*
 * TLB management routines special to SMTC
 */

void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
{
	unsigned long flags, mtflags, tcstat, prevhalt, asid;
	int tlb, i;

	/*
	 * It would be nice to be able to use a spinlock here,
	 * but this is invoked from within TLB flush routines
	 * that protect themselves with DVPE, so if a lock is
R
Ralf Baechle 已提交
1200
	 * held by another TC, it'll never be freed.
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	 *
	 * DVPE/DMT must not be done with interrupts enabled,
	 * so even so most callers will already have disabled
	 * them, let's be really careful...
	 */

	local_irq_save(flags);
	if (smtc_status & SMTC_TLB_SHARED) {
		mtflags = dvpe();
		tlb = 0;
	} else {
		mtflags = dmt();
		tlb = cpu_data[cpu].vpe_id;
	}
	asid = asid_cache(cpu);

	do {
		if (!((asid += ASID_INC) & ASID_MASK) ) {
			if (cpu_has_vtag_icache)
				flush_icache_all();
			/* Traverse all online CPUs (hack requires contigous range) */
			for (i = 0; i < num_online_cpus(); i++) {
				/*
				 * We don't need to worry about our own CPU, nor those of
				 * CPUs who don't share our TLB.
				 */
				if ((i != smp_processor_id()) &&
				    ((smtc_status & SMTC_TLB_SHARED) ||
				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
					settc(cpu_data[i].tc_id);
					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
					if (!prevhalt) {
						write_tc_c0_tchalt(TCHALT_H);
						mips_ihb();
					}
					tcstat = read_tc_c0_tcstatus();
					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
					if (!prevhalt)
						write_tc_c0_tchalt(0);
				}
			}
			if (!asid)		/* fix version if needed */
				asid = ASID_FIRST_VERSION;
			local_flush_tlb_all();	/* start new asid cycle */
		}
	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);

	/*
	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
	 */
	for (i = 0; i < num_online_cpus(); i++) {
		if ((smtc_status & SMTC_TLB_SHARED) ||
		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
			cpu_context(i, mm) = asid_cache(i) = asid;
	}

	if (smtc_status & SMTC_TLB_SHARED)
		evpe(mtflags);
	else
		emt(mtflags);
	local_irq_restore(flags);
}

/*
 * Invoked from macros defined in mmu_context.h
 * which must already have disabled interrupts
 * and done a DVPE or DMT as appropriate.
 */

void smtc_flush_tlb_asid(unsigned long asid)
{
	int entry;
	unsigned long ehi;

	entry = read_c0_wired();

	/* Traverse all non-wired entries */
	while (entry < current_cpu_data.tlbsize) {
		write_c0_index(entry);
		ehb();
		tlb_read();
		ehb();
		ehi = read_c0_entryhi();
1284
		if ((ehi & ASID_MASK) == asid) {
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		    /*
		     * Invalidate only entries with specified ASID,
		     * makiing sure all entries differ.
		     */
		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
		    write_c0_entrylo0(0);
		    write_c0_entrylo1(0);
		    mtc0_tlbw_hazard();
		    tlb_write_indexed();
		}
		entry++;
	}
	write_c0_index(PARKED_INDEX);
	tlbw_use_hazard();
}

/*
 * Support for single-threading cache flush operations.
 */

1305
static int halt_state_save[NR_CPUS];
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

/*
 * To really, really be sure that nothing is being done
 * by other TCs, halt them all.  This code assumes that
 * a DVPE has already been done, so while their Halted
 * state is theoretically architecturally unstable, in
 * practice, it's not going to change while we're looking
 * at it.
 */

void smtc_cflush_lockdown(void)
{
	int cpu;

	for_each_online_cpu(cpu) {
		if (cpu != smp_processor_id()) {
			settc(cpu_data[cpu].tc_id);
			halt_state_save[cpu] = read_tc_c0_tchalt();
			write_tc_c0_tchalt(TCHALT_H);
		}
	}
	mips_ihb();
}

/* It would be cheating to change the cpu_online states during a flush! */

void smtc_cflush_release(void)
{
	int cpu;

	/*
	 * Start with a hazard barrier to ensure
	 * that all CACHE ops have played through.
	 */
	mips_ihb();

	for_each_online_cpu(cpu) {
		if (cpu != smp_processor_id()) {
			settc(cpu_data[cpu].tc_id);
			write_tc_c0_tchalt(halt_state_save[cpu]);
		}
	}
	mips_ihb();
}