skge.c 90.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
 * Ethernet adapters. Based on earlier sk98lin, e100 and
 * FreeBSD if_sk drivers.
 *
 * This driver intentionally does not support all the features
 * of the original driver such as link fail-over and link management because
 * those should be done at higher levels.
 *
10
 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/config.h>
28
#include <linux/in.h>
29 30 31 32 33 34 35 36 37 38 39
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
A
Al Viro 已提交
40
#include <linux/dma-mapping.h>
41
#include <linux/mii.h>
42 43 44 45 46
#include <asm/irq.h>

#include "skge.h"

#define DRV_NAME		"skge"
S
Stephen Hemminger 已提交
47
#define DRV_VERSION		"1.5"
48 49 50 51 52
#define PFX			DRV_NAME " "

#define DEFAULT_TX_RING_SIZE	128
#define DEFAULT_RX_RING_SIZE	512
#define MAX_TX_RING_SIZE	1024
53
#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
54
#define MAX_RX_RING_SIZE	4096
55 56
#define RX_COPY_THRESHOLD	128
#define RX_BUF_SIZE		1536
57 58 59 60
#define PHY_RETRIES	        1000
#define ETH_JUMBO_MTU		9000
#define TX_WATCHDOG		(5 * HZ)
#define NAPI_WEIGHT		64
61
#define BLINK_MS		250
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg
	= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
	  | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;

static int debug = -1;	/* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

static const struct pci_device_id skge_id_table[] = {
77 78 79 80 81
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
82
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	/* DGE-530T */
83 84 85 86
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
87
	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
88 89 90 91 92 93
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);

static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
94
static void skge_phy_reset(struct skge_port *skge);
95
static void skge_tx_clean(struct skge_port *skge);
96 97
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 99 100 101
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
102
static void genesis_link_up(struct skge_port *skge);
103

104
/* Avoid conditionals by using array */
105 106 107 108 109 110 111
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };

static int skge_get_regs_len(struct net_device *dev)
{
112
	return 0x4000;
113 114 115
}

/*
116 117 118
 * Returns copy of whole control register region
 * Note: skip RAM address register because accessing it will
 * 	 cause bus hangs!
119 120 121 122 123 124 125 126
 */
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
			  void *p)
{
	const struct skge_port *skge = netdev_priv(dev);
	const void __iomem *io = skge->hw->regs;

	regs->version = 1;
127 128
	memset(p, 0, regs->len);
	memcpy_fromio(p, io, B3_RAM_ADDR);
129

130 131
	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
		      regs->len - B3_RI_WTO_R1);
132 133
}

S
Stephen Hemminger 已提交
134
/* Wake on Lan only supported on Yukon chips with rev 1 or above */
135 136 137
static int wol_supported(const struct skge_hw *hw)
{
	return !((hw->chip_id == CHIP_ID_GENESIS ||
138
		  (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);

	wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
	wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
}

static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

154
	if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
		return -EOPNOTSUPP;

	if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
		return -EOPNOTSUPP;

	skge->wol = wol->wolopts == WAKE_MAGIC;

	if (skge->wol) {
		memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);

		skge_write16(hw, WOL_CTRL_STAT,
			     WOL_CTL_ENA_PME_ON_MAGIC_PKT |
			     WOL_CTL_ENA_MAGIC_PKT_UNIT);
	} else
		skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);

	return 0;
}

S
Stephen Hemminger 已提交
174 175
/* Determine supported/advertised modes based on hardware.
 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
176 177 178 179 180
 */
static u32 skge_supported_modes(const struct skge_hw *hw)
{
	u32 supported;

181
	if (hw->copper) {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		supported = SUPPORTED_10baseT_Half
			| SUPPORTED_10baseT_Full
			| SUPPORTED_100baseT_Half
			| SUPPORTED_100baseT_Full
			| SUPPORTED_1000baseT_Half
			| SUPPORTED_1000baseT_Full
			| SUPPORTED_Autoneg| SUPPORTED_TP;

		if (hw->chip_id == CHIP_ID_GENESIS)
			supported &= ~(SUPPORTED_10baseT_Half
					     | SUPPORTED_10baseT_Full
					     | SUPPORTED_100baseT_Half
					     | SUPPORTED_100baseT_Full);

		else if (hw->chip_id == CHIP_ID_YUKON)
			supported &= ~SUPPORTED_1000baseT_Half;
	} else
		supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
			| SUPPORTED_Autoneg;

	return supported;
}
204 205 206 207 208 209 210 211

static int skge_get_settings(struct net_device *dev,
			     struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	ecmd->transceiver = XCVR_INTERNAL;
212
	ecmd->supported = skge_supported_modes(hw);
213

214
	if (hw->copper) {
215 216
		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy_addr;
217
	} else
218 219 220 221 222 223 224 225 226 227 228 229 230
		ecmd->port = PORT_FIBRE;

	ecmd->advertising = skge->advertising;
	ecmd->autoneg = skge->autoneg;
	ecmd->speed = skge->speed;
	ecmd->duplex = skge->duplex;
	return 0;
}

static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	const struct skge_hw *hw = skge->hw;
231
	u32 supported = skge_supported_modes(hw);
232 233

	if (ecmd->autoneg == AUTONEG_ENABLE) {
234 235 236
		ecmd->advertising = supported;
		skge->duplex = -1;
		skge->speed = -1;
237
	} else {
238 239
		u32 setting;

240
		switch (ecmd->speed) {
241
		case SPEED_1000:
242 243 244 245 246 247
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_1000baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_1000baseT_Half;
			else
				return -EINVAL;
248 249
			break;
		case SPEED_100:
250 251 252 253 254 255 256 257
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_100baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_100baseT_Half;
			else
				return -EINVAL;
			break;

258
		case SPEED_10:
259 260 261 262 263
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_10baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_10baseT_Half;
			else
264 265 266 267 268
				return -EINVAL;
			break;
		default:
			return -EINVAL;
		}
269 270 271 272 273 274

		if ((setting & supported) == 0)
			return -EINVAL;

		skge->speed = ecmd->speed;
		skge->duplex = ecmd->duplex;
275 276 277 278 279
	}

	skge->autoneg = ecmd->autoneg;
	skge->advertising = ecmd->advertising;

280 281 282
	if (netif_running(dev))
		skge_phy_reset(skge);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	return (0);
}

static void skge_get_drvinfo(struct net_device *dev,
			     struct ethtool_drvinfo *info)
{
	struct skge_port *skge = netdev_priv(dev);

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->fw_version, "N/A");
	strcpy(info->bus_info, pci_name(skge->hw->pdev));
}

static const struct skge_stat {
	char 	   name[ETH_GSTRING_LEN];
	u16	   xmac_offset;
	u16	   gma_offset;
} skge_stats[] = {
	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },

	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },

	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },

	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};

static int skge_get_stats_count(struct net_device *dev)
{
	return ARRAY_SIZE(skge_stats);
}

static void skge_get_ethtool_stats(struct net_device *dev,
				   struct ethtool_stats *stats, u64 *data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);
}

/* Use hardware MIB variables for critical path statistics and
 * transmit feedback not reported at interrupt.
 * Other errors are accounted for in interrupt handler.
 */
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	u64 data[ARRAY_SIZE(skge_stats)];

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);

	skge->net_stats.tx_bytes = data[0];
	skge->net_stats.rx_bytes = data[1];
	skge->net_stats.tx_packets = data[2] + data[4] + data[6];
	skge->net_stats.rx_packets = data[3] + data[5] + data[7];
362
	skge->net_stats.multicast = data[3] + data[5];
363 364 365 366 367 368 369 370 371 372
	skge->net_stats.collisions = data[10];
	skge->net_stats.tx_aborted_errors = data[12];

	return &skge->net_stats;
}

static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	int i;

373
	switch (stringset) {
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	case ETH_SS_STATS:
		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       skge_stats[i].name, ETH_GSTRING_LEN);
		break;
	}
}

static void skge_get_ring_param(struct net_device *dev,
				struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);

	p->rx_max_pending = MAX_RX_RING_SIZE;
	p->tx_max_pending = MAX_TX_RING_SIZE;
	p->rx_mini_max_pending = 0;
	p->rx_jumbo_max_pending = 0;

	p->rx_pending = skge->rx_ring.count;
	p->tx_pending = skge->tx_ring.count;
	p->rx_mini_pending = 0;
	p->rx_jumbo_pending = 0;
}

static int skge_set_ring_param(struct net_device *dev,
			       struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);
402
	int err;
403 404

	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
405
	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
406 407 408 409 410 411 412
		return -EINVAL;

	skge->rx_ring.count = p->rx_pending;
	skge->tx_ring.count = p->tx_pending;

	if (netif_running(dev)) {
		skge_down(dev);
413 414 415
		err = skge_up(dev);
		if (err)
			dev_close(dev);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	}

	return 0;
}

static u32 skge_get_msglevel(struct net_device *netdev)
{
	struct skge_port *skge = netdev_priv(netdev);
	return skge->msg_enable;
}

static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
	struct skge_port *skge = netdev_priv(netdev);
	skge->msg_enable = value;
}

static int skge_nway_reset(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
		return -EINVAL;

440
	skge_phy_reset(skge);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	return 0;
}

static int skge_set_sg(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;
	return ethtool_op_set_sg(dev, data);
}

static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	return ethtool_op_set_tx_csum(dev, data);
}

static u32 skge_get_rx_csum(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	return skge->rx_csum;
}

/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	skge->rx_csum = data;
	return 0;
}

static void skge_get_pauseparam(struct net_device *dev,
				struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);
	ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);

	ecmd->autoneg = skge->autoneg;
}

static int skge_set_pauseparam(struct net_device *dev,
			       struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	skge->autoneg = ecmd->autoneg;
	if (ecmd->rx_pause && ecmd->tx_pause)
		skge->flow_control = FLOW_MODE_SYMMETRIC;
505
	else if (ecmd->rx_pause && !ecmd->tx_pause)
506
		skge->flow_control = FLOW_MODE_REM_SEND;
507
	else if (!ecmd->rx_pause && ecmd->tx_pause)
508 509 510 511
		skge->flow_control = FLOW_MODE_LOC_SEND;
	else
		skge->flow_control = FLOW_MODE_NONE;

512 513
	if (netif_running(dev))
		skge_phy_reset(skge);
514 515 516 517 518 519 520 521 522 523 524 525
	return 0;
}

/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return 53215; /* or:  53.125 MHz */
	else
		return 78215; /* or:  78.125 MHz */
}

S
Stephen Hemminger 已提交
526
/* Chip HZ to microseconds */
527 528 529 530 531
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
	return (ticks * 1000) / hwkhz(hw);
}

S
Stephen Hemminger 已提交
532
/* Microseconds to chip HZ */
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
	return hwkhz(hw) * usec / 1000;
}

static int skge_get_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	ecmd->rx_coalesce_usecs = 0;
	ecmd->tx_coalesce_usecs = 0;

	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
		u32 msk = skge_read32(hw, B2_IRQM_MSK);

		if (msk & rxirqmask[port])
			ecmd->rx_coalesce_usecs = delay;
		if (msk & txirqmask[port])
			ecmd->tx_coalesce_usecs = delay;
	}

	return 0;
}

/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 msk = skge_read32(hw, B2_IRQM_MSK);
	u32 delay = 25;

	if (ecmd->rx_coalesce_usecs == 0)
		msk &= ~rxirqmask[port];
	else if (ecmd->rx_coalesce_usecs < 25 ||
		 ecmd->rx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= rxirqmask[port];
		delay = ecmd->rx_coalesce_usecs;
	}

	if (ecmd->tx_coalesce_usecs == 0)
		msk &= ~txirqmask[port];
	else if (ecmd->tx_coalesce_usecs < 25 ||
		 ecmd->tx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= txirqmask[port];
		delay = min(delay, ecmd->rx_coalesce_usecs);
	}

	skge_write32(hw, B2_IRQM_MSK, msk);
	if (msk == 0)
		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
	else {
		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
	}
	return 0;
}

601 602
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
603
{
604 605 606
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

607
	mutex_lock(&hw->phy_mutex);
608
	if (hw->chip_id == CHIP_ID_GENESIS) {
609 610 611 612 613 614 615
		switch (mode) {
		case LED_MODE_OFF:
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
			break;
616

617 618 619
		case LED_MODE_ON:
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
620

621 622
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
623

624
			break;
625

626 627 628 629
		case LED_MODE_TST:
			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
630

631 632 633
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
			break;
		}
634
	} else {
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		switch (mode) {
		case LED_MODE_OFF:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
				     PHY_M_LED_MO_10(MO_LED_OFF)   |
				     PHY_M_LED_MO_100(MO_LED_OFF)  |
				     PHY_M_LED_MO_1000(MO_LED_OFF) |
				     PHY_M_LED_MO_RX(MO_LED_OFF));
			break;
		case LED_MODE_ON:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
				     PHY_M_LED_PULS_DUR(PULS_170MS) |
				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
				     PHY_M_LEDC_TX_CTRL |
				     PHY_M_LEDC_DP_CTRL);
651

652 653 654 655 656 657 658 659 660 661 662 663 664 665
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_RX(MO_LED_OFF) |
				     (skge->speed == SPEED_100 ?
				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
			break;
		case LED_MODE_TST:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
				     PHY_M_LED_MO_10(MO_LED_ON)   |
				     PHY_M_LED_MO_100(MO_LED_ON)  |
				     PHY_M_LED_MO_1000(MO_LED_ON) |
				     PHY_M_LED_MO_RX(MO_LED_ON));
		}
666
	}
667
	mutex_unlock(&hw->phy_mutex);
668 669 670 671 672 673
}

/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
674 675
	unsigned long ms;
	enum led_mode mode = LED_MODE_TST;
676

677
	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
678 679 680
		ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
	else
		ms = data * 1000;
681

682 683 684
	while (ms > 0) {
		skge_led(skge, mode);
		mode ^= LED_MODE_TST;
685

686 687 688 689
		if (msleep_interruptible(BLINK_MS))
			break;
		ms -= BLINK_MS;
	}
690

691 692
	/* back to regular LED state */
	skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

	return 0;
}

static struct ethtool_ops skge_ethtool_ops = {
	.get_settings	= skge_get_settings,
	.set_settings	= skge_set_settings,
	.get_drvinfo	= skge_get_drvinfo,
	.get_regs_len	= skge_get_regs_len,
	.get_regs	= skge_get_regs,
	.get_wol	= skge_get_wol,
	.set_wol	= skge_set_wol,
	.get_msglevel	= skge_get_msglevel,
	.set_msglevel	= skge_set_msglevel,
	.nway_reset	= skge_nway_reset,
	.get_link	= ethtool_op_get_link,
	.get_ringparam	= skge_get_ring_param,
	.set_ringparam	= skge_set_ring_param,
	.get_pauseparam = skge_get_pauseparam,
	.set_pauseparam = skge_set_pauseparam,
	.get_coalesce	= skge_get_coalesce,
	.set_coalesce	= skge_set_coalesce,
	.get_sg		= ethtool_op_get_sg,
	.set_sg		= skge_set_sg,
	.get_tx_csum	= ethtool_op_get_tx_csum,
	.set_tx_csum	= skge_set_tx_csum,
	.get_rx_csum	= skge_get_rx_csum,
	.set_rx_csum	= skge_set_rx_csum,
	.get_strings	= skge_get_strings,
	.phys_id	= skge_phys_id,
	.get_stats_count = skge_get_stats_count,
	.get_ethtool_stats = skge_get_ethtool_stats,
725
	.get_perm_addr	= ethtool_op_get_perm_addr,
726 727 728 729 730 731
};

/*
 * Allocate ring elements and chain them together
 * One-to-one association of board descriptors with ring elements
 */
732
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
733 734 735 736 737
{
	struct skge_tx_desc *d;
	struct skge_element *e;
	int i;

S
Stephen Hemminger 已提交
738
	ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	if (!ring->start)
		return -ENOMEM;

	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
		e->desc = d;
		if (i == ring->count - 1) {
			e->next = ring->start;
			d->next_offset = base;
		} else {
			e->next = e + 1;
			d->next_offset = base + (i+1) * sizeof(*d);
		}
	}
	ring->to_use = ring->to_clean = ring->start;

	return 0;
}

757 758 759 760 761 762
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
			  struct sk_buff *skb, unsigned int bufsize)
{
	struct skge_rx_desc *rd = e->desc;
	u64 map;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
			     PCI_DMA_FROMDEVICE);

	rd->dma_lo = map;
	rd->dma_hi = map >> 32;
	e->skb = skb;
	rd->csum1_start = ETH_HLEN;
	rd->csum2_start = ETH_HLEN;
	rd->csum1 = 0;
	rd->csum2 = 0;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, bufsize);
}

782 783 784 785
/* Resume receiving using existing skb,
 * Note: DMA address is not changed by chip.
 * 	 MTU not changed while receiver active.
 */
786
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
787 788 789 790 791 792 793 794 795 796 797 798 799
{
	struct skge_rx_desc *rd = e->desc;

	rd->csum2 = 0;
	rd->csum2_start = ETH_HLEN;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}


/* Free all  buffers in receive ring, assumes receiver stopped */
800 801 802 803 804 805
static void skge_rx_clean(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

806 807
	e = ring->start;
	do {
808 809
		struct skge_rx_desc *rd = e->desc;
		rd->control = 0;
810 811 812 813 814 815 816 817 818
		if (e->skb) {
			pci_unmap_single(hw->pdev,
					 pci_unmap_addr(e, mapaddr),
					 pci_unmap_len(e, maplen),
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb(e->skb);
			e->skb = NULL;
		}
	} while ((e = e->next) != ring->start);
819 820
}

821

822
/* Allocate buffers for receive ring
823
 * For receive:  to_clean is next received frame.
824 825 826 827 828 829
 */
static int skge_rx_fill(struct skge_port *skge)
{
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

830 831
	e = ring->start;
	do {
832
		struct sk_buff *skb;
833

834
		skb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_KERNEL);
835 836 837
		if (!skb)
			return -ENOMEM;

838 839
		skb_reserve(skb, NET_IP_ALIGN);
		skge_rx_setup(skge, e, skb, skge->rx_buf_size);
840
	} while ( (e = e->next) != ring->start);
841

842 843
	ring->to_clean = ring->start;
	return 0;
844 845 846 847
}

static void skge_link_up(struct skge_port *skge)
{
848
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
849 850
		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);

851
	netif_carrier_on(skge->netdev);
852
	netif_wake_queue(skge->netdev);
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX
		       "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
		       skge->netdev->name, skge->speed,
		       skge->duplex == DUPLEX_FULL ? "full" : "half",
		       (skge->flow_control == FLOW_MODE_NONE) ? "none" :
		       (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
		       (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
		       (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
		       "unknown");
}

static void skge_link_down(struct skge_port *skge)
{
868
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
869 870 871 872 873 874 875
	netif_carrier_off(skge->netdev);
	netif_stop_queue(skge->netdev);

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}

876
static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
877 878 879
{
	int i;

880
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
881
	*val = xm_read16(hw, port, XM_PHY_DATA);
882

883
	for (i = 0; i < PHY_RETRIES; i++) {
884
		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
885
			goto ready;
886
		udelay(1);
887 888
	}

889
	return -ETIMEDOUT;
890
 ready:
891
	*val = xm_read16(hw, port, XM_PHY_DATA);
892

893 894 895 896 897 898 899 900 901
	return 0;
}

static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
	u16 v = 0;
	if (__xm_phy_read(hw, port, reg, &v))
		printk(KERN_WARNING PFX "%s: phy read timed out\n",
		       hw->dev[port]->name);
902 903 904
	return v;
}

905
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
906 907 908
{
	int i;

909
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
910
	for (i = 0; i < PHY_RETRIES; i++) {
911
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
912
			goto ready;
913
		udelay(1);
914
	}
915
	return -EIO;
916 917

 ready:
918
	xm_write16(hw, port, XM_PHY_DATA, val);
919 920 921 922 923 924
	for (i = 0; i < PHY_RETRIES; i++) {
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
}

static void genesis_init(struct skge_hw *hw)
{
	/* set blink source counter */
	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
	skge_write8(hw, B2_BSC_CTRL, BSC_START);

	/* configure mac arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure mac arbiter timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* configure packet arbiter timeout */
	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}

static void genesis_reset(struct skge_hw *hw, int port)
{
957
	const u8 zero[8]  = { 0 };
958

959 960
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);

961
	/* reset the statistics module */
962 963 964 965 966
	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
	xm_write16(hw, port, XM_IMSK, 0xffff);	/* disable XMAC IRQs */
	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
967

968 969
	/* disable Broadcom PHY IRQ */
	xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
970

971
	xm_outhash(hw, port, XM_HSM, zero);
972 973 974
}


975 976 977 978 979 980 981 982 983 984 985
/* Convert mode to MII values  */
static const u16 phy_pause_map[] = {
	[FLOW_MODE_NONE] =	0,
	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
	[FLOW_MODE_REM_SEND]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};


/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
986
{
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	u16 status;

	/* read twice because of latch */
	(void) xm_phy_read(hw, port, PHY_BCOM_STAT);
	status = xm_phy_read(hw, port, PHY_BCOM_STAT);

	if ((status & PHY_ST_LSYNC) == 0) {
		u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
		cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
		xm_write16(hw, port, XM_MMU_CMD, cmd);
		/* dummy read to ensure writing */
		(void) xm_read16(hw, port, XM_MMU_CMD);

		if (netif_carrier_ok(dev))
			skge_link_down(skge);
	} else {
		if (skge->autoneg == AUTONEG_ENABLE &&
		    (status & PHY_ST_AN_OVER)) {
			u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
			u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);

			if (lpa & PHY_B_AN_RF) {
				printk(KERN_NOTICE PFX "%s: remote fault\n",
				       dev->name);
				return;
			}

			/* Check Duplex mismatch */
1017
			switch (aux & PHY_B_AS_AN_RES_MSK) {
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			case PHY_B_RES_1000FD:
				skge->duplex = DUPLEX_FULL;
				break;
			case PHY_B_RES_1000HD:
				skge->duplex = DUPLEX_HALF;
				break;
			default:
				printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
				       dev->name);
				return;
			}


			/* We are using IEEE 802.3z/D5.0 Table 37-4 */
			switch (aux & PHY_B_AS_PAUSE_MSK) {
			case PHY_B_AS_PAUSE_MSK:
				skge->flow_control = FLOW_MODE_SYMMETRIC;
				break;
			case PHY_B_AS_PRR:
				skge->flow_control = FLOW_MODE_REM_SEND;
				break;
			case PHY_B_AS_PRT:
				skge->flow_control = FLOW_MODE_LOC_SEND;
				break;
			default:
				skge->flow_control = FLOW_MODE_NONE;
			}

			skge->speed = SPEED_1000;
		}

		if (!netif_carrier_ok(dev))
			genesis_link_up(skge);
	}
}

/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
 * Phy on for 100 or 10Mbit operation
 */
static void bcom_phy_init(struct skge_port *skge, int jumbo)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1061
	int i;
1062
	u16 id1, r, ext, ctl;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

	/* magic workaround patterns for Broadcom */
	static const struct {
		u16 reg;
		u16 val;
	} A1hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
	}, C0hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
	};

1078 1079 1080 1081 1082 1083 1084 1085
	/* read Id from external PHY (all have the same address) */
	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);

	/* Optimize MDIO transfer by suppressing preamble. */
	r = xm_read16(hw, port, XM_MMU_CMD);
	r |=  XM_MMU_NO_PRE;
	xm_write16(hw, port, XM_MMU_CMD,r);

1086
	switch (id1) {
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	case PHY_BCOM_ID1_C0:
		/*
		 * Workaround BCOM Errata for the C0 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
			xm_phy_write(hw, port,
				     C0hack[i].reg, C0hack[i].val);

		break;
	case PHY_BCOM_ID1_A1:
		/*
		 * Workaround BCOM Errata for the A1 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
			xm_phy_write(hw, port,
				     A1hack[i].reg, A1hack[i].val);
		break;
	}

	/*
	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
	 * Disable Power Management after reset.
	 */
	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
	r |= PHY_B_AC_DIS_PM;
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);

	/* Dummy read */
	xm_read16(hw, port, XM_ISRC);

	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
	ctl = PHY_CT_SP1000;	/* always 1000mbit */

	if (skge->autoneg == AUTONEG_ENABLE) {
		/*
		 * Workaround BCOM Errata #1 for the C5 type.
		 * 1000Base-T Link Acquisition Failure in Slave Mode
		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
		 */
		u16 adv = PHY_B_1000C_RD;
		if (skge->advertising & ADVERTISED_1000baseT_Half)
			adv |= PHY_B_1000C_AHD;
		if (skge->advertising & ADVERTISED_1000baseT_Full)
			adv |= PHY_B_1000C_AFD;
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);

		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		if (skge->duplex == DUPLEX_FULL)
			ctl |= PHY_CT_DUP_MD;
		/* Force to slave */
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
	}

	/* Set autonegotiation pause parameters */
	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);

	/* Handle Jumbo frames */
	if (jumbo) {
		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);

		ext |= PHY_B_PEC_HIGH_LA;

	}

	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);

S
Stephen Hemminger 已提交
1159
	/* Use link status change interrupt */
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);

	bcom_check_link(hw, port);
}

static void genesis_mac_init(struct skge_hw *hw, int port)
{
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
	int i;
	u32 r;
	const u8 zero[6]  = { 0 };

1174 1175 1176 1177 1178 1179 1180
	for (i = 0; i < 10; i++) {
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
			     MFF_SET_MAC_RST);
		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
			goto reset_ok;
		udelay(1);
	}
1181

1182 1183 1184
	printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);

 reset_ok:
1185
	/* Unreset the XMAC. */
1186
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1187 1188 1189 1190 1191 1192

	/*
	 * Perform additional initialization for external PHYs,
	 * namely for the 1000baseTX cards that use the XMAC's
	 * GMII mode.
	 */
1193
	/* Take external Phy out of reset */
1194 1195 1196 1197 1198 1199 1200
	r = skge_read32(hw, B2_GP_IO);
	if (port == 0)
		r |= GP_DIR_0|GP_IO_0;
	else
		r |= GP_DIR_2|GP_IO_2;

	skge_write32(hw, B2_GP_IO, r);
1201

1202

S
Stephen Hemminger 已提交
1203
	/* Enable GMII interface */
1204 1205
	xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);

1206
	bcom_phy_init(skge, jumbo);
1207

1208 1209
	/* Set Station Address */
	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1210

1211 1212 1213 1214
	/* We don't use match addresses so clear */
	for (i = 1; i < 16; i++)
		xm_outaddr(hw, port, XM_EXM(i), zero);

1215 1216 1217 1218 1219 1220 1221
	/* Clear MIB counters */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
	/* Clear two times according to Errata #3 */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);

1222 1223 1224 1225 1226 1227 1228
	/* configure Rx High Water Mark (XM_RX_HI_WM) */
	xm_write16(hw, port, XM_RX_HI_WM, 1450);

	/* We don't need the FCS appended to the packet. */
	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
	if (jumbo)
		r |= XM_RX_BIG_PK_OK;
1229

1230
	if (skge->duplex == DUPLEX_HALF) {
1231
		/*
1232 1233 1234
		 * If in manual half duplex mode the other side might be in
		 * full duplex mode, so ignore if a carrier extension is not seen
		 * on frames received
1235
		 */
1236
		r |= XM_RX_DIS_CEXT;
1237
	}
1238
	xm_write16(hw, port, XM_RX_CMD, r);
1239 1240 1241


	/* We want short frames padded to 60 bytes. */
1242 1243 1244 1245 1246 1247 1248
	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);

	/*
	 * Bump up the transmit threshold. This helps hold off transmit
	 * underruns when we're blasting traffic from both ports at once.
	 */
	xm_write16(hw, port, XM_TX_THR, 512);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	/*
	 * Enable the reception of all error frames. This is is
	 * a necessary evil due to the design of the XMAC. The
	 * XMAC's receive FIFO is only 8K in size, however jumbo
	 * frames can be up to 9000 bytes in length. When bad
	 * frame filtering is enabled, the XMAC's RX FIFO operates
	 * in 'store and forward' mode. For this to work, the
	 * entire frame has to fit into the FIFO, but that means
	 * that jumbo frames larger than 8192 bytes will be
	 * truncated. Disabling all bad frame filtering causes
	 * the RX FIFO to operate in streaming mode, in which
S
Stephen Hemminger 已提交
1261
	 * case the XMAC will start transferring frames out of the
1262 1263
	 * RX FIFO as soon as the FIFO threshold is reached.
	 */
1264
	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1265 1266 1267


	/*
1268 1269 1270
	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1271
	 */
1272 1273 1274 1275 1276 1277 1278 1279
	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);

	/*
	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
	 *	  and 'Octets Tx OK Hi Cnt Ov'.
	 */
	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

	/* Configure MAC arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, 72);
	skge_write8(hw, B3_MA_TOINI_RX2, 72);
	skge_write8(hw, B3_MA_TOINI_TX1, 72);
	skge_write8(hw, B3_MA_TOINI_TX2, 72);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* Configure Rx MAC FIFO */
1296 1297 1298
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1299 1300

	/* Configure Tx MAC FIFO */
1301 1302 1303
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1304

1305
	if (jumbo) {
1306
		/* Enable frame flushing if jumbo frames used */
1307
		skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1308 1309 1310
	} else {
		/* enable timeout timers if normal frames */
		skge_write16(hw, B3_PA_CTRL,
1311
			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1312 1313 1314 1315 1316 1317 1318
	}
}

static void genesis_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1319
	u32 reg;
1320

1321 1322
	genesis_reset(hw, port);

1323 1324 1325 1326 1327
	/* Clear Tx packet arbiter timeout IRQ */
	skge_write16(hw, B3_PA_CTRL,
		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);

	/*
S
Stephen Hemminger 已提交
1328
	 * If the transfer sticks at the MAC the STOP command will not
1329 1330
	 * terminate if we don't flush the XMAC's transmit FIFO !
	 */
1331 1332
	xm_write32(hw, port, XM_MODE,
			xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1333 1334 1335


	/* Reset the MAC */
1336
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1337 1338

	/* For external PHYs there must be special handling */
1339 1340 1341 1342 1343 1344 1345
	reg = skge_read32(hw, B2_GP_IO);
	if (port == 0) {
		reg |= GP_DIR_0;
		reg &= ~GP_IO_0;
	} else {
		reg |= GP_DIR_2;
		reg &= ~GP_IO_2;
1346
	}
1347 1348
	skge_write32(hw, B2_GP_IO, reg);
	skge_read32(hw, B2_GP_IO);
1349

1350 1351
	xm_write16(hw, port, XM_MMU_CMD,
			xm_read16(hw, port, XM_MMU_CMD)
1352 1353
			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));

1354
	xm_read16(hw, port, XM_MMU_CMD);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
}


static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;
	unsigned long timeout = jiffies + HZ;

1365
	xm_write16(hw, port,
1366 1367 1368
			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);

	/* wait for update to complete */
1369
	while (xm_read16(hw, port, XM_STAT_CMD)
1370 1371 1372 1373 1374 1375 1376
	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
		if (time_after(jiffies, timeout))
			break;
		udelay(10);
	}

	/* special case for 64 bit octet counter */
1377 1378 1379 1380
	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
		| xm_read32(hw, port, XM_TXO_OK_LO);
	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
		| xm_read32(hw, port, XM_RXO_OK_LO);
1381 1382

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1383
		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1384 1385 1386 1387 1388
}

static void genesis_mac_intr(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
1389
	u16 status = xm_read16(hw, port, XM_ISRC);
1390

1391 1392 1393
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       skge->netdev->name, status);
1394 1395

	if (status & XM_IS_TXF_UR) {
1396
		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1397 1398 1399
		++skge->net_stats.tx_fifo_errors;
	}
	if (status & XM_IS_RXF_OV) {
1400
		xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		++skge->net_stats.rx_fifo_errors;
	}
}

static void genesis_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 cmd;
	u32 mode, msk;

1412
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1413 1414 1415 1416 1417 1418 1419

	/*
	 * enabling pause frame reception is required for 1000BT
	 * because the XMAC is not reset if the link is going down
	 */
	if (skge->flow_control == FLOW_MODE_NONE ||
	    skge->flow_control == FLOW_MODE_LOC_SEND)
1420
		/* Disable Pause Frame Reception */
1421 1422 1423 1424 1425
		cmd |= XM_MMU_IGN_PF;
	else
		/* Enable Pause Frame Reception */
		cmd &= ~XM_MMU_IGN_PF;

1426
	xm_write16(hw, port, XM_MMU_CMD, cmd);
1427

1428
	mode = xm_read32(hw, port, XM_MODE);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
	    skge->flow_control == FLOW_MODE_LOC_SEND) {
		/*
		 * Configure Pause Frame Generation
		 * Use internal and external Pause Frame Generation.
		 * Sending pause frames is edge triggered.
		 * Send a Pause frame with the maximum pause time if
		 * internal oder external FIFO full condition occurs.
		 * Send a zero pause time frame to re-start transmission.
		 */
		/* XM_PAUSE_DA = '010000C28001' (default) */
		/* XM_MAC_PTIME = 0xffff (maximum) */
		/* remember this value is defined in big endian (!) */
1442
		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1443 1444

		mode |= XM_PAUSE_MODE;
1445
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1446 1447 1448 1449 1450 1451 1452 1453
	} else {
		/*
		 * disable pause frame generation is required for 1000BT
		 * because the XMAC is not reset if the link is going down
		 */
		/* Disable Pause Mode in Mode Register */
		mode &= ~XM_PAUSE_MODE;

1454
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1455 1456
	}

1457
	xm_write32(hw, port, XM_MODE, mode);
1458 1459

	msk = XM_DEF_MSK;
1460 1461
	/* disable GP0 interrupt bit for external Phy */
	msk |= XM_IS_INP_ASS;
1462

1463 1464
	xm_write16(hw, port, XM_IMSK, msk);
	xm_read16(hw, port, XM_ISRC);
1465 1466

	/* get MMU Command Reg. */
1467
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1468
	if (skge->duplex == DUPLEX_FULL)
1469 1470
		cmd |= XM_MMU_GMII_FD;

1471 1472 1473 1474 1475 1476 1477 1478
	/*
	 * Workaround BCOM Errata (#10523) for all BCom Phys
	 * Enable Power Management after link up
	 */
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
		     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
		     & ~PHY_B_AC_DIS_PM);
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1479 1480

	/* enable Rx/Tx */
1481
	xm_write16(hw, port, XM_MMU_CMD,
1482 1483 1484 1485 1486
			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
	skge_link_up(skge);
}


1487
static inline void bcom_phy_intr(struct skge_port *skge)
1488 1489 1490
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1491 1492 1493
	u16 isrc;

	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1494 1495 1496
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
		       skge->netdev->name, isrc);
1497

1498 1499 1500
	if (isrc & PHY_B_IS_PSE)
		printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
		       hw->dev[port]->name);
1501 1502 1503 1504

	/* Workaround BCom Errata:
	 *	enable and disable loopback mode if "NO HCD" occurs.
	 */
1505
	if (isrc & PHY_B_IS_NO_HDCL) {
1506 1507
		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1508
				  ctrl | PHY_CT_LOOP);
1509
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1510 1511 1512
				  ctrl & ~PHY_CT_LOOP);
	}

1513 1514
	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
		bcom_check_link(hw, port);
1515 1516 1517

}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
	int i;

	gma_write16(hw, port, GM_SMI_DATA, val);
	gma_write16(hw, port, GM_SMI_CTRL,
			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);

		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
			return 0;
	}

	printk(KERN_WARNING PFX "%s: phy write timeout\n",
	       hw->dev[port]->name);
	return -EIO;
}

static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
	int i;

	gma_write16(hw, port, GM_SMI_CTRL,
			 GM_SMI_CT_PHY_AD(hw->phy_addr)
			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);

	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
			goto ready;
	}

	return -ETIMEDOUT;
 ready:
	*val = gma_read16(hw, port, GM_SMI_DATA);
	return 0;
}

static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
	u16 v = 0;
	if (__gm_phy_read(hw, port, reg, &v))
		printk(KERN_WARNING PFX "%s: phy read timeout\n",
	       hw->dev[port]->name);
	return v;
}

S
Stephen Hemminger 已提交
1566
/* Marvell Phy Initialization */
1567 1568 1569 1570 1571 1572
static void yukon_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	u16 ctrl, ct1000, adv;

	if (skge->autoneg == AUTONEG_ENABLE) {
1573
		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1574 1575 1576 1577 1578

		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
			  PHY_M_EC_MAC_S_MSK);
		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);

1579
		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1580

1581
		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1582 1583
	}

1584
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1585 1586 1587 1588
	if (skge->autoneg == AUTONEG_DISABLE)
		ctrl &= ~PHY_CT_ANE;

	ctrl |= PHY_CT_RESET;
1589
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1590 1591 1592

	ctrl = 0;
	ct1000 = 0;
1593
	adv = PHY_AN_CSMA;
1594 1595

	if (skge->autoneg == AUTONEG_ENABLE) {
1596
		if (hw->copper) {
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
			if (skge->advertising & ADVERTISED_1000baseT_Full)
				ct1000 |= PHY_M_1000C_AFD;
			if (skge->advertising & ADVERTISED_1000baseT_Half)
				ct1000 |= PHY_M_1000C_AHD;
			if (skge->advertising & ADVERTISED_100baseT_Full)
				adv |= PHY_M_AN_100_FD;
			if (skge->advertising & ADVERTISED_100baseT_Half)
				adv |= PHY_M_AN_100_HD;
			if (skge->advertising & ADVERTISED_10baseT_Full)
				adv |= PHY_M_AN_10_FD;
			if (skge->advertising & ADVERTISED_10baseT_Half)
				adv |= PHY_M_AN_10_HD;
1609
		} else	/* special defines for FIBER (88E1011S only) */
1610 1611
			adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;

1612 1613 1614
		/* Set Flow-control capabilities */
		adv |= phy_pause_map[skge->flow_control];

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		/* Restart Auto-negotiation */
		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		/* forced speed/duplex settings */
		ct1000 = PHY_M_1000C_MSE;

		if (skge->duplex == DUPLEX_FULL)
			ctrl |= PHY_CT_DUP_MD;

		switch (skge->speed) {
		case SPEED_1000:
			ctrl |= PHY_CT_SP1000;
			break;
		case SPEED_100:
			ctrl |= PHY_CT_SP100;
			break;
		}

		ctrl |= PHY_CT_RESET;
	}

1636
	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1637

1638 1639
	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1640 1641 1642

	/* Enable phy interrupt on autonegotiation complete (or link up) */
	if (skge->autoneg == AUTONEG_ENABLE)
1643
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1644
	else
1645
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1646 1647 1648 1649
}

static void yukon_reset(struct skge_hw *hw, int port)
{
1650 1651 1652 1653 1654
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1655

1656 1657
	gma_write16(hw, port, GM_RX_CTRL,
			 gma_read16(hw, port, GM_RX_CTRL)
1658 1659 1660
			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
	u32 reg;
	int ret;

	if (hw->chip_id != CHIP_ID_YUKON)
		return 0;

	reg = skge_read32(hw, B2_FAR);
	skge_write8(hw, B2_FAR + 3, 0xff);
	ret = (skge_read8(hw, B2_FAR + 3) != 0);
	skge_write32(hw, B2_FAR, reg);
	return ret;
}

1677 1678 1679 1680 1681 1682 1683 1684 1685
static void yukon_mac_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	int i;
	u32 reg;
	const u8 *addr = hw->dev[port]->dev_addr;

	/* WA code for COMA mode -- set PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1686 1687 1688 1689 1690
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9 | GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1691 1692

	/* hard reset */
1693 1694
	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1695 1696 1697

	/* WA code for COMA mode -- clear PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1698 1699 1700 1701 1702 1703
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9;
		reg &= ~GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1704 1705 1706 1707

	/* Set hardware config mode */
	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1708
	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1709 1710

	/* Clear GMC reset */
1711 1712 1713
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
S
Stephen Hemminger 已提交
1714

1715 1716
	if (skge->autoneg == AUTONEG_DISABLE) {
		reg = GM_GPCR_AU_ALL_DIS;
1717 1718
		gma_write16(hw, port, GM_GP_CTRL,
				 gma_read16(hw, port, GM_GP_CTRL) | reg);
1719 1720 1721

		switch (skge->speed) {
		case SPEED_1000:
S
Stephen Hemminger 已提交
1722
			reg &= ~GM_GPCR_SPEED_100;
1723
			reg |= GM_GPCR_SPEED_1000;
S
Stephen Hemminger 已提交
1724
			break;
1725
		case SPEED_100:
S
Stephen Hemminger 已提交
1726
			reg &= ~GM_GPCR_SPEED_1000;
1727
			reg |= GM_GPCR_SPEED_100;
S
Stephen Hemminger 已提交
1728 1729 1730 1731
			break;
		case SPEED_10:
			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
			break;
1732 1733 1734 1735 1736 1737
		}

		if (skge->duplex == DUPLEX_FULL)
			reg |= GM_GPCR_DUP_FULL;
	} else
		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
S
Stephen Hemminger 已提交
1738

1739 1740
	switch (skge->flow_control) {
	case FLOW_MODE_NONE:
1741
		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1742 1743 1744 1745 1746 1747 1748
		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
		break;
	case FLOW_MODE_LOC_SEND:
		/* disable Rx flow-control */
		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
	}

1749
	gma_write16(hw, port, GM_GP_CTRL, reg);
1750
	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1751 1752 1753 1754

	yukon_init(hw, port);

	/* MIB clear */
1755 1756
	reg = gma_read16(hw, port, GM_PHY_ADDR);
	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1757 1758

	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1759 1760
		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
	gma_write16(hw, port, GM_PHY_ADDR, reg);
1761 1762

	/* transmit control */
1763
	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1764 1765

	/* receive control reg: unicast + multicast + no FCS  */
1766
	gma_write16(hw, port, GM_RX_CTRL,
1767 1768 1769
			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);

	/* transmit flow control */
1770
	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1771 1772

	/* transmit parameter */
1773
	gma_write16(hw, port, GM_TX_PARAM,
1774 1775 1776 1777 1778 1779 1780 1781 1782
			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));

	/* serial mode register */
	reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
	if (hw->dev[port]->mtu > 1500)
		reg |= GM_SMOD_JUMBO_ENA;

1783
	gma_write16(hw, port, GM_SERIAL_MODE, reg);
1784 1785

	/* physical address: used for pause frames */
1786
	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1787
	/* virtual address for data */
1788
	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1789 1790

	/* enable interrupt mask for counter overflows */
1791 1792 1793
	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1794 1795 1796 1797

	/* Initialize Mac Fifo */

	/* Configure Rx MAC FIFO */
1798
	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1799
	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1800 1801 1802

	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
	if (is_yukon_lite_a0(hw))
1803
		reg &= ~GMF_RX_F_FL_ON;
1804

1805 1806
	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1807 1808 1809 1810 1811 1812
	/*
	 * because Pause Packet Truncation in GMAC is not working
	 * we have to increase the Flush Threshold to 64 bytes
	 * in order to flush pause packets in Rx FIFO on Yukon-1
	 */
	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1813 1814

	/* Configure Tx MAC FIFO */
1815 1816
	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1817 1818
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
	u16 ctrl;

	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
	ctrl |= PHY_M_PC_POL_R_DIS;
	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);

	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
	ctrl |= PHY_CT_RESET;
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);

	/* switch IEEE compatible power down mode on */
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
	ctrl |= PHY_CT_PDOWN;
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}

1838 1839 1840 1841 1842
static void yukon_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

1843 1844
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
	yukon_reset(hw, port);
1845

1846 1847
	gma_write16(hw, port, GM_GP_CTRL,
			 gma_read16(hw, port, GM_GP_CTRL)
1848
			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1849
	gma_read16(hw, port, GM_GP_CTRL);
1850

1851
	yukon_suspend(hw, port);
1852

1853
	/* set GPHY Control reset */
1854 1855
	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1856 1857 1858 1859 1860 1861 1862 1863
}

static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;

1864 1865 1866 1867
	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
		| gma_read32(hw, port, GM_TXO_OK_LO);
	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
		| gma_read32(hw, port, GM_RXO_OK_LO);
1868 1869

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1870
		data[i] = gma_read32(hw, port,
1871 1872 1873 1874 1875
					  skge_stats[i].gma_offset);
}

static void yukon_mac_intr(struct skge_hw *hw, int port)
{
1876 1877
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
1878
	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1879

1880 1881 1882 1883
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       dev->name, status);

1884 1885
	if (status & GM_IS_RX_FF_OR) {
		++skge->net_stats.rx_fifo_errors;
1886
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1887
	}
1888

1889 1890
	if (status & GM_IS_TX_FF_UR) {
		++skge->net_stats.tx_fifo_errors;
1891
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1892 1893 1894 1895 1896 1897
	}

}

static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
1898
	switch (aux & PHY_M_PS_SPEED_MSK) {
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	case PHY_M_PS_SPEED_1000:
		return SPEED_1000;
	case PHY_M_PS_SPEED_100:
		return SPEED_100;
	default:
		return SPEED_10;
	}
}

static void yukon_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 reg;

	/* Enable Transmit FIFO Underrun */
1915
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1916

1917
	reg = gma_read16(hw, port, GM_GP_CTRL);
1918 1919 1920 1921 1922
	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
		reg |= GM_GPCR_DUP_FULL;

	/* enable Rx/Tx */
	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1923
	gma_write16(hw, port, GM_GP_CTRL, reg);
1924

1925
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1926 1927 1928 1929 1930 1931 1932
	skge_link_up(skge);
}

static void yukon_link_down(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1933
	u16 ctrl;
1934

1935
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1936 1937 1938 1939

	ctrl = gma_read16(hw, port, GM_GP_CTRL);
	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
	gma_write16(hw, port, GM_GP_CTRL, ctrl);
1940

1941
	if (skge->flow_control == FLOW_MODE_REM_SEND) {
1942
		/* restore Asymmetric Pause bit */
1943 1944
		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
				  gm_phy_read(hw, port,
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
						   PHY_MARV_AUNE_ADV)
				  | PHY_M_AN_ASP);

	}

	yukon_reset(hw, port);
	skge_link_down(skge);

	yukon_init(hw, port);
}

static void yukon_phy_intr(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	const char *reason = NULL;
	u16 istatus, phystat;

1963 1964
	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1965 1966 1967 1968

	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
		       skge->netdev->name, istatus, phystat);
1969 1970

	if (istatus & PHY_M_IS_AN_COMPL) {
1971
		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1972 1973 1974 1975 1976
		    & PHY_M_AN_RF) {
			reason = "remote fault";
			goto failed;
		}

1977
		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
			reason = "master/slave fault";
			goto failed;
		}

		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
			reason = "speed/duplex";
			goto failed;
		}

		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
			? DUPLEX_FULL : DUPLEX_HALF;
		skge->speed = yukon_speed(hw, phystat);

		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
		switch (phystat & PHY_M_PS_PAUSE_MSK) {
		case PHY_M_PS_PAUSE_MSK:
			skge->flow_control = FLOW_MODE_SYMMETRIC;
			break;
		case PHY_M_PS_RX_P_EN:
			skge->flow_control = FLOW_MODE_REM_SEND;
			break;
		case PHY_M_PS_TX_P_EN:
			skge->flow_control = FLOW_MODE_LOC_SEND;
			break;
		default:
			skge->flow_control = FLOW_MODE_NONE;
		}

		if (skge->flow_control == FLOW_MODE_NONE ||
		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2008
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2009
		else
2010
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
		yukon_link_up(skge);
		return;
	}

	if (istatus & PHY_M_IS_LSP_CHANGE)
		skge->speed = yukon_speed(hw, phystat);

	if (istatus & PHY_M_IS_DUP_CHANGE)
		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
	if (istatus & PHY_M_IS_LST_CHANGE) {
		if (phystat & PHY_M_PS_LINK_UP)
			yukon_link_up(skge);
		else
			yukon_link_down(skge);
	}
	return;
 failed:
	printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
	       skge->netdev->name, reason);

	/* XXX restart autonegotiation? */
}

2034 2035 2036 2037 2038 2039 2040 2041
static void skge_phy_reset(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	netif_stop_queue(skge->netdev);
	netif_carrier_off(skge->netdev);

2042
	mutex_lock(&hw->phy_mutex);
2043 2044 2045 2046 2047 2048 2049
	if (hw->chip_id == CHIP_ID_GENESIS) {
		genesis_reset(hw, port);
		genesis_mac_init(hw, port);
	} else {
		yukon_reset(hw, port);
		yukon_init(hw, port);
	}
2050
	mutex_unlock(&hw->phy_mutex);
2051 2052
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/* Basic MII support */
static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mii_ioctl_data *data = if_mii(ifr);
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int err = -EOPNOTSUPP;

	if (!netif_running(dev))
		return -ENODEV;	/* Phy still in reset */

	switch(cmd) {
	case SIOCGMIIPHY:
		data->phy_id = hw->phy_addr;

		/* fallthru */
	case SIOCGMIIREG: {
		u16 val = 0;
2071
		mutex_lock(&hw->phy_mutex);
2072 2073 2074 2075
		if (hw->chip_id == CHIP_ID_GENESIS)
			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
		else
			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2076
		mutex_unlock(&hw->phy_mutex);
2077 2078 2079 2080 2081 2082 2083 2084
		data->val_out = val;
		break;
	}

	case SIOCSMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;

2085
		mutex_lock(&hw->phy_mutex);
2086 2087 2088 2089 2090 2091
		if (hw->chip_id == CHIP_ID_GENESIS)
			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
				   data->val_in);
		else
			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
				   data->val_in);
2092
		mutex_unlock(&hw->phy_mutex);
2093 2094 2095 2096 2097
		break;
	}
	return err;
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
	u32 end;

	start /= 8;
	len /= 8;
	end = start + len - 1;

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
	skge_write32(hw, RB_ADDR(q, RB_START), start);
	skge_write32(hw, RB_ADDR(q, RB_WP), start);
	skge_write32(hw, RB_ADDR(q, RB_RP), start);
	skge_write32(hw, RB_ADDR(q, RB_END), end);

	if (q == Q_R1 || q == Q_R2) {
		/* Set thresholds on receive queue's */
		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
			     start + (2*len)/3);
		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
			     start + (len/3));
	} else {
		/* Enable store & forward on Tx queue's because
		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
		 */
		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
	}

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}

/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
		      const struct skge_element *e)
{
	struct skge_hw *hw = skge->hw;
	u32 watermark = 0x600;
	u64 base = skge->dma + (e->desc - skge->mem);

	/* optimization to reduce window on 32bit/33mhz */
	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
		watermark /= 2;

	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}

static int skge_up(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 chunk, ram_addr;
	size_t rx_size, tx_size;
	int err;

	if (netif_msg_ifup(skge))
		printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);

2158
	if (dev->mtu > RX_BUF_SIZE)
2159
		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2160 2161 2162 2163
	else
		skge->rx_buf_size = RX_BUF_SIZE;


2164 2165 2166 2167 2168 2169 2170
	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
	skge->mem_size = tx_size + rx_size;
	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
	if (!skge->mem)
		return -ENOMEM;

2171 2172 2173 2174 2175 2176 2177 2178
	BUG_ON(skge->dma & 7);

	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
		printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
		err = -EINVAL;
		goto free_pci_mem;
	}

2179 2180
	memset(skge->mem, 0, skge->mem_size);

2181 2182
	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
	if (err)
2183 2184
		goto free_pci_mem;

2185 2186
	err = skge_rx_fill(skge);
	if (err)
2187 2188
		goto free_rx_ring;

2189 2190 2191
	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
			      skge->dma + rx_size);
	if (err)
2192 2193
		goto free_rx_ring;

S
Stephen Hemminger 已提交
2194
	/* Initialize MAC */
2195
	mutex_lock(&hw->phy_mutex);
2196 2197 2198 2199
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_mac_init(hw, port);
	else
		yukon_mac_init(hw, port);
2200
	mutex_unlock(&hw->phy_mutex);
2201 2202

	/* Configure RAMbuffers */
2203
	chunk = hw->ram_size / ((hw->ports + 1)*2);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	ram_addr = hw->ram_offset + 2 * chunk * port;

	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);

	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);

	/* Start receiver BMU */
	wmb();
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2216
	skge_led(skge, LED_MODE_ON);
2217 2218 2219 2220 2221 2222 2223 2224

	return 0;

 free_rx_ring:
	skge_rx_clean(skge);
	kfree(skge->rx_ring.start);
 free_pci_mem:
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2225
	skge->mem = NULL;
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

	return err;
}

static int skge_down(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

2236 2237 2238
	if (skge->mem == NULL)
		return 0;

2239 2240 2241 2242 2243
	if (netif_msg_ifdown(skge))
		printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);

	netif_stop_queue(dev);

2244 2245 2246 2247 2248 2249
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_stop(skge);
	else
		yukon_stop(skge);

2250 2251 2252 2253 2254 2255 2256
	/* Stop transmitter */
	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);


	/* Disable Force Sync bit and Enable Alloc bit */
2257
	skge_write8(hw, SK_REG(port, TXA_CTRL),
2258 2259 2260
		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);

	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2261 2262
	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

	/* Reset PCI FIFO */
	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);

	/* Reset the RAM Buffer async Tx queue */
	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
	/* stop receiver */
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);
	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);

	if (hw->chip_id == CHIP_ID_GENESIS) {
2277 2278
		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2279
	} else {
2280 2281
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2282 2283
	}

2284
	skge_led(skge, LED_MODE_OFF);
2285 2286 2287 2288 2289 2290 2291

	skge_tx_clean(skge);
	skge_rx_clean(skge);

	kfree(skge->rx_ring.start);
	kfree(skge->tx_ring.start);
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2292
	skge->mem = NULL;
2293 2294 2295
	return 0;
}

2296 2297 2298 2299 2300 2301
static inline int skge_avail(const struct skge_ring *ring)
{
	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
		+ (ring->to_clean - ring->to_use) - 1;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310
static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_element *e;
	struct skge_tx_desc *td;
	int i;
	u32 control, len;
	u64 map;
2311
	unsigned long flags;
2312 2313 2314 2315 2316

	skb = skb_padto(skb, ETH_ZLEN);
	if (!skb)
		return NETDEV_TX_OK;

2317
	if (!spin_trylock_irqsave(&skge->tx_lock, flags))
2318 2319
		/* Collision - tell upper layer to requeue */
		return NETDEV_TX_LOCKED;
2320

2321
	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
J
Jeff Garzik 已提交
2322
		if (!netif_queue_stopped(dev)) {
2323
			netif_stop_queue(dev);
2324

2325 2326 2327
			printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
			       dev->name);
		}
2328
		spin_unlock_irqrestore(&skge->tx_lock, flags);
2329 2330 2331
		return NETDEV_TX_BUSY;
	}

2332
	e = skge->tx_ring.to_use;
2333
	td = e->desc;
2334
	BUG_ON(td->control & BMU_OWN);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	e->skb = skb;
	len = skb_headlen(skb);
	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, len);

	td->dma_lo = map;
	td->dma_hi = map >> 32;

	if (skb->ip_summed == CHECKSUM_HW) {
		int offset = skb->h.raw - skb->data;

		/* This seems backwards, but it is what the sk98lin
		 * does.  Looks like hardware is wrong?
		 */
J
Jeff Garzik 已提交
2350
		if (skb->h.ipiph->protocol == IPPROTO_UDP
2351
	            && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
			control = BMU_TCP_CHECK;
		else
			control = BMU_UDP_CHECK;

		td->csum_offs = 0;
		td->csum_start = offset;
		td->csum_write = offset + skb->csum;
	} else
		control = BMU_CHECK;

	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
		control |= BMU_EOF| BMU_IRQ_EOF;
	else {
		struct skge_tx_desc *tf = td;

		control |= BMU_STFWD;
		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

			map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
					   frag->size, PCI_DMA_TODEVICE);

			e = e->next;
2375
			e->skb = skb;
2376
			tf = e->desc;
2377 2378
			BUG_ON(tf->control & BMU_OWN);

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
			tf->dma_lo = map;
			tf->dma_hi = (u64) map >> 32;
			pci_unmap_addr_set(e, mapaddr, map);
			pci_unmap_len_set(e, maplen, frag->size);

			tf->control = BMU_OWN | BMU_SW | control | frag->size;
		}
		tf->control |= BMU_EOF | BMU_IRQ_EOF;
	}
	/* Make sure all the descriptors written */
	wmb();
	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
	wmb();

	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);

2395
	if (unlikely(netif_msg_tx_queued(skge)))
A
Al Viro 已提交
2396
		printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2397
		       dev->name, e - skge->tx_ring.start, skb->len);
2398

2399
	skge->tx_ring.to_use = e->next;
2400
	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2401 2402 2403 2404
		pr_debug("%s: transmit queue full\n", dev->name);
		netif_stop_queue(dev);
	}

2405
	spin_unlock_irqrestore(&skge->tx_lock, flags);
2406

S
Stephen Hemminger 已提交
2407 2408
	dev->trans_start = jiffies;

2409 2410 2411
	return NETDEV_TX_OK;
}

2412 2413 2414 2415

/* Free resources associated with this reing element */
static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
			 u32 control)
2416 2417 2418
{
	struct pci_dev *pdev = skge->hw->pdev;

2419
	BUG_ON(!e->skb);
2420

2421 2422
	/* skb header vs. fragment */
	if (control & BMU_STF)
2423
		pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2424 2425 2426 2427 2428 2429
				 pci_unmap_len(e, maplen),
				 PCI_DMA_TODEVICE);
	else
		pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
			       pci_unmap_len(e, maplen),
			       PCI_DMA_TODEVICE);
2430

2431 2432 2433 2434
	if (control & BMU_EOF) {
		if (unlikely(netif_msg_tx_done(skge)))
			printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
			       skge->netdev->name, e - skge->tx_ring.start);
2435

2436
		dev_kfree_skb_any(e->skb);
2437
	}
2438
	e->skb = NULL;
2439 2440
}

2441
/* Free all buffers in transmit ring */
2442 2443
static void skge_tx_clean(struct skge_port *skge)
{
2444 2445
	struct skge_element *e;
	unsigned long flags;
2446

2447 2448 2449 2450 2451 2452 2453 2454
	spin_lock_irqsave(&skge->tx_lock, flags);
	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
		struct skge_tx_desc *td = e->desc;
		skge_tx_free(skge, e, td->control);
		td->control = 0;
	}

	skge->tx_ring.to_clean = e;
2455
	netif_wake_queue(skge->netdev);
2456
	spin_unlock_irqrestore(&skge->tx_lock, flags);
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
}

static void skge_tx_timeout(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_timer(skge))
		printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);

	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
	skge_tx_clean(skge);
}

static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
2472
	int err;
2473

2474
	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2475 2476
		return -EINVAL;

2477 2478 2479 2480 2481 2482
	if (!netif_running(dev)) {
		dev->mtu = new_mtu;
		return 0;
	}

	skge_down(dev);
2483

2484
	dev->mtu = new_mtu;
2485 2486 2487 2488

	err = skge_up(dev);
	if (err)
		dev_close(dev);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	return err;
}

static void genesis_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i, count = dev->mc_count;
	struct dev_mc_list *list = dev->mc_list;
	u32 mode;
	u8 filter[8];

2503
	mode = xm_read32(hw, port, XM_MODE);
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	mode |= XM_MD_ENA_HASH;
	if (dev->flags & IFF_PROMISC)
		mode |= XM_MD_ENA_PROM;
	else
		mode &= ~XM_MD_ENA_PROM;

	if (dev->flags & IFF_ALLMULTI)
		memset(filter, 0xff, sizeof(filter));
	else {
		memset(filter, 0, sizeof(filter));
2514
		for (i = 0; list && i < count; i++, list = list->next) {
2515 2516 2517
			u32 crc, bit;
			crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
			bit = ~crc & 0x3f;
2518 2519 2520 2521
			filter[bit/8] |= 1 << (bit%8);
		}
	}

2522
	xm_write32(hw, port, XM_MODE, mode);
2523
	xm_outhash(hw, port, XM_HSM, filter);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
}

static void yukon_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	struct dev_mc_list *list = dev->mc_list;
	u16 reg;
	u8 filter[8];

	memset(filter, 0, sizeof(filter));

2537
	reg = gma_read16(hw, port, GM_RX_CTRL);
2538 2539
	reg |= GM_RXCR_UCF_ENA;

S
Stephen Hemminger 已提交
2540
	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2541 2542 2543 2544 2545 2546 2547 2548 2549
		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
		memset(filter, 0xff, sizeof(filter));
	else if (dev->mc_count == 0)		/* no multicast */
		reg &= ~GM_RXCR_MCF_ENA;
	else {
		int i;
		reg |= GM_RXCR_MCF_ENA;

2550
		for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2551 2552 2553 2554 2555 2556
			u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
			filter[bit/8] |= 1 << (bit%8);
		}
	}


2557
	gma_write16(hw, port, GM_MC_ADDR_H1,
2558
			 (u16)filter[0] | ((u16)filter[1] << 8));
2559
	gma_write16(hw, port, GM_MC_ADDR_H2,
2560
			 (u16)filter[2] | ((u16)filter[3] << 8));
2561
	gma_write16(hw, port, GM_MC_ADDR_H3,
2562
			 (u16)filter[4] | ((u16)filter[5] << 8));
2563
	gma_write16(hw, port, GM_MC_ADDR_H4,
2564 2565
			 (u16)filter[6] | ((u16)filter[7] << 8));

2566
	gma_write16(hw, port, GM_RX_CTRL, reg);
2567 2568
}

2569 2570 2571 2572 2573 2574 2575 2576
static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return status >> XMR_FS_LEN_SHIFT;
	else
		return status >> GMR_FS_LEN_SHIFT;
}

2577 2578 2579 2580 2581 2582 2583 2584 2585
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
	else
		return (status & GMR_FS_ANY_ERR) ||
			(status & GMR_FS_RX_OK) == 0;
}

2586 2587 2588 2589 2590 2591

/* Get receive buffer from descriptor.
 * Handles copy of small buffers and reallocation failures
 */
static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
					  struct skge_element *e,
2592
					  u32 control, u32 status, u16 csum)
2593
{
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	struct sk_buff *skb;
	u16 len = control & BMU_BBC;

	if (unlikely(netif_msg_rx_status(skge)))
		printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
		       skge->netdev->name, e - skge->rx_ring.start,
		       status, len);

	if (len > skge->rx_buf_size)
		goto error;

	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
		goto error;

	if (bad_phy_status(skge->hw, status))
		goto error;

	if (phy_length(skge->hw, status) != len)
		goto error;
2613 2614

	if (len < RX_COPY_THRESHOLD) {
2615
		skb = alloc_skb(len + 2, GFP_ATOMIC);
2616 2617
		if (!skb)
			goto resubmit;
2618

2619
		skb_reserve(skb, 2);
2620 2621 2622
		pci_dma_sync_single_for_cpu(skge->hw->pdev,
					    pci_unmap_addr(e, mapaddr),
					    len, PCI_DMA_FROMDEVICE);
2623
		memcpy(skb->data, e->skb->data, len);
2624 2625 2626 2627 2628
		pci_dma_sync_single_for_device(skge->hw->pdev,
					       pci_unmap_addr(e, mapaddr),
					       len, PCI_DMA_FROMDEVICE);
		skge_rx_reuse(e, skge->rx_buf_size);
	} else {
2629
		struct sk_buff *nskb;
2630
		nskb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_ATOMIC);
2631 2632
		if (!nskb)
			goto resubmit;
2633

2634
		skb_reserve(nskb, NET_IP_ALIGN);
2635 2636 2637 2638 2639
		pci_unmap_single(skge->hw->pdev,
				 pci_unmap_addr(e, mapaddr),
				 pci_unmap_len(e, maplen),
				 PCI_DMA_FROMDEVICE);
		skb = e->skb;
2640
  		prefetch(skb->data);
2641
		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2642
	}
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

	skb_put(skb, len);
	skb->dev = skge->netdev;
	if (skge->rx_csum) {
		skb->csum = csum;
		skb->ip_summed = CHECKSUM_HW;
	}

	skb->protocol = eth_type_trans(skb, skge->netdev);

	return skb;
error:

	if (netif_msg_rx_err(skge))
		printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
		       skge->netdev->name, e - skge->rx_ring.start,
		       control, status);

	if (skge->hw->chip_id == CHIP_ID_GENESIS) {
		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
			skge->net_stats.rx_length_errors++;
		if (status & XMR_FS_FRA_ERR)
			skge->net_stats.rx_frame_errors++;
		if (status & XMR_FS_FCS_ERR)
			skge->net_stats.rx_crc_errors++;
	} else {
		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
			skge->net_stats.rx_length_errors++;
		if (status & GMR_FS_FRAGMENT)
			skge->net_stats.rx_frame_errors++;
		if (status & GMR_FS_CRC_ERR)
			skge->net_stats.rx_crc_errors++;
	}

resubmit:
	skge_rx_reuse(e, skge->rx_buf_size);
	return NULL;
2680 2681
}

2682 2683
/* Free all buffers in Tx ring which are no longer owned by device */
static void skge_txirq(struct net_device *dev)
2684
{
2685
	struct skge_port *skge = netdev_priv(dev);
2686
	struct skge_ring *ring = &skge->tx_ring;
2687 2688 2689
	struct skge_element *e;

	rmb();
2690 2691

	spin_lock(&skge->tx_lock);
2692
	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2693 2694
		struct skge_tx_desc *td = e->desc;

2695
		if (td->control & BMU_OWN)
2696 2697
			break;

2698
		skge_tx_free(skge, e, td->control);
2699
	}
2700
	skge->tx_ring.to_clean = e;
2701

2702 2703
	if (netif_queue_stopped(skge->netdev)
	    && skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2704 2705 2706 2707
		netif_wake_queue(skge->netdev);

	spin_unlock(&skge->tx_lock);
}
2708

2709 2710 2711 2712 2713 2714
static int skge_poll(struct net_device *dev, int *budget)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;
2715 2716 2717
	int to_do = min(dev->quota, *budget);
	int work_done = 0;

2718
	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2719
		struct skge_rx_desc *rd = e->desc;
2720
		struct sk_buff *skb;
2721
		u32 control;
2722 2723 2724 2725 2726 2727

		rmb();
		control = rd->control;
		if (control & BMU_OWN)
			break;

2728
		skb = skge_rx_get(skge, e, control, rd->status, rd->csum2);
2729 2730 2731
		if (likely(skb)) {
			dev->last_rx = jiffies;
			netif_receive_skb(skb);
2732

2733
			++work_done;
2734
		}
2735 2736 2737 2738 2739
	}
	ring->to_clean = e;

	/* restart receiver */
	wmb();
S
Stephen Hemminger 已提交
2740
	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2741

2742 2743 2744 2745 2746
	*budget -= work_done;
	dev->quota -= work_done;

	if (work_done >=  to_do)
		return 1; /* not done */
2747

2748
	netif_rx_complete(dev);
S
Stephen Hemminger 已提交
2749

2750 2751
	spin_lock_irq(&hw->hw_lock);
	hw->intr_mask |= rxirqmask[skge->port];
S
Stephen Hemminger 已提交
2752
  	skge_write32(hw, B0_IMSK, hw->intr_mask);
2753 2754
	mmiowb();
	spin_unlock_irq(&hw->hw_lock);
2755

2756
	return 0;
2757 2758
}

2759 2760 2761
/* Parity errors seem to happen when Genesis is connected to a switch
 * with no other ports present. Heartbeat error??
 */
2762 2763
static void skge_mac_parity(struct skge_hw *hw, int port)
{
2764 2765 2766 2767 2768 2769
	struct net_device *dev = hw->dev[port];

	if (dev) {
		struct skge_port *skge = netdev_priv(dev);
		++skge->net_stats.tx_heartbeat_errors;
	}
2770 2771

	if (hw->chip_id == CHIP_ID_GENESIS)
2772
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2773 2774 2775
			     MFF_CLR_PERR);
	else
		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2776
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2777
			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2778 2779 2780 2781 2782
			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}

static void skge_mac_intr(struct skge_hw *hw, int port)
{
2783
	if (hw->chip_id == CHIP_ID_GENESIS)
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		genesis_mac_intr(hw, port);
	else
		yukon_mac_intr(hw, port);
}

/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);

	if (hw->chip_id == CHIP_ID_GENESIS) {
		/* clear xmac errors */
		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2797
			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2798
		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2799
			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	} else {
		/* Timestamp (unused) overflow */
		if (hwstatus & IS_IRQ_TIST_OV)
			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
	}

	if (hwstatus & IS_RAM_RD_PAR) {
		printk(KERN_ERR PFX "Ram read data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
	}

	if (hwstatus & IS_RAM_WR_PAR) {
		printk(KERN_ERR PFX "Ram write data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
	}

	if (hwstatus & IS_M1_PAR_ERR)
		skge_mac_parity(hw, 0);

	if (hwstatus & IS_M2_PAR_ERR)
		skge_mac_parity(hw, 1);

2822 2823 2824
	if (hwstatus & IS_R1_PAR_ERR) {
		printk(KERN_ERR PFX "%s: receive queue parity error\n",
		       hw->dev[0]->name);
2825
		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2826
	}
2827

2828 2829 2830
	if (hwstatus & IS_R2_PAR_ERR) {
		printk(KERN_ERR PFX "%s: receive queue parity error\n",
		       hw->dev[1]->name);
2831
		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2832
	}
2833 2834

	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2835 2836 2837 2838
		u16 pci_status, pci_cmd;

		pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
		pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2839

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
		printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
			       pci_name(hw->pdev), pci_cmd, pci_status);

		/* Write the error bits back to clear them. */
		pci_status &= PCI_STATUS_ERROR_BITS;
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
		pci_write_config_word(hw->pdev, PCI_COMMAND,
				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
		pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2850

2851
		/* if error still set then just ignore it */
2852 2853
		hwstatus = skge_read32(hw, B0_HWE_ISRC);
		if (hwstatus & IS_IRQ_STAT) {
2854
			printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2855 2856 2857 2858 2859 2860
			hw->intr_mask &= ~IS_HW_ERR;
		}
	}
}

/*
2861
 * Interrupt from PHY are handled in work queue
2862 2863 2864
 * because accessing phy registers requires spin wait which might
 * cause excess interrupt latency.
 */
2865
static void skge_extirq(void *arg)
2866
{
2867
	struct skge_hw *hw = arg;
2868 2869
	int port;

2870
	mutex_lock(&hw->phy_mutex);
2871
	for (port = 0; port < hw->ports; port++) {
2872
		struct net_device *dev = hw->dev[port];
2873
		struct skge_port *skge = netdev_priv(dev);
2874

2875
		if (netif_running(dev)) {
2876 2877
			if (hw->chip_id != CHIP_ID_GENESIS)
				yukon_phy_intr(skge);
2878
			else
2879
				bcom_phy_intr(skge);
2880 2881
		}
	}
2882
	mutex_unlock(&hw->phy_mutex);
2883

2884
	spin_lock_irq(&hw->hw_lock);
2885 2886
	hw->intr_mask |= IS_EXT_REG;
	skge_write32(hw, B0_IMSK, hw->intr_mask);
2887
	spin_unlock_irq(&hw->hw_lock);
2888 2889 2890 2891 2892
}

static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	struct skge_hw *hw = dev_id;
2893
	u32 status;
2894

2895 2896 2897
	/* Reading this register masks IRQ */
	status = skge_read32(hw, B0_SP_ISRC);
	if (status == 0)
2898 2899
		return IRQ_NONE;

2900 2901
	spin_lock(&hw->hw_lock);
	status &= hw->intr_mask;
2902 2903
	if (status & IS_EXT_REG) {
		hw->intr_mask &= ~IS_EXT_REG;
2904
		schedule_work(&hw->phy_work);
2905 2906
	}

2907 2908 2909
	if (status & IS_XA1_F) {
		skge_write8(hw, Q_ADDR(Q_XA1, Q_CSR), CSR_IRQ_CL_F);
		skge_txirq(hw->dev[0]);
2910 2911
	}

2912 2913 2914 2915
	if (status & IS_R1_F) {
		skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
		hw->intr_mask &= ~IS_R1_F;
		netif_rx_schedule(hw->dev[0]);
2916 2917
	}

2918 2919
	if (status & IS_PA_TO_TX1)
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2920

2921 2922 2923 2924
	if (status & IS_PA_TO_RX1) {
		struct skge_port *skge = netdev_priv(hw->dev[0]);

		++skge->net_stats.rx_over_errors;
2925
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2926 2927 2928
	}


2929 2930
	if (status & IS_MAC1)
		skge_mac_intr(hw, 0);
2931

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	if (hw->dev[1]) {
		if (status & IS_XA2_F) {
			skge_write8(hw, Q_ADDR(Q_XA2, Q_CSR), CSR_IRQ_CL_F);
			skge_txirq(hw->dev[1]);
		}

		if (status & IS_R2_F) {
			skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
			hw->intr_mask &= ~IS_R2_F;
			netif_rx_schedule(hw->dev[1]);
		}

		if (status & IS_PA_TO_RX2) {
			struct skge_port *skge = netdev_priv(hw->dev[1]);
			++skge->net_stats.rx_over_errors;
			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
		}

		if (status & IS_PA_TO_TX2)
			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);

		if (status & IS_MAC2)
			skge_mac_intr(hw, 1);
	}
2956 2957 2958 2959

	if (status & IS_HW_ERR)
		skge_error_irq(hw);

2960
	skge_write32(hw, B0_IMSK, hw->intr_mask);
2961
	spin_unlock(&hw->hw_lock);
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	disable_irq(dev->irq);
	skge_intr(dev->irq, skge->hw, NULL);
	enable_irq(dev->irq);
}
#endif

static int skge_set_mac_address(struct net_device *dev, void *p)
{
	struct skge_port *skge = netdev_priv(dev);
2980 2981 2982
	struct skge_hw *hw = skge->hw;
	unsigned port = skge->port;
	const struct sockaddr *addr = p;
2983 2984 2985 2986

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

2987
	mutex_lock(&hw->phy_mutex);
2988
	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2989
	memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2990
		    dev->dev_addr, ETH_ALEN);
2991
	memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2992
		    dev->dev_addr, ETH_ALEN);
2993 2994 2995 2996 2997 2998 2999

	if (hw->chip_id == CHIP_ID_GENESIS)
		xm_outaddr(hw, port, XM_SA, dev->dev_addr);
	else {
		gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
		gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
	}
3000
	mutex_unlock(&hw->phy_mutex);
3001 3002

	return 0;
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
}

static const struct {
	u8 id;
	const char *name;
} skge_chips[] = {
	{ CHIP_ID_GENESIS,	"Genesis" },
	{ CHIP_ID_YUKON,	 "Yukon" },
	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
};

static const char *skge_board_name(const struct skge_hw *hw)
{
	int i;
	static char buf[16];

	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
		if (skge_chips[i].id == hw->chip_id)
			return skge_chips[i].name;

	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
	return buf;
}


/*
 * Setup the board data structure, but don't bring up
 * the port(s)
 */
static int skge_reset(struct skge_hw *hw)
{
3035
	u32 reg;
3036
	u16 ctst, pci_status;
3037
	u8 t8, mac_cfg, pmd_type, phy_type;
3038
	int i;
3039 3040 3041 3042 3043 3044 3045 3046

	ctst = skge_read16(hw, B0_CTST);

	/* do a SW reset */
	skge_write8(hw, B0_CTST, CS_RST_SET);
	skge_write8(hw, B0_CTST, CS_RST_CLR);

	/* clear PCI errors, if any */
3047 3048
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
	skge_write8(hw, B2_TST_CTRL2, 0);
3049

3050 3051 3052 3053
	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
	pci_write_config_word(hw->pdev, PCI_STATUS,
			      pci_status | PCI_STATUS_ERROR_BITS);
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3054 3055 3056 3057 3058 3059 3060
	skge_write8(hw, B0_CTST, CS_MRST_CLR);

	/* restore CLK_RUN bits (for Yukon-Lite) */
	skge_write16(hw, B0_CTST,
		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));

	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3061 3062 3063
	phy_type = skge_read8(hw, B2_E_1) & 0xf;
	pmd_type = skge_read8(hw, B2_PMD_TYP);
	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3064

3065
	switch (hw->chip_id) {
3066
	case CHIP_ID_GENESIS:
3067
		switch (phy_type) {
3068 3069 3070 3071 3072
		case SK_PHY_BCOM:
			hw->phy_addr = PHY_ADDR_BCOM;
			break;
		default:
			printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3073
			       pci_name(hw->pdev), phy_type);
3074 3075 3076 3077 3078 3079 3080
			return -EOPNOTSUPP;
		}
		break;

	case CHIP_ID_YUKON:
	case CHIP_ID_YUKON_LITE:
	case CHIP_ID_YUKON_LP:
3081 3082
		if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
			hw->copper = 1;
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092

		hw->phy_addr = PHY_ADDR_MARV;
		break;

	default:
		printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
		       pci_name(hw->pdev), hw->chip_id);
		return -EOPNOTSUPP;
	}

3093 3094 3095
	mac_cfg = skge_read8(hw, B2_MAC_CFG);
	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

	/* read the adapters RAM size */
	t8 = skge_read8(hw, B2_E_0);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		if (t8 == 3) {
			/* special case: 4 x 64k x 36, offset = 0x80000 */
			hw->ram_size = 0x100000;
			hw->ram_offset = 0x80000;
		} else
			hw->ram_size = t8 * 512;
	}
	else if (t8 == 0)
		hw->ram_size = 0x20000;
	else
		hw->ram_size = t8 * 4096;

3112
	spin_lock_init(&hw->hw_lock);
3113 3114 3115 3116
	hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
	if (hw->ports > 1)
		hw->intr_mask |= IS_PORT_2;

3117 3118 3119 3120 3121 3122
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_init(hw);
	else {
		/* switch power to VCC (WA for VAUX problem) */
		skge_write8(hw, B0_POWER_CTRL,
			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3123

3124 3125 3126 3127 3128 3129 3130
		/* avoid boards with stuck Hardware error bits */
		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
			printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
			hw->intr_mask &= ~IS_HW_ERR;
		}

3131 3132 3133 3134 3135 3136 3137 3138
		/* Clear PHY COMA */
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
		reg &= ~PCI_PHY_COMA;
		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);


3139
		for (i = 0; i < hw->ports; i++) {
3140 3141
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3142 3143 3144 3145 3146 3147 3148 3149 3150
		}
	}

	/* turn off hardware timer (unused) */
	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
	skge_write8(hw, B0_LED, LED_STAT_ON);

	/* enable the Tx Arbiters */
3151
	for (i = 0; i < hw->ports; i++)
3152
		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	/* Initialize ram interface */
	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);

	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);

	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);

	/* Set interrupt moderation for Transmit only
	 * Receive interrupts avoided by NAPI
	 */
	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
	skge_write32(hw, B2_IRQM_CTRL, TIM_START);

	skge_write32(hw, B0_IMSK, hw->intr_mask);

3181
	mutex_lock(&hw->phy_mutex);
3182
	for (i = 0; i < hw->ports; i++) {
3183 3184 3185 3186 3187
		if (hw->chip_id == CHIP_ID_GENESIS)
			genesis_reset(hw, i);
		else
			yukon_reset(hw, i);
	}
3188
	mutex_unlock(&hw->phy_mutex);
3189 3190 3191 3192 3193

	return 0;
}

/* Initialize network device */
3194 3195
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
				       int highmem)
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
{
	struct skge_port *skge;
	struct net_device *dev = alloc_etherdev(sizeof(*skge));

	if (!dev) {
		printk(KERN_ERR "skge etherdev alloc failed");
		return NULL;
	}

	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &hw->pdev->dev);
	dev->open = skge_up;
	dev->stop = skge_down;
3209
	dev->do_ioctl = skge_ioctl;
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	dev->hard_start_xmit = skge_xmit_frame;
	dev->get_stats = skge_get_stats;
	if (hw->chip_id == CHIP_ID_GENESIS)
		dev->set_multicast_list = genesis_set_multicast;
	else
		dev->set_multicast_list = yukon_set_multicast;

	dev->set_mac_address = skge_set_mac_address;
	dev->change_mtu = skge_change_mtu;
	SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
	dev->tx_timeout = skge_tx_timeout;
	dev->watchdog_timeo = TX_WATCHDOG;
	dev->poll = skge_poll;
	dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = skge_netpoll;
#endif
	dev->irq = hw->pdev->irq;
	dev->features = NETIF_F_LLTX;
3229 3230
	if (highmem)
		dev->features |= NETIF_F_HIGHDMA;
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

	skge = netdev_priv(dev);
	skge->netdev = dev;
	skge->hw = hw;
	skge->msg_enable = netif_msg_init(debug, default_msg);
	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;

	/* Auto speed and flow control */
	skge->autoneg = AUTONEG_ENABLE;
	skge->flow_control = FLOW_MODE_SYMMETRIC;
	skge->duplex = -1;
	skge->speed = -1;
3244
	skge->advertising = skge_supported_modes(hw);
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

	hw->dev[port] = dev;

	skge->port = port;

	spin_lock_init(&skge->tx_lock);

	if (hw->chip_id != CHIP_ID_GENESIS) {
		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
		skge->rx_csum = 1;
	}

	/* read the mac address */
	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3259
	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285

	/* device is off until link detection */
	netif_carrier_off(dev);
	netif_stop_queue(dev);

	return dev;
}

static void __devinit skge_show_addr(struct net_device *dev)
{
	const struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_probe(skge))
		printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
		       dev->name,
		       dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
		       dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}

static int __devinit skge_probe(struct pci_dev *pdev,
				const struct pci_device_id *ent)
{
	struct net_device *dev, *dev1;
	struct skge_hw *hw;
	int err, using_dac = 0;

3286 3287
	err = pci_enable_device(pdev);
	if (err) {
3288 3289 3290 3291 3292
		printk(KERN_ERR PFX "%s cannot enable PCI device\n",
		       pci_name(pdev));
		goto err_out;
	}

3293 3294
	err = pci_request_regions(pdev, DRV_NAME);
	if (err) {
3295 3296 3297 3298 3299 3300 3301
		printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
		       pci_name(pdev));
		goto err_out_disable_pdev;
	}

	pci_set_master(pdev);

3302
	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3303
		using_dac = 1;
3304
		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3305 3306 3307 3308 3309 3310 3311 3312 3313
	} else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
		using_dac = 0;
		err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
	}

	if (err) {
		printk(KERN_ERR PFX "%s no usable DMA configuration\n",
		       pci_name(pdev));
		goto err_out_free_regions;
3314 3315 3316
	}

#ifdef __BIG_ENDIAN
S
Stephen Hemminger 已提交
3317
	/* byte swap descriptors in hardware */
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	{
		u32 reg;

		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
		reg |= PCI_REV_DESC;
		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
	}
#endif

	err = -ENOMEM;
S
Stephen Hemminger 已提交
3328
	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3329 3330 3331 3332 3333 3334 3335
	if (!hw) {
		printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
		       pci_name(pdev));
		goto err_out_free_regions;
	}

	hw->pdev = pdev;
3336 3337
	mutex_init(&hw->phy_mutex);
	INIT_WORK(&hw->phy_work, skge_extirq, hw);
3338 3339 3340 3341 3342 3343 3344 3345

	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
	if (!hw->regs) {
		printk(KERN_ERR PFX "%s: cannot map device registers\n",
		       pci_name(pdev));
		goto err_out_free_hw;
	}

3346 3347
	err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw);
	if (err) {
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
		       pci_name(pdev), pdev->irq);
		goto err_out_iounmap;
	}
	pci_set_drvdata(pdev, hw);

	err = skge_reset(hw);
	if (err)
		goto err_out_free_irq;

3358
	printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
3359
	       pci_resource_start(pdev, 0), pdev->irq,
3360
	       skge_board_name(hw), hw->chip_rev);
3361

3362
	if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3363 3364
		goto err_out_led_off;

3365 3366
	err = register_netdev(dev);
	if (err) {
3367 3368 3369 3370 3371 3372 3373
		printk(KERN_ERR PFX "%s: cannot register net device\n",
		       pci_name(pdev));
		goto err_out_free_netdev;
	}

	skge_show_addr(dev);

3374
	if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		if (register_netdev(dev1) == 0)
			skge_show_addr(dev1);
		else {
			/* Failure to register second port need not be fatal */
			printk(KERN_WARNING PFX "register of second port failed\n");
			hw->dev[1] = NULL;
			free_netdev(dev1);
		}
	}

	return 0;

err_out_free_netdev:
	free_netdev(dev);
err_out_led_off:
	skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_free_irq:
	free_irq(pdev->irq, hw);
err_out_iounmap:
	iounmap(hw->regs);
err_out_free_hw:
	kfree(hw);
err_out_free_regions:
	pci_release_regions(pdev);
err_out_disable_pdev:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
err_out:
	return err;
}

static void __devexit skge_remove(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	struct net_device *dev0, *dev1;

3411
	if (!hw)
3412 3413 3414 3415 3416 3417 3418
		return;

	if ((dev1 = hw->dev[1]))
		unregister_netdev(dev1);
	dev0 = hw->dev[0];
	unregister_netdev(dev0);

3419 3420
	spin_lock_irq(&hw->hw_lock);
	hw->intr_mask = 0;
3421
	skge_write32(hw, B0_IMSK, 0);
3422 3423
	spin_unlock_irq(&hw->hw_lock);

3424 3425 3426
	skge_write16(hw, B0_LED, LED_STAT_OFF);
	skge_write8(hw, B0_CTST, CS_RST_SET);

3427
	flush_scheduled_work();
3428 3429 3430 3431 3432 3433 3434

	free_irq(pdev->irq, hw);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	if (dev1)
		free_netdev(dev1);
	free_netdev(dev0);
3435

3436 3437 3438 3439 3440 3441
	iounmap(hw->regs);
	kfree(hw);
	pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM
3442
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3443 3444 3445 3446
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i, wol = 0;

3447
	for (i = 0; i < 2; i++) {
3448 3449 3450 3451 3452 3453
		struct net_device *dev = hw->dev[i];

		if (dev) {
			struct skge_port *skge = netdev_priv(dev);
			if (netif_running(dev)) {
				netif_carrier_off(dev);
3454 3455 3456 3457
				if (skge->wol)
					netif_stop_queue(dev);
				else
					skge_down(dev);
3458 3459 3460 3461 3462 3463 3464
			}
			netif_device_detach(dev);
			wol |= skge->wol;
		}
	}

	pci_save_state(pdev);
3465
	pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	pci_disable_device(pdev);
	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	return 0;
}

static int skge_resume(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	pci_enable_wake(pdev, PCI_D0, 0);

	skge_reset(hw);

3483
	for (i = 0; i < 2; i++) {
3484 3485 3486
		struct net_device *dev = hw->dev[i];
		if (dev) {
			netif_device_attach(dev);
3487 3488
			if (netif_running(dev) && skge_up(dev))
				dev_close(dev);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
		}
	}
	return 0;
}
#endif

static struct pci_driver skge_driver = {
	.name =         DRV_NAME,
	.id_table =     skge_id_table,
	.probe =        skge_probe,
	.remove =       __devexit_p(skge_remove),
#ifdef CONFIG_PM
	.suspend = 	skge_suspend,
	.resume = 	skge_resume,
#endif
};

static int __init skge_init_module(void)
{
	return pci_module_init(&skge_driver);
}

static void __exit skge_cleanup_module(void)
{
	pci_unregister_driver(&skge_driver);
}

module_init(skge_init_module);
module_exit(skge_cleanup_module);