hv.c 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
 *
 */
22 23
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

24 25
#include <linux/kernel.h>
#include <linux/mm.h>
26
#include <linux/slab.h>
27
#include <linux/vmalloc.h>
28
#include <linux/hyperv.h>
29
#include <linux/version.h>
30
#include <linux/interrupt.h>
31
#include <linux/clockchips.h>
32
#include <asm/hyperv.h>
33
#include <asm/mshyperv.h>
34
#include "hyperv_vmbus.h"
35

36
/* The one and only */
37 38 39
struct hv_context hv_context = {
	.synic_initialized	= false,
	.hypercall_page		= NULL,
40 41
};

42 43 44 45
#define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
#define HV_MAX_MAX_DELTA_TICKS 0xffffffff
#define HV_MIN_DELTA_TICKS 1

46
/*
47
 * query_hypervisor_info - Get version info of the windows hypervisor
48
 */
49 50 51 52 53
unsigned int host_info_eax;
unsigned int host_info_ebx;
unsigned int host_info_ecx;
unsigned int host_info_edx;

54
static int query_hypervisor_info(void)
55 56 57 58 59
{
	unsigned int eax;
	unsigned int ebx;
	unsigned int ecx;
	unsigned int edx;
60
	unsigned int max_leaf;
61
	unsigned int op;
62

63 64 65 66 67 68 69 70
	/*
	* Its assumed that this is called after confirming that Viridian
	* is present. Query id and revision.
	*/
	eax = 0;
	ebx = 0;
	ecx = 0;
	edx = 0;
71
	op = HVCPUID_VENDOR_MAXFUNCTION;
72
	cpuid(op, &eax, &ebx, &ecx, &edx);
73

74
	max_leaf = eax;
75

76
	if (max_leaf >= HVCPUID_VERSION) {
77 78 79 80
		eax = 0;
		ebx = 0;
		ecx = 0;
		edx = 0;
81
		op = HVCPUID_VERSION;
82
		cpuid(op, &eax, &ebx, &ecx, &edx);
83 84 85 86
		host_info_eax = eax;
		host_info_ebx = ebx;
		host_info_ecx = ecx;
		host_info_edx = edx;
87
	}
88
	return max_leaf;
89
}
90

91
/*
92
 * hv_do_hypercall- Invoke the specified hypercall
93
 */
94
u64 hv_do_hypercall(u64 control, void *input, void *output)
95
{
96 97
	u64 input_address = (input) ? virt_to_phys(input) : 0;
	u64 output_address = (output) ? virt_to_phys(output) : 0;
98
	void *hypercall_page = hv_context.hypercall_page;
99 100 101 102 103
#ifdef CONFIG_X86_64
	u64 hv_status = 0;

	if (!hypercall_page)
		return (u64)ULLONG_MAX;
104

105 106 107 108
	__asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
	__asm__ __volatile__("call *%3" : "=a" (hv_status) :
			     "c" (control), "d" (input_address),
			     "m" (hypercall_page));
109

110
	return hv_status;
111 112 113

#else

114 115 116 117 118 119 120 121
	u32 control_hi = control >> 32;
	u32 control_lo = control & 0xFFFFFFFF;
	u32 hv_status_hi = 1;
	u32 hv_status_lo = 1;
	u32 input_address_hi = input_address >> 32;
	u32 input_address_lo = input_address & 0xFFFFFFFF;
	u32 output_address_hi = output_address >> 32;
	u32 output_address_lo = output_address & 0xFFFFFFFF;
122 123 124

	if (!hypercall_page)
		return (u64)ULLONG_MAX;
125

126 127 128 129 130
	__asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
			      "=a"(hv_status_lo) : "d" (control_hi),
			      "a" (control_lo), "b" (input_address_hi),
			      "c" (input_address_lo), "D"(output_address_hi),
			      "S"(output_address_lo), "m" (hypercall_page));
131

132
	return hv_status_lo | ((u64)hv_status_hi << 32);
133
#endif /* !x86_64 */
134
}
135
EXPORT_SYMBOL_GPL(hv_do_hypercall);
136

137 138 139 140 141 142
#ifdef CONFIG_X86_64
static cycle_t read_hv_clock_tsc(struct clocksource *arg)
{
	cycle_t current_tick;
	struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;

143
	if (tsc_pg->tsc_sequence != 0) {
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		/*
		 * Use the tsc page to compute the value.
		 */

		while (1) {
			cycle_t tmp;
			u32 sequence = tsc_pg->tsc_sequence;
			u64 cur_tsc;
			u64 scale = tsc_pg->tsc_scale;
			s64 offset = tsc_pg->tsc_offset;

			rdtscll(cur_tsc);
			/* current_tick = ((cur_tsc *scale) >> 64) + offset */
			asm("mulq %3"
				: "=d" (current_tick), "=a" (tmp)
				: "a" (cur_tsc), "r" (scale));

			current_tick += offset;
			if (tsc_pg->tsc_sequence == sequence)
				return current_tick;

165
			if (tsc_pg->tsc_sequence != 0)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
				continue;
			/*
			 * Fallback using MSR method.
			 */
			break;
		}
	}
	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
	return current_tick;
}

static struct clocksource hyperv_cs_tsc = {
		.name           = "hyperv_clocksource_tsc_page",
		.rating         = 425,
		.read           = read_hv_clock_tsc,
		.mask           = CLOCKSOURCE_MASK(64),
		.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
};
#endif


187
/*
188
 * hv_init - Main initialization routine.
189 190 191
 *
 * This routine must be called before any other routines in here are called
 */
192
int hv_init(void)
193
{
194 195 196
	int max_leaf;
	union hv_x64_msr_hypercall_contents hypercall_msr;
	void *virtaddr = NULL;
197

198
	memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
199
	memset(hv_context.synic_message_page, 0,
200
	       sizeof(void *) * NR_CPUS);
201 202
	memset(hv_context.post_msg_page, 0,
	       sizeof(void *) * NR_CPUS);
203 204
	memset(hv_context.vp_index, 0,
	       sizeof(int) * NR_CPUS);
205 206
	memset(hv_context.event_dpc, 0,
	       sizeof(void *) * NR_CPUS);
207 208
	memset(hv_context.msg_dpc, 0,
	       sizeof(void *) * NR_CPUS);
209 210
	memset(hv_context.clk_evt, 0,
	       sizeof(void *) * NR_CPUS);
211

212
	max_leaf = query_hypervisor_info();
213

214 215 216 217 218
	/*
	 * Write our OS ID.
	 */
	hv_context.guestid = generate_guest_id(0, LINUX_VERSION_CODE, 0);
	wrmsrl(HV_X64_MSR_GUEST_OS_ID, hv_context.guestid);
219

220
	/* See if the hypercall page is already set */
221
	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
222

223
	virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_EXEC);
224

225
	if (!virtaddr)
226
		goto cleanup;
227

228
	hypercall_msr.enable = 1;
229

230 231
	hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
232 233

	/* Confirm that hypercall page did get setup. */
234 235
	hypercall_msr.as_uint64 = 0;
	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
236

237
	if (!hypercall_msr.enable)
238
		goto cleanup;
239

240
	hv_context.hypercall_page = virtaddr;
241

242 243
#ifdef CONFIG_X86_64
	if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
244 245 246
		union hv_x64_msr_hypercall_contents tsc_msr;
		void *va_tsc;

247 248 249 250 251 252 253 254 255 256 257 258 259 260
		va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
		if (!va_tsc)
			goto cleanup;
		hv_context.tsc_page = va_tsc;

		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);

		tsc_msr.enable = 1;
		tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);

		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
	}
#endif
261
	return 0;
262

263
cleanup:
264 265 266 267
	if (virtaddr) {
		if (hypercall_msr.enable) {
			hypercall_msr.as_uint64 = 0;
			wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
268 269
		}

270
		vfree(virtaddr);
271
	}
272 273

	return -ENOTSUPP;
274 275
}

276
/*
277
 * hv_cleanup - Cleanup routine.
278 279 280
 *
 * This routine is called normally during driver unloading or exiting.
 */
281
void hv_cleanup(bool crash)
282
{
283
	union hv_x64_msr_hypercall_contents hypercall_msr;
284

285 286 287
	/* Reset our OS id */
	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);

288
	if (hv_context.hypercall_page) {
289 290
		hypercall_msr.as_uint64 = 0;
		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
291 292
		if (!crash)
			vfree(hv_context.hypercall_page);
293
		hv_context.hypercall_page = NULL;
294
	}
295 296 297 298 299 300

#ifdef CONFIG_X86_64
	/*
	 * Cleanup the TSC page based CS.
	 */
	if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
301 302 303 304 305 306 307 308
		/*
		 * Crash can happen in an interrupt context and unregistering
		 * a clocksource is impossible and redundant in this case.
		 */
		if (!oops_in_progress) {
			clocksource_change_rating(&hyperv_cs_tsc, 10);
			clocksource_unregister(&hyperv_cs_tsc);
		}
309 310 311

		hypercall_msr.as_uint64 = 0;
		wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
312 313
		if (!crash)
			vfree(hv_context.tsc_page);
314 315 316
		hv_context.tsc_page = NULL;
	}
#endif
317 318
}

319
/*
320
 * hv_post_message - Post a message using the hypervisor message IPC.
321 322 323
 *
 * This involves a hypercall.
 */
324
int hv_post_message(union hv_connection_id connection_id,
325 326
		  enum hv_message_type message_type,
		  void *payload, size_t payload_size)
327 328
{

329
	struct hv_input_post_message *aligned_msg;
330
	u64 status;
331

332
	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
333
		return -EMSGSIZE;
334

335
	aligned_msg = (struct hv_input_post_message *)
336
			hv_context.post_msg_page[get_cpu()];
337

338
	aligned_msg->connectionid = connection_id;
339
	aligned_msg->reserved = 0;
340 341 342
	aligned_msg->message_type = message_type;
	aligned_msg->payload_size = payload_size;
	memcpy((void *)aligned_msg->payload, payload, payload_size);
343

344
	status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
345

346
	put_cpu();
347
	return status & 0xFFFF;
348 349
}

350 351 352 353 354
static int hv_ce_set_next_event(unsigned long delta,
				struct clock_event_device *evt)
{
	cycle_t current_tick;

355
	WARN_ON(!clockevent_state_oneshot(evt));
356 357 358 359 360 361 362

	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
	current_tick += delta;
	wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
	return 0;
}

363 364 365 366 367 368 369 370 371
static int hv_ce_shutdown(struct clock_event_device *evt)
{
	wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
	wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);

	return 0;
}

static int hv_ce_set_oneshot(struct clock_event_device *evt)
372 373 374
{
	union hv_timer_config timer_cfg;

375 376 377 378 379 380
	timer_cfg.enable = 1;
	timer_cfg.auto_enable = 1;
	timer_cfg.sintx = VMBUS_MESSAGE_SINT;
	wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);

	return 0;
381 382 383 384 385 386 387 388
}

static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
{
	dev->name = "Hyper-V clockevent";
	dev->features = CLOCK_EVT_FEAT_ONESHOT;
	dev->cpumask = cpumask_of(cpu);
	dev->rating = 1000;
389 390 391 392 393
	/*
	 * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
	 * result in clockevents_config_and_register() taking additional
	 * references to the hv_vmbus module making it impossible to unload.
	 */
394

395 396
	dev->set_state_shutdown = hv_ce_shutdown;
	dev->set_state_oneshot = hv_ce_set_oneshot;
397 398 399
	dev->set_next_event = hv_ce_set_next_event;
}

400 401 402 403

int hv_synic_alloc(void)
{
	size_t size = sizeof(struct tasklet_struct);
404
	size_t ced_size = sizeof(struct clock_event_device);
405 406
	int cpu;

407 408 409 410 411 412 413
	hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
					 GFP_ATOMIC);
	if (hv_context.hv_numa_map == NULL) {
		pr_err("Unable to allocate NUMA map\n");
		goto err;
	}

414 415 416 417 418 419 420 421
	for_each_online_cpu(cpu) {
		hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
		if (hv_context.event_dpc[cpu] == NULL) {
			pr_err("Unable to allocate event dpc\n");
			goto err;
		}
		tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);

422 423 424 425 426 427 428
		hv_context.msg_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
		if (hv_context.msg_dpc[cpu] == NULL) {
			pr_err("Unable to allocate event dpc\n");
			goto err;
		}
		tasklet_init(hv_context.msg_dpc[cpu], vmbus_on_msg_dpc, cpu);

429 430 431 432 433
		hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
		if (hv_context.clk_evt[cpu] == NULL) {
			pr_err("Unable to allocate clock event device\n");
			goto err;
		}
434

435 436
		hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		hv_context.synic_message_page[cpu] =
			(void *)get_zeroed_page(GFP_ATOMIC);

		if (hv_context.synic_message_page[cpu] == NULL) {
			pr_err("Unable to allocate SYNIC message page\n");
			goto err;
		}

		hv_context.synic_event_page[cpu] =
			(void *)get_zeroed_page(GFP_ATOMIC);

		if (hv_context.synic_event_page[cpu] == NULL) {
			pr_err("Unable to allocate SYNIC event page\n");
			goto err;
		}
452 453 454 455 456 457 458 459

		hv_context.post_msg_page[cpu] =
			(void *)get_zeroed_page(GFP_ATOMIC);

		if (hv_context.post_msg_page[cpu] == NULL) {
			pr_err("Unable to allocate post msg page\n");
			goto err;
		}
460 461 462 463 464 465 466
	}

	return 0;
err:
	return -ENOMEM;
}

467
static void hv_synic_free_cpu(int cpu)
468 469
{
	kfree(hv_context.event_dpc[cpu]);
470
	kfree(hv_context.msg_dpc[cpu]);
471
	kfree(hv_context.clk_evt[cpu]);
472
	if (hv_context.synic_event_page[cpu])
473 474 475
		free_page((unsigned long)hv_context.synic_event_page[cpu]);
	if (hv_context.synic_message_page[cpu])
		free_page((unsigned long)hv_context.synic_message_page[cpu]);
476 477
	if (hv_context.post_msg_page[cpu])
		free_page((unsigned long)hv_context.post_msg_page[cpu]);
478 479 480 481 482 483
}

void hv_synic_free(void)
{
	int cpu;

484
	kfree(hv_context.hv_numa_map);
485 486 487 488
	for_each_online_cpu(cpu)
		hv_synic_free_cpu(cpu);
}

489
/*
490
 * hv_synic_init - Initialize the Synthethic Interrupt Controller.
491 492 493 494 495
 *
 * If it is already initialized by another entity (ie x2v shim), we need to
 * retrieve the initialized message and event pages.  Otherwise, we create and
 * initialize the message and event pages.
 */
496
void hv_synic_init(void *arg)
497
{
498
	u64 version;
499 500
	union hv_synic_simp simp;
	union hv_synic_siefp siefp;
501
	union hv_synic_sint shared_sint;
502
	union hv_synic_scontrol sctrl;
503
	u64 vp_index;
504

505
	int cpu = smp_processor_id();
506

507
	if (!hv_context.hypercall_page)
508
		return;
509

510
	/* Check the version */
511
	rdmsrl(HV_X64_MSR_SVERSION, version);
512

513
	/* Setup the Synic's message page */
514 515
	rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
	simp.simp_enabled = 1;
516
	simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
517
		>> PAGE_SHIFT;
518

519
	wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
520

521
	/* Setup the Synic's event page */
522 523
	rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
	siefp.siefp_enabled = 1;
524
	siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
525 526
		>> PAGE_SHIFT;

527
	wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
528 529

	/* Setup the shared SINT. */
530
	rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
531

532
	shared_sint.as_uint64 = 0;
533
	shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
534
	shared_sint.masked = false;
535
	shared_sint.auto_eoi = true;
536

537
	wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
538

539
	/* Enable the global synic bit */
540 541
	rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
	sctrl.enable = 1;
542

543
	wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
544

545
	hv_context.synic_initialized = true;
546 547 548 549 550 551 552 553

	/*
	 * Setup the mapping between Hyper-V's notion
	 * of cpuid and Linux' notion of cpuid.
	 * This array will be indexed using Linux cpuid.
	 */
	rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
	hv_context.vp_index[cpu] = (u32)vp_index;
554 555

	INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
556 557 558 559 560 561 562 563 564

	/*
	 * Register the per-cpu clockevent source.
	 */
	if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
		clockevents_config_and_register(hv_context.clk_evt[cpu],
						HV_TIMER_FREQUENCY,
						HV_MIN_DELTA_TICKS,
						HV_MAX_MAX_DELTA_TICKS);
565
	return;
566 567
}

568 569 570 571 572 573 574 575 576 577
/*
 * hv_synic_clockevents_cleanup - Cleanup clockevent devices
 */
void hv_synic_clockevents_cleanup(void)
{
	int cpu;

	if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
		return;

578
	for_each_present_cpu(cpu)
579 580 581
		clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
}

582
/*
583
 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
584
 */
585
void hv_synic_cleanup(void *arg)
586
{
587
	union hv_synic_sint shared_sint;
588 589
	union hv_synic_simp simp;
	union hv_synic_siefp siefp;
590
	union hv_synic_scontrol sctrl;
591
	int cpu = smp_processor_id();
592

593
	if (!hv_context.synic_initialized)
594 595
		return;

596
	/* Turn off clockevent device */
597 598
	if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE) {
		clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
599
		hv_ce_shutdown(hv_context.clk_evt[cpu]);
600
	}
601

602
	rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
603

604
	shared_sint.masked = 1;
605

606
	/* Need to correctly cleanup in the case of SMP!!! */
607
	/* Disable the interrupt */
608
	wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
609

610 611 612
	rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
	simp.simp_enabled = 0;
	simp.base_simp_gpa = 0;
613

614
	wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
615

616 617 618
	rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
	siefp.siefp_enabled = 0;
	siefp.base_siefp_gpa = 0;
619

620
	wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
621

622 623 624 625
	/* Disable the global synic bit */
	rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
	sctrl.enable = 0;
	wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
626
}