“02fbd139759feb1f331cebd858523b5d774082e6”上不存在“README.md”
spi.c 18.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * spi.c - SPI init/core code
 *
 * Copyright (C) 2005 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/autoconf.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
#include <linux/spi/spi.h>


29 30 31
/* SPI bustype and spi_master class are registered after board init code
 * provides the SPI device tables, ensuring that both are present by the
 * time controller driver registration causes spi_devices to "enumerate".
32 33 34
 */
static void spidev_release(struct device *dev)
{
35
	struct spi_device	*spi = to_spi_device(dev);
36 37 38 39 40

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

41
	spi_master_put(spi->master);
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
	kfree(dev);
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);

	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
}

static int spi_uevent(struct device *dev, char **envp, int num_envp,
		char *buffer, int buffer_size)
{
	const struct spi_device		*spi = to_spi_device(dev);

	envp[0] = buffer;
	snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
	envp[1] = NULL;
	return 0;
}

#ifdef	CONFIG_PM

82
/*
83 84 85 86 87 88 89
 * NOTE:  the suspend() method for an spi_master controller driver
 * should verify that all its child devices are marked as suspended;
 * suspend requests delivered through sysfs power/state files don't
 * enforce such constraints.
 */
static int spi_suspend(struct device *dev, pm_message_t message)
{
90 91
	int			value;
	struct spi_driver	*drv = to_spi_driver(dev->driver);
92

93
	if (!drv || !drv->suspend)
94 95 96
		return 0;

	/* suspend will stop irqs and dma; no more i/o */
97
	value = drv->suspend(to_spi_device(dev), message);
98 99 100 101 102 103 104
	if (value == 0)
		dev->power.power_state = message;
	return value;
}

static int spi_resume(struct device *dev)
{
105 106
	int			value;
	struct spi_driver	*drv = to_spi_driver(dev->driver);
107

108
	if (!drv || !drv->resume)
109 110 111
		return 0;

	/* resume may restart the i/o queue */
112
	value = drv->resume(to_spi_device(dev));
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	if (value == 0)
		dev->power.power_state = PMSG_ON;
	return value;
}

#else
#define spi_suspend	NULL
#define spi_resume	NULL
#endif

struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
	.suspend	= spi_suspend,
	.resume		= spi_resume,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
	unsigned		n_board_info;
	struct spi_board_info	board_info[0];
};

static LIST_HEAD(board_list);
static DECLARE_MUTEX(board_lock);


/* On typical mainboards, this is purely internal; and it's not needed
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
 */
struct spi_device *__init_or_module
spi_new_device(struct spi_master *master, struct spi_board_info *chip)
{
	struct spi_device	*proxy;
196
	struct device		*dev = master->cdev.dev;
197 198 199 200
	int			status;

	/* NOTE:  caller did any chip->bus_num checks necessary */

201
	if (!spi_master_get(master))
202 203 204 205 206 207 208 209 210 211 212
		return NULL;

	proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
	if (!proxy) {
		dev_err(dev, "can't alloc dev for cs%d\n",
			chip->chip_select);
		goto fail;
	}
	proxy->master = master;
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
213
	proxy->mode = chip->mode;
214 215 216 217
	proxy->irq = chip->irq;
	proxy->modalias = chip->modalias;

	snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
218
			"%s.%u", master->cdev.class_id,
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
			chip->chip_select);
	proxy->dev.parent = dev;
	proxy->dev.bus = &spi_bus_type;
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;
	proxy->dev.release = spidev_release;

	/* drivers may modify this default i/o setup */
	status = master->setup(proxy);
	if (status < 0) {
		dev_dbg(dev, "can't %s %s, status %d\n",
				"setup", proxy->dev.bus_id, status);
		goto fail;
	}

	/* driver core catches callers that misbehave by defining
	 * devices that already exist.
	 */
	status = device_register(&proxy->dev);
	if (status < 0) {
		dev_dbg(dev, "can't %s %s, status %d\n",
				"add", proxy->dev.bus_id, status);
242
		goto fail;
243 244 245
	}
	dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
	return proxy;
246 247

fail:
248
	spi_master_put(master);
249 250
	kfree(proxy);
	return NULL;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
}
EXPORT_SYMBOL_GPL(spi_new_device);

/*
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
int __init
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{
	struct boardinfo	*bi;

273
	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
274 275 276
	if (!bi)
		return -ENOMEM;
	bi->n_board_info = n;
277
	memcpy(bi->board_info, info, n * sizeof *info);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

	down(&board_lock);
	list_add_tail(&bi->list, &board_list);
	up(&board_lock);
	return 0;
}

/* FIXME someone should add support for a __setup("spi", ...) that
 * creates board info from kernel command lines
 */

static void __init_or_module
scan_boardinfo(struct spi_master *master)
{
	struct boardinfo	*bi;
293
	struct device		*dev = master->cdev.dev;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

	down(&board_lock);
	list_for_each_entry(bi, &board_list, list) {
		struct spi_board_info	*chip = bi->board_info;
		unsigned		n;

		for (n = bi->n_board_info; n > 0; n--, chip++) {
			if (chip->bus_num != master->bus_num)
				continue;
			/* some controllers only have one chip, so they
			 * might not use chipselects.  otherwise, the
			 * chipselects are numbered 0..max.
			 */
			if (chip->chip_select >= master->num_chipselect
					&& master->num_chipselect) {
				dev_dbg(dev, "cs%d > max %d\n",
					chip->chip_select,
					master->num_chipselect);
				continue;
			}
			(void) spi_new_device(master, chip);
		}
	}
	up(&board_lock);
}

/*-------------------------------------------------------------------------*/

322
static void spi_master_release(struct class_device *cdev)
323 324 325
{
	struct spi_master *master;

326
	master = container_of(cdev, struct spi_master, cdev);
327 328 329 330 331 332
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
333
	.release	= spi_master_release,
334 335 336 337 338 339
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
340
 * @size: how much driver-private data to preallocate; the pointer to this
341
 *	memory is in the class_data field of the returned class_device,
342
 *	accessible with spi_master_get_devdata().
343 344 345
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
346
 * an spi_master structure, prior to calling spi_register_master().
347 348 349 350 351
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
352
 * the master's methods before calling spi_register_master(); and (after errors
353
 * adding the device) calling spi_master_put() to prevent a memory leak.
354 355 356 357 358 359
 */
struct spi_master * __init_or_module
spi_alloc_master(struct device *dev, unsigned size)
{
	struct spi_master	*master;

360 361 362
	if (!dev)
		return NULL;

363
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
364 365 366
	if (!master)
		return NULL;

367 368 369
	class_device_initialize(&master->cdev);
	master->cdev.class = &spi_master_class;
	master->cdev.dev = get_device(dev);
370
	spi_master_set_devdata(master, &master[1]);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
392 393
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
394 395 396 397
 */
int __init_or_module
spi_register_master(struct spi_master *master)
{
398
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<16) - 1);
399
	struct device		*dev = master->cdev.dev;
400 401 402
	int			status = -ENODEV;
	int			dynamic = 0;

403 404 405
	if (!dev)
		return -ENODEV;

406
	/* convention:  dynamically assigned bus IDs count down from the max */
407
	if (master->bus_num < 0) {
408
		master->bus_num = atomic_dec_return(&dyn_bus_id);
409
		dynamic = 1;
410 411 412 413 414
	}

	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
415
	snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
416
		"spi%u", master->bus_num);
417
	status = class_device_add(&master->cdev);
418
	if (status < 0)
419
		goto done;
420
	dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
421 422 423 424 425 426 427 428 429 430 431 432 433 434
			dynamic ? " (dynamic)" : "");

	/* populate children from any spi device tables */
	scan_boardinfo(master);
	status = 0;
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);


static int __unregister(struct device *dev, void *unused)
{
	/* note: before about 2.6.14-rc1 this would corrupt memory: */
435
	spi_unregister_device(to_spi_device(dev));
436 437 438 439 440 441 442 443 444 445 446 447 448 449
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
450 451
	int dummy;

452 453
	dummy = device_for_each_child(master->cdev.dev, NULL, __unregister);
	class_device_unregister(&master->cdev);
454 455 456 457 458 459 460 461 462 463 464 465 466 467
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
468 469 470 471 472 473
	struct class_device	*cdev;
	struct spi_master	*master = NULL;
	struct spi_master	*m;

	down(&spi_master_class.sem);
	list_for_each_entry(cdev, &spi_master_class.children, node) {
474
		m = container_of(cdev, struct spi_master, cdev);
475 476 477 478 479 480 481
		if (m->bus_num == bus_num) {
			master = spi_master_get(m);
			break;
		}
	}
	up(&spi_master_class.sem);
	return master;
482 483 484 485 486 487
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

488 489 490 491 492
static void spi_complete(void *arg)
{
	complete(arg);
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
508 509 510
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
511 512 513 514 515 516 517
 * The return value is a negative error code if the message could not be
 * submitted, else zero.  When the value is zero, then message->status is
 * also defined:  it's the completion code for the transfer, either zero
 * or a negative error code from the controller driver.
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
518
	DECLARE_COMPLETION_ONSTACK(done);
519 520
	int status;

521
	message->complete = spi_complete;
522 523 524 525 526 527 528 529 530
	message->context = &done;
	status = spi_async(spi, message);
	if (status == 0)
		wait_for_completion(&done);
	message->context = NULL;
	return status;
}
EXPORT_SYMBOL_GPL(spi_sync);

531 532
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
533 534 535 536 537 538 539 540 541 542 543 544 545 546

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
 * @rxbuf: buffer into which data will be read
 * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
547
 * This call may only be used from a context that may sleep.
548
 *
549 550 551
 * Parameters to this routine are always copied using a small buffer;
 * performance-sensitive or bulk transfer code should instead use
 * spi_{async,sync}() calls with dma-safe buffers.
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
 */
int spi_write_then_read(struct spi_device *spi,
		const u8 *txbuf, unsigned n_tx,
		u8 *rxbuf, unsigned n_rx)
{
	static DECLARE_MUTEX(lock);

	int			status;
	struct spi_message	message;
	struct spi_transfer	x[2];
	u8			*local_buf;

	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
	 * (as a pure convenience thing), but we can keep heap costs
	 * out of the hot path ...
	 */
	if ((n_tx + n_rx) > SPI_BUFSIZ)
		return -EINVAL;

571 572 573 574 575 576 577 578 579 580 581
	spi_message_init(&message);
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	/* ... unless someone else is using the pre-allocated buffer */
	if (down_trylock(&lock)) {
		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
		if (!local_buf)
			return -ENOMEM;
	} else
		local_buf = buf;

	memcpy(local_buf, txbuf, n_tx);
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;

	/* do the i/o */
	status = spi_sync(spi, &message);
	if (status == 0) {
		memcpy(rxbuf, x[1].rx_buf, n_rx);
		status = message.status;
	}

	if (x[0].tx_buf == buf)
		up(&lock);
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
614 615
	int	status;

616
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
617 618 619 620 621 622 623 624
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
625

626 627 628
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
629
	return 0;
630 631 632 633 634 635 636 637

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
638
}
639

640 641
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
642 643 644 645
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
646 647 648
 */
subsys_initcall(spi_init);
新手
引导
客服 返回
顶部