main.c 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * Copyright (c) 2012 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/ieee80211.h>
#include <linux/wireless.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <linux/if_arp.h>

#include "wil6210.h"

/*
 * Due to a hardware issue,
 * one has to read/write to/from NIC in 32-bit chunks;
 * regular memcpy_fromio and siblings will
 * not work on 64-bit platform - it uses 64-bit transactions
 *
 * Force 32-bit transactions to enable NIC on 64-bit platforms
 *
 * To avoid byte swap on big endian host, __raw_{read|write}l
 * should be used - {read|write}l would swap bytes to provide
 * little endian on PCI value in host endianness.
 */
void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
			  size_t count)
{
	u32 *d = dst;
	const volatile u32 __iomem *s = src;

	/* size_t is unsigned, if (count%4 != 0) it will wrap */
	for (count += 4; count > 4; count -= 4)
		*d++ = __raw_readl(s++);
}

void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
			size_t count)
{
	volatile u32 __iomem *d = dst;
	const u32 *s = src;

	for (count += 4; count > 4; count -= 4)
		__raw_writel(*s++, d++);
}

static void _wil6210_disconnect(struct wil6210_priv *wil, void *bssid)
{
	uint i;
	struct net_device *ndev = wil_to_ndev(wil);
	struct wireless_dev *wdev = wil->wdev;

67
	wil_dbg_misc(wil, "%s()\n", __func__);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

	wil_link_off(wil);
	clear_bit(wil_status_fwconnected, &wil->status);

	switch (wdev->sme_state) {
	case CFG80211_SME_CONNECTED:
		cfg80211_disconnected(ndev, WLAN_STATUS_UNSPECIFIED_FAILURE,
				      NULL, 0, GFP_KERNEL);
		break;
	case CFG80211_SME_CONNECTING:
		cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
					WLAN_STATUS_UNSPECIFIED_FAILURE,
					GFP_KERNEL);
		break;
	default:
		;
	}

	for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++)
		wil_vring_fini_tx(wil, i);
88 89

	clear_bit(wil_status_dontscan, &wil->status);
90 91 92 93 94 95 96 97 98 99 100 101 102 103
}

static void wil_disconnect_worker(struct work_struct *work)
{
	struct wil6210_priv *wil = container_of(work,
			struct wil6210_priv, disconnect_worker);

	_wil6210_disconnect(wil, NULL);
}

static void wil_connect_timer_fn(ulong x)
{
	struct wil6210_priv *wil = (void *)x;

104
	wil_dbg_misc(wil, "Connect timeout\n");
105 106 107 108 109 110 111

	/* reschedule to thread context - disconnect won't
	 * run from atomic context
	 */
	schedule_work(&wil->disconnect_worker);
}

112 113 114 115 116 117 118 119 120
static void wil_cache_mbox_regs(struct wil6210_priv *wil)
{
	/* make shadow copy of registers that should not change on run time */
	wil_memcpy_fromio_32(&wil->mbox_ctl, wil->csr + HOST_MBOX,
			     sizeof(struct wil6210_mbox_ctl));
	wil_mbox_ring_le2cpus(&wil->mbox_ctl.rx);
	wil_mbox_ring_le2cpus(&wil->mbox_ctl.tx);
}

121 122
int wil_priv_init(struct wil6210_priv *wil)
{
123
	wil_dbg_misc(wil, "%s()\n", __func__);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

	mutex_init(&wil->mutex);
	mutex_init(&wil->wmi_mutex);

	init_completion(&wil->wmi_ready);

	wil->pending_connect_cid = -1;
	setup_timer(&wil->connect_timer, wil_connect_timer_fn, (ulong)wil);

	INIT_WORK(&wil->wmi_connect_worker, wmi_connect_worker);
	INIT_WORK(&wil->disconnect_worker, wil_disconnect_worker);
	INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);

	INIT_LIST_HEAD(&wil->pending_wmi_ev);
	spin_lock_init(&wil->wmi_ev_lock);

	wil->wmi_wq = create_singlethread_workqueue(WIL_NAME"_wmi");
	if (!wil->wmi_wq)
		return -EAGAIN;

	wil->wmi_wq_conn = create_singlethread_workqueue(WIL_NAME"_connect");
	if (!wil->wmi_wq_conn) {
		destroy_workqueue(wil->wmi_wq);
		return -EAGAIN;
	}

150
	wil_cache_mbox_regs(wil);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

	return 0;
}

void wil6210_disconnect(struct wil6210_priv *wil, void *bssid)
{
	del_timer_sync(&wil->connect_timer);
	_wil6210_disconnect(wil, bssid);
}

void wil_priv_deinit(struct wil6210_priv *wil)
{
	cancel_work_sync(&wil->disconnect_worker);
	wil6210_disconnect(wil, NULL);
	wmi_event_flush(wil);
	destroy_workqueue(wil->wmi_wq_conn);
	destroy_workqueue(wil->wmi_wq);
}

static void wil_target_reset(struct wil6210_priv *wil)
{
172
	wil_dbg_misc(wil, "Resetting...\n");
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

	/* register write */
#define W(a, v) iowrite32(v, wil->csr + HOSTADDR(a))
	/* register set = read, OR, write */
#define S(a, v) iowrite32(ioread32(wil->csr + HOSTADDR(a)) | v, \
		wil->csr + HOSTADDR(a))

	/* hpal_perst_from_pad_src_n_mask */
	S(RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT(6));
	/* car_perst_rst_src_n_mask */
	S(RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT(7));

	W(RGF_USER_MAC_CPU_0,  BIT(1)); /* mac_cpu_man_rst */
	W(RGF_USER_USER_CPU_0, BIT(1)); /* user_cpu_man_rst */

	msleep(100);

	W(RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xFE000000);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003F);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000170);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xFFE7FC00);

	msleep(100);

	W(RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);

	W(RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000001);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00000080);
	W(RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);

	msleep(2000);

	W(RGF_USER_USER_CPU_0, BIT(0)); /* user_cpu_man_de_rst */

	msleep(2000);

212
	wil_dbg_misc(wil, "Reset completed\n");
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

#undef W
#undef S
}

void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
{
	le32_to_cpus(&r->base);
	le16_to_cpus(&r->entry_size);
	le16_to_cpus(&r->size);
	le32_to_cpus(&r->tail);
	le32_to_cpus(&r->head);
}

static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
{
	ulong to = msecs_to_jiffies(1000);
	ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
	if (0 == left) {
		wil_err(wil, "Firmware not ready\n");
		return -ETIME;
	} else {
235
		wil_dbg_misc(wil, "FW ready after %d ms\n",
236
			     jiffies_to_msecs(to-left));
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	}
	return 0;
}

/*
 * We reset all the structures, and we reset the UMAC.
 * After calling this routine, you're expected to reload
 * the firmware.
 */
int wil_reset(struct wil6210_priv *wil)
{
	int rc;

	cancel_work_sync(&wil->disconnect_worker);
	wil6210_disconnect(wil, NULL);

253 254 255
	wil6210_disable_irq(wil);
	wil->status = 0;

256 257 258
	wmi_event_flush(wil);

	flush_workqueue(wil->wmi_wq_conn);
259
	flush_workqueue(wil->wmi_wq);
260 261 262 263 264 265 266 267

	/* TODO: put MAC in reset */
	wil_target_reset(wil);

	/* init after reset */
	wil->pending_connect_cid = -1;
	INIT_COMPLETION(wil->wmi_ready);

268
	wil_cache_mbox_regs(wil);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

	/* TODO: release MAC reset */
	wil6210_enable_irq(wil);

	/* we just started MAC, wait for FW ready */
	rc = wil_wait_for_fw_ready(wil);

	return rc;
}


void wil_link_on(struct wil6210_priv *wil)
{
	struct net_device *ndev = wil_to_ndev(wil);

284
	wil_dbg_misc(wil, "%s()\n", __func__);
285 286 287 288 289 290 291 292 293

	netif_carrier_on(ndev);
	netif_tx_wake_all_queues(ndev);
}

void wil_link_off(struct wil6210_priv *wil)
{
	struct net_device *ndev = wil_to_ndev(wil);

294
	wil_dbg_misc(wil, "%s()\n", __func__);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

	netif_tx_stop_all_queues(ndev);
	netif_carrier_off(ndev);
}

static int __wil_up(struct wil6210_priv *wil)
{
	struct net_device *ndev = wil_to_ndev(wil);
	struct wireless_dev *wdev = wil->wdev;
	struct ieee80211_channel *channel = wdev->preset_chandef.chan;
	int rc;
	int bi;
	u16 wmi_nettype = wil_iftype_nl2wmi(wdev->iftype);

	rc = wil_reset(wil);
	if (rc)
		return rc;

	/* FIXME Firmware works now in PBSS mode(ToDS=0, FromDS=0) */
	wmi_nettype = wil_iftype_nl2wmi(NL80211_IFTYPE_ADHOC);
	switch (wdev->iftype) {
	case NL80211_IFTYPE_STATION:
317
		wil_dbg_misc(wil, "type: STATION\n");
318 319 320 321
		bi = 0;
		ndev->type = ARPHRD_ETHER;
		break;
	case NL80211_IFTYPE_AP:
322
		wil_dbg_misc(wil, "type: AP\n");
323 324 325 326
		bi = 100;
		ndev->type = ARPHRD_ETHER;
		break;
	case NL80211_IFTYPE_P2P_CLIENT:
327
		wil_dbg_misc(wil, "type: P2P_CLIENT\n");
328 329 330 331
		bi = 0;
		ndev->type = ARPHRD_ETHER;
		break;
	case NL80211_IFTYPE_P2P_GO:
332
		wil_dbg_misc(wil, "type: P2P_GO\n");
333 334 335 336
		bi = 100;
		ndev->type = ARPHRD_ETHER;
		break;
	case NL80211_IFTYPE_MONITOR:
337
		wil_dbg_misc(wil, "type: Monitor\n");
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		bi = 0;
		ndev->type = ARPHRD_IEEE80211_RADIOTAP;
		/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
		break;
	default:
		return -EOPNOTSUPP;
	}

	/* Apply profile in the following order: */
	/* SSID and channel for the AP */
	switch (wdev->iftype) {
	case NL80211_IFTYPE_AP:
	case NL80211_IFTYPE_P2P_GO:
		if (wdev->ssid_len == 0) {
			wil_err(wil, "SSID not set\n");
			return -EINVAL;
		}
		wmi_set_ssid(wil, wdev->ssid_len, wdev->ssid);
		if (channel)
			wmi_set_channel(wil, channel->hw_value);
		break;
	default:
		;
	}

	/* MAC address - pre-requisite for other commands */
	wmi_set_mac_address(wil, ndev->dev_addr);

	/* Set up beaconing if required. */
	rc = wmi_set_bcon(wil, bi, wmi_nettype);
	if (rc)
		return rc;

	/* Rx VRING. After MAC and beacon */
	wil_rx_init(wil);

	return 0;
}

int wil_up(struct wil6210_priv *wil)
{
	int rc;

	mutex_lock(&wil->mutex);
	rc = __wil_up(wil);
	mutex_unlock(&wil->mutex);

	return rc;
}

static int __wil_down(struct wil6210_priv *wil)
{
	if (wil->scan_request) {
		cfg80211_scan_done(wil->scan_request, true);
		wil->scan_request = NULL;
	}

	wil6210_disconnect(wil, NULL);
	wil_rx_fini(wil);

	return 0;
}

int wil_down(struct wil6210_priv *wil)
{
	int rc;

	mutex_lock(&wil->mutex);
	rc = __wil_down(wil);
	mutex_unlock(&wil->mutex);

	return rc;
}