fw-iso.c 8.2 KB
Newer Older
1
/*
2 3 4
 * Isochronous I/O functionality:
 *   - Isochronous DMA context management
 *   - Isochronous bus resource management (channels, bandwidth), client side
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/dma-mapping.h>
24 25 26
#include <linux/errno.h>
#include <linux/firewire-constants.h>
#include <linux/kernel.h>
27
#include <linux/mm.h>
28 29
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
30 31

#include "fw-topology.h"
32 33 34 35 36
#include "fw-transaction.h"

/*
 * Isochronous DMA context management
 */
37

38 39
int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
		       int page_count, enum dma_data_direction direction)
40
{
41
	int i, j;
42 43 44 45 46 47 48 49 50 51 52
	dma_addr_t address;

	buffer->page_count = page_count;
	buffer->direction = direction;

	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
				GFP_KERNEL);
	if (buffer->pages == NULL)
		goto out;

	for (i = 0; i < buffer->page_count; i++) {
53
		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
54 55
		if (buffer->pages[i] == NULL)
			goto out_pages;
S
Stefan Richter 已提交
56

57 58
		address = dma_map_page(card->device, buffer->pages[i],
				       0, PAGE_SIZE, direction);
59
		if (dma_mapping_error(card->device, address)) {
60 61 62 63
			__free_page(buffer->pages[i]);
			goto out_pages;
		}
		set_page_private(buffer->pages[i], address);
64 65 66
	}

	return 0;
67

68 69 70 71
 out_pages:
	for (j = 0; j < i; j++) {
		address = page_private(buffer->pages[j]);
		dma_unmap_page(card->device, address,
72
			       PAGE_SIZE, DMA_TO_DEVICE);
73 74 75 76 77
		__free_page(buffer->pages[j]);
	}
	kfree(buffer->pages);
 out:
	buffer->pages = NULL;
78
	return -ENOMEM;
79 80 81 82 83
}

int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
{
	unsigned long uaddr;
84
	int i, ret;
85 86 87

	uaddr = vma->vm_start;
	for (i = 0; i < buffer->page_count; i++) {
88 89 90
		ret = vm_insert_page(vma, uaddr, buffer->pages[i]);
		if (ret)
			return ret;
91 92 93 94
		uaddr += PAGE_SIZE;
	}

	return 0;
95 96
}

97 98
void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
			   struct fw_card *card)
99 100
{
	int i;
101
	dma_addr_t address;
102

103 104 105
	for (i = 0; i < buffer->page_count; i++) {
		address = page_private(buffer->pages[i]);
		dma_unmap_page(card->device, address,
106
			       PAGE_SIZE, DMA_TO_DEVICE);
107 108
		__free_page(buffer->pages[i]);
	}
109

110 111
	kfree(buffer->pages);
	buffer->pages = NULL;
112 113
}

114 115 116
struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
		int type, int channel, int speed, size_t header_size,
		fw_iso_callback_t callback, void *callback_data)
117 118 119
{
	struct fw_iso_context *ctx;

120 121
	ctx = card->driver->allocate_iso_context(card,
						 type, channel, header_size);
122 123 124 125 126
	if (IS_ERR(ctx))
		return ctx;

	ctx->card = card;
	ctx->type = type;
127 128
	ctx->channel = channel;
	ctx->speed = speed;
129
	ctx->header_size = header_size;
130 131 132 133 134 135 136 137 138 139 140 141 142
	ctx->callback = callback;
	ctx->callback_data = callback_data;

	return ctx;
}

void fw_iso_context_destroy(struct fw_iso_context *ctx)
{
	struct fw_card *card = ctx->card;

	card->driver->free_iso_context(ctx);
}

143 144
int fw_iso_context_start(struct fw_iso_context *ctx,
			 int cycle, int sync, int tags)
145
{
146
	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
147 148
}

149 150 151 152
int fw_iso_context_queue(struct fw_iso_context *ctx,
			 struct fw_iso_packet *packet,
			 struct fw_iso_buffer *buffer,
			 unsigned long payload)
153 154 155
{
	struct fw_card *card = ctx->card;

156
	return card->driver->queue_iso(ctx, packet, buffer, payload);
157
}
158

159
int fw_iso_context_stop(struct fw_iso_context *ctx)
160 161 162
{
	return ctx->card->driver->stop_iso(ctx);
}
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

/*
 * Isochronous bus resource management (channels, bandwidth), client side
 */

static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
			    int bandwidth, bool allocate)
{
	__be32 data[2];
	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;

	/*
	 * On a 1394a IRM with low contention, try < 1 is enough.
	 * On a 1394-1995 IRM, we need at least try < 2.
	 * Let's just do try < 5.
	 */
	for (try = 0; try < 5; try++) {
		new = allocate ? old - bandwidth : old + bandwidth;
		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
			break;

		data[0] = cpu_to_be32(old);
		data[1] = cpu_to_be32(new);
		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
				data, sizeof(data))) {
		case RCODE_GENERATION:
			/* A generation change frees all bandwidth. */
			return allocate ? -EAGAIN : bandwidth;

		case RCODE_COMPLETE:
			if (be32_to_cpup(data) == old)
				return bandwidth;

			old = be32_to_cpup(data);
			/* Fall through. */
		}
	}

	return -EIO;
}

static int manage_channel(struct fw_card *card, int irm_id, int generation,
			  __be32 channels_mask, u64 offset, bool allocate)
{
	__be32 data[2], c, old = allocate ? cpu_to_be32(~0) : 0;
	int i, retry = 5;

	for (i = 0; i < 32; i++) {
		c = cpu_to_be32(1 << (31 - i));
		if (!(channels_mask & c))
			continue;

		if (allocate == !(old & c))
			continue;

		data[0] = old;
		data[1] = old ^ c;
		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
					   irm_id, generation, SCODE_100,
					   offset, data, sizeof(data))) {
		case RCODE_GENERATION:
			/* A generation change frees all channels. */
			return allocate ? -EAGAIN : i;

		case RCODE_COMPLETE:
			if (data[0] == old)
				return i;

			old = data[0];

			/* Is the IRM 1394a-2000 compliant? */
			if ((data[0] & c) != (data[1] & c))
				continue;

			/* 1394-1995 IRM, fall through to retry. */
		default:
			if (retry--)
				i--;
		}
	}

	return -EIO;
}

static void deallocate_channel(struct fw_card *card, int irm_id,
			       int generation, int channel)
{
	__be32 mask;
	u64 offset;

	mask = channel < 32 ? cpu_to_be32(1 << (31 - channel)) :
			      cpu_to_be32(1 << (63 - channel));
	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;

	manage_channel(card, irm_id, generation, mask, offset, false);
}

/**
 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
 *
 * In parameters: card, generation, channels_mask, bandwidth, allocate
 * Out parameters: channel, bandwidth
 * This function blocks (sleeps) during communication with the IRM.
 * Allocates or deallocates at most one channel out of channels_mask.
 *
 * Returns channel < 0 if no channel was allocated or deallocated.
 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
 *
 * If generation is stale, deallocations succeed but allocations fail with
 * channel = -EAGAIN.
 *
 * If channel (de)allocation fails, bandwidth (de)allocation fails too.
 * If bandwidth allocation fails, no channel will be allocated either.
 * If bandwidth deallocation fails, channel deallocation may still have been
 * successful.
 */
void fw_iso_resource_manage(struct fw_card *card, int generation,
			    u64 channels_mask, int *channel, int *bandwidth,
			    bool allocate)
{
	__be32 channels_hi = cpu_to_be32(channels_mask >> 32);
	__be32 channels_lo = cpu_to_be32(channels_mask);
	int irm_id, ret, c = -EINVAL;

	spin_lock_irq(&card->lock);
	irm_id = card->irm_node->node_id;
	spin_unlock_irq(&card->lock);

	if (channels_hi)
		c = manage_channel(card, irm_id, generation, channels_hi,
		    CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, allocate);
	if (channels_lo && c < 0) {
		c = manage_channel(card, irm_id, generation, channels_lo,
		    CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, allocate);
		if (c >= 0)
			c += 32;
	}
	*channel = c;

	if (channels_mask != 0 && c < 0)
		*bandwidth = 0;

	if (*bandwidth == 0)
		return;

	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
	if (ret < 0)
		*bandwidth = 0;

	if (ret < 0 && c >= 0 && allocate) {
		deallocate_channel(card, irm_id, generation, c);
		*channel = ret;
	}
}