async.c 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/*
 * async.c: Asynchronous function calls for boot performance
 *
 * (C) Copyright 2009 Intel Corporation
 * Author: Arjan van de Ven <arjan@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */


/*

Goals and Theory of Operation

The primary goal of this feature is to reduce the kernel boot time,
by doing various independent hardware delays and discovery operations
decoupled and not strictly serialized.

More specifically, the asynchronous function call concept allows
certain operations (primarily during system boot) to happen
asynchronously, out of order, while these operations still
have their externally visible parts happen sequentially and in-order.
(not unlike how out-of-order CPUs retire their instructions in order)

Key to the asynchronous function call implementation is the concept of
a "sequence cookie" (which, although it has an abstracted type, can be
thought of as a monotonically incrementing number).

The async core will assign each scheduled event such a sequence cookie and
pass this to the called functions.

The asynchronously called function should before doing a globally visible
operation, such as registering device numbers, call the
async_synchronize_cookie() function and pass in its own cookie. The
async_synchronize_cookie() function will make sure that all asynchronous
operations that were scheduled prior to the operation corresponding with the
cookie have completed.

Subsystem/driver initialization code that scheduled asynchronous probe
functions, but which shares global resources with other drivers/subsystems
that do not use the asynchronous call feature, need to do a full
synchronization with the async_synchronize_full() function, before returning
from their init function. This is to maintain strict ordering between the
asynchronous and synchronous parts of the kernel.

*/

#include <linux/async.h>
#include <linux/module.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kthread.h>
57
#include <linux/delay.h>
58 59 60 61 62 63 64 65 66 67 68
#include <asm/atomic.h>

static async_cookie_t next_cookie = 1;

#define MAX_THREADS	256
#define MAX_WORK	32768

static LIST_HEAD(async_pending);
static LIST_HEAD(async_running);
static DEFINE_SPINLOCK(async_lock);

69 70
static int async_enabled = 0;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
struct async_entry {
	struct list_head list;
	async_cookie_t   cookie;
	async_func_ptr	 *func;
	void             *data;
	struct list_head *running;
};

static DECLARE_WAIT_QUEUE_HEAD(async_done);
static DECLARE_WAIT_QUEUE_HEAD(async_new);

static atomic_t entry_count;
static atomic_t thread_count;

extern int initcall_debug;


/*
 * MUST be called with the lock held!
 */
static async_cookie_t  __lowest_in_progress(struct list_head *running)
{
	struct async_entry *entry;
94 95
	if (!list_empty(running)) {
		entry = list_first_entry(running,
96 97
			struct async_entry, list);
		return entry->cookie;
98 99
	} else if (!list_empty(&async_pending)) {
		entry = list_first_entry(&async_pending,
100 101 102 103 104 105 106 107
			struct async_entry, list);
		return entry->cookie;
	} else {
		/* nothing in progress... next_cookie is "infinity" */
		return next_cookie;
	}

}
108 109 110 111 112 113 114 115 116 117 118

static async_cookie_t  lowest_in_progress(struct list_head *running)
{
	unsigned long flags;
	async_cookie_t ret;

	spin_lock_irqsave(&async_lock, flags);
	ret = __lowest_in_progress(running);
	spin_unlock_irqrestore(&async_lock, flags);
	return ret;
}
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*
 * pick the first pending entry and run it
 */
static void run_one_entry(void)
{
	unsigned long flags;
	struct async_entry *entry;
	ktime_t calltime, delta, rettime;

	/* 1) pick one task from the pending queue */

	spin_lock_irqsave(&async_lock, flags);
	if (list_empty(&async_pending))
		goto out;
	entry = list_first_entry(&async_pending, struct async_entry, list);

	/* 2) move it to the running queue */
	list_del(&entry->list);
137
	list_add_tail(&entry->list, entry->running);
138 139 140
	spin_unlock_irqrestore(&async_lock, flags);

	/* 3) run it (and print duration)*/
141
	if (initcall_debug && system_state == SYSTEM_BOOTING) {
142 143
		printk("calling  %lli_%pF @ %i\n", (long long)entry->cookie,
			entry->func, task_pid_nr(current));
144 145 146
		calltime = ktime_get();
	}
	entry->func(entry->data, entry->cookie);
147
	if (initcall_debug && system_state == SYSTEM_BOOTING) {
148 149
		rettime = ktime_get();
		delta = ktime_sub(rettime, calltime);
150 151 152 153
		printk("initcall %lli_%pF returned 0 after %lld usecs\n",
			(long long)entry->cookie,
			entry->func,
			(long long)ktime_to_ns(delta) >> 10);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	}

	/* 4) remove it from the running queue */
	spin_lock_irqsave(&async_lock, flags);
	list_del(&entry->list);

	/* 5) free the entry  */
	kfree(entry);
	atomic_dec(&entry_count);

	spin_unlock_irqrestore(&async_lock, flags);

	/* 6) wake up any waiters. */
	wake_up(&async_done);
	return;

out:
	spin_unlock_irqrestore(&async_lock, flags);
}


static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running)
{
	struct async_entry *entry;
	unsigned long flags;
	async_cookie_t newcookie;
	

	/* allow irq-off callers */
	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);

	/*
	 * If we're out of memory or if there's too much work
	 * pending already, we execute synchronously.
	 */
189
	if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) {
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		kfree(entry);
		spin_lock_irqsave(&async_lock, flags);
		newcookie = next_cookie++;
		spin_unlock_irqrestore(&async_lock, flags);

		/* low on memory.. run synchronously */
		ptr(data, newcookie);
		return newcookie;
	}
	entry->func = ptr;
	entry->data = data;
	entry->running = running;

	spin_lock_irqsave(&async_lock, flags);
	newcookie = entry->cookie = next_cookie++;
	list_add_tail(&entry->list, &async_pending);
	atomic_inc(&entry_count);
	spin_unlock_irqrestore(&async_lock, flags);
	wake_up(&async_new);
	return newcookie;
}

C
Cornelia Huck 已提交
212 213 214 215 216 217 218 219
/**
 * async_schedule - schedule a function for asynchronous execution
 * @ptr: function to execute asynchronously
 * @data: data pointer to pass to the function
 *
 * Returns an async_cookie_t that may be used for checkpointing later.
 * Note: This function may be called from atomic or non-atomic contexts.
 */
220 221
async_cookie_t async_schedule(async_func_ptr *ptr, void *data)
{
222
	return __async_schedule(ptr, data, &async_running);
223 224 225
}
EXPORT_SYMBOL_GPL(async_schedule);

C
Cornelia Huck 已提交
226
/**
227
 * async_schedule_domain - schedule a function for asynchronous execution within a certain domain
C
Cornelia Huck 已提交
228 229
 * @ptr: function to execute asynchronously
 * @data: data pointer to pass to the function
230
 * @running: running list for the domain
C
Cornelia Huck 已提交
231 232
 *
 * Returns an async_cookie_t that may be used for checkpointing later.
233 234 235
 * @running may be used in the async_synchronize_*_domain() functions
 * to wait within a certain synchronization domain rather than globally.
 * A synchronization domain is specified via the running queue @running to use.
C
Cornelia Huck 已提交
236 237
 * Note: This function may be called from atomic or non-atomic contexts.
 */
238 239
async_cookie_t async_schedule_domain(async_func_ptr *ptr, void *data,
				     struct list_head *running)
240 241 242
{
	return __async_schedule(ptr, data, running);
}
243
EXPORT_SYMBOL_GPL(async_schedule_domain);
244

C
Cornelia Huck 已提交
245 246 247 248 249
/**
 * async_synchronize_full - synchronize all asynchronous function calls
 *
 * This function waits until all asynchronous function calls have been done.
 */
250 251
void async_synchronize_full(void)
{
252 253 254
	do {
		async_synchronize_cookie(next_cookie);
	} while (!list_empty(&async_running) || !list_empty(&async_pending));
255 256 257
}
EXPORT_SYMBOL_GPL(async_synchronize_full);

C
Cornelia Huck 已提交
258
/**
259
 * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
C
Cornelia Huck 已提交
260 261
 * @list: running list to synchronize on
 *
262 263
 * This function waits until all asynchronous function calls for the
 * synchronization domain specified by the running list @list have been done.
C
Cornelia Huck 已提交
264
 */
265
void async_synchronize_full_domain(struct list_head *list)
266
{
267
	async_synchronize_cookie_domain(next_cookie, list);
268
}
269
EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
270

C
Cornelia Huck 已提交
271
/**
272
 * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
C
Cornelia Huck 已提交
273 274 275
 * @cookie: async_cookie_t to use as checkpoint
 * @running: running list to synchronize on
 *
276 277 278
 * This function waits until all asynchronous function calls for the
 * synchronization domain specified by the running list @list submitted
 * prior to @cookie have been done.
C
Cornelia Huck 已提交
279
 */
280 281
void async_synchronize_cookie_domain(async_cookie_t cookie,
				     struct list_head *running)
282 283 284
{
	ktime_t starttime, delta, endtime;

285
	if (initcall_debug && system_state == SYSTEM_BOOTING) {
286 287 288 289
		printk("async_waiting @ %i\n", task_pid_nr(current));
		starttime = ktime_get();
	}

290
	wait_event(async_done, lowest_in_progress(running) >= cookie);
291

292
	if (initcall_debug && system_state == SYSTEM_BOOTING) {
293 294 295 296
		endtime = ktime_get();
		delta = ktime_sub(endtime, starttime);

		printk("async_continuing @ %i after %lli usec\n",
297 298
			task_pid_nr(current),
			(long long)ktime_to_ns(delta) >> 10);
299 300
	}
}
301
EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
302

C
Cornelia Huck 已提交
303 304 305 306 307 308 309
/**
 * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
 * @cookie: async_cookie_t to use as checkpoint
 *
 * This function waits until all asynchronous function calls prior to @cookie
 * have been done.
 */
310 311
void async_synchronize_cookie(async_cookie_t cookie)
{
312
	async_synchronize_cookie_domain(cookie, &async_running);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
}
EXPORT_SYMBOL_GPL(async_synchronize_cookie);


static int async_thread(void *unused)
{
	DECLARE_WAITQUEUE(wq, current);
	add_wait_queue(&async_new, &wq);

	while (!kthread_should_stop()) {
		int ret = HZ;
		set_current_state(TASK_INTERRUPTIBLE);
		/*
		 * check the list head without lock.. false positives
		 * are dealt with inside run_one_entry() while holding
		 * the lock.
		 */
		rmb();
		if (!list_empty(&async_pending))
			run_one_entry();
		else
			ret = schedule_timeout(HZ);

		if (ret == 0) {
			/*
			 * we timed out, this means we as thread are redundant.
			 * we sign off and die, but we to avoid any races there
			 * is a last-straw check to see if work snuck in.
			 */
			atomic_dec(&thread_count);
			wmb(); /* manager must see our departure first */
			if (list_empty(&async_pending))
				break;
			/*
			 * woops work came in between us timing out and us
			 * signing off; we need to stay alive and keep working.
			 */
			atomic_inc(&thread_count);
		}
	}
	remove_wait_queue(&async_new, &wq);

	return 0;
}

static int async_manager_thread(void *unused)
{
	DECLARE_WAITQUEUE(wq, current);
	add_wait_queue(&async_new, &wq);

	while (!kthread_should_stop()) {
		int tc, ec;

		set_current_state(TASK_INTERRUPTIBLE);

		tc = atomic_read(&thread_count);
		rmb();
		ec = atomic_read(&entry_count);

		while (tc < ec && tc < MAX_THREADS) {
373 374 375 376 377
			if (IS_ERR(kthread_run(async_thread, NULL, "async/%i",
					       tc))) {
				msleep(100);
				continue;
			}
378 379 380 381 382 383 384 385 386 387 388 389 390
			atomic_inc(&thread_count);
			tc++;
		}

		schedule();
	}
	remove_wait_queue(&async_new, &wq);

	return 0;
}

static int __init async_init(void)
{
391
	if (async_enabled)
392 393 394
		if (IS_ERR(kthread_run(async_manager_thread, NULL,
				       "async/mgr")))
			async_enabled = 0;
395 396 397
	return 0;
}

398 399 400 401 402 403 404 405 406
static int __init setup_async(char *str)
{
	async_enabled = 1;
	return 1;
}

__setup("fastboot", setup_async);


407
core_initcall(async_init);