ucb1400_ts.c 12.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Philips UCB1400 touchscreen driver
 *
 *  Author:	Nicolas Pitre
 *  Created:	September 25, 2006
 *  Copyright:	MontaVista Software, Inc.
 *
8
 * Spliting done by: Marek Vasut <marek.vasut@gmail.com>
L
Lucas De Marchi 已提交
9
 * If something doesn't work and it worked before spliting, e-mail me,
10 11
 * dont bother Nicolas please ;-)
 *
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
 * covering the UCB1100, UCB1200 and UCB1300..  Support for the UCB1400 has
 * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/suspend.h>
#include <linux/kthread.h>
30
#include <linux/freezer.h>
31
#include <linux/ucb1400.h>
32 33

static int adcsync;
34 35
static int ts_delay = 55; /* us */
static int ts_delay_pressure;	/* us */
36 37

/* Switch to interrupt mode. */
38
static void ucb1400_ts_mode_int(struct snd_ac97 *ac97)
39
{
40
	ucb1400_reg_write(ac97, UCB_TS_CR,
41 42 43 44 45 46 47 48 49
			UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
			UCB_TS_CR_MODE_INT);
}

/*
 * Switch to pressure mode, and read pressure.  We don't need to wait
 * here, since both plates are being driven.
 */
50
static unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
51
{
52
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
53 54 55
			UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
56
	udelay(ts_delay_pressure);
57
	return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
58 59 60 61 62 63 64 65
}

/*
 * Switch to X position mode and measure Y plate.  We switch the plate
 * configuration in pressure mode, then switch to position mode.  This
 * gives a faster response time.  Even so, we need to wait about 55us
 * for things to stabilise.
 */
66
static unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
67
{
68
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
69 70
			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
71
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
72 73
			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
74
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
75 76 77
			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);

78
	udelay(ts_delay);
79

80
	return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
81 82 83 84 85 86 87 88
}

/*
 * Switch to Y position mode and measure X plate.  We switch the plate
 * configuration in pressure mode, then switch to position mode.  This
 * gives a faster response time.  Even so, we need to wait about 55us
 * for things to stabilise.
 */
89
static int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
90
{
91
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
92 93
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
94
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
95 96
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
97
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
98 99 100
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
			UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);

101
	udelay(ts_delay);
102

103
	return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
104 105 106 107 108 109
}

/*
 * Switch to X plate resistance mode.  Set MX to ground, PX to
 * supply.  Measure current.
 */
110
static unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
111
{
112
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
113 114
			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
115
	return ucb1400_adc_read(ucb->ac97, 0, adcsync);
116 117 118 119 120 121
}

/*
 * Switch to Y plate resistance mode.  Set MY to ground, PY to
 * supply.  Measure current.
 */
122
static unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
123
{
124
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
125 126
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
127
	return ucb1400_adc_read(ucb->ac97, 0, adcsync);
128 129
}

130
static int ucb1400_ts_pen_up(struct snd_ac97 *ac97)
131
{
132
	unsigned short val = ucb1400_reg_read(ac97, UCB_TS_CR);
133

134
	return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
135 136
}

137
static void ucb1400_ts_irq_enable(struct snd_ac97 *ac97)
138
{
139 140 141
	ucb1400_reg_write(ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
	ucb1400_reg_write(ac97, UCB_IE_CLEAR, 0);
	ucb1400_reg_write(ac97, UCB_IE_FAL, UCB_IE_TSPX);
142 143
}

144
static void ucb1400_ts_irq_disable(struct snd_ac97 *ac97)
145
{
146
	ucb1400_reg_write(ac97, UCB_IE_FAL, 0);
147 148 149 150 151 152 153
}

static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
{
	input_report_abs(idev, ABS_X, x);
	input_report_abs(idev, ABS_Y, y);
	input_report_abs(idev, ABS_PRESSURE, pressure);
154
	input_report_key(idev, BTN_TOUCH, 1);
155 156 157 158 159 160
	input_sync(idev);
}

static void ucb1400_ts_event_release(struct input_dev *idev)
{
	input_report_abs(idev, ABS_PRESSURE, 0);
161
	input_report_key(idev, BTN_TOUCH, 0);
162 163 164
	input_sync(idev);
}

165
static void ucb1400_handle_pending_irq(struct ucb1400_ts *ucb)
166 167 168
{
	unsigned int isr;

169 170 171
	isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
	ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
	ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
172

173
	if (isr & UCB_IE_TSPX)
174
		ucb1400_ts_irq_disable(ucb->ac97);
175 176 177
	else
		dev_dbg(&ucb->ts_idev->dev, "ucb1400: unexpected IE_STATUS = %#x\n", isr);
	enable_irq(ucb->irq);
178 179 180 181
}

static int ucb1400_ts_thread(void *_ucb)
{
182
	struct ucb1400_ts *ucb = _ucb;
183 184
	struct task_struct *tsk = current;
	int valid = 0;
185
	struct sched_param param = { .sched_priority = 1 };
186

187
	sched_setscheduler(tsk, SCHED_FIFO, &param);
188

189
	set_freezable();
190 191 192 193 194 195 196 197 198 199 200
	while (!kthread_should_stop()) {
		unsigned int x, y, p;
		long timeout;

		ucb->ts_restart = 0;

		if (ucb->irq_pending) {
			ucb->irq_pending = 0;
			ucb1400_handle_pending_irq(ucb);
		}

201
		ucb1400_adc_enable(ucb->ac97);
202 203 204
		x = ucb1400_ts_read_xpos(ucb);
		y = ucb1400_ts_read_ypos(ucb);
		p = ucb1400_ts_read_pressure(ucb);
205
		ucb1400_adc_disable(ucb->ac97);
206 207

		/* Switch back to interrupt mode. */
208
		ucb1400_ts_mode_int(ucb->ac97);
209 210 211

		msleep(10);

212
		if (ucb1400_ts_pen_up(ucb->ac97)) {
213
			ucb1400_ts_irq_enable(ucb->ac97);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

			/*
			 * If we spat out a valid sample set last time,
			 * spit out a "pen off" sample here.
			 */
			if (valid) {
				ucb1400_ts_event_release(ucb->ts_idev);
				valid = 0;
			}

			timeout = MAX_SCHEDULE_TIMEOUT;
		} else {
			valid = 1;
			ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
			timeout = msecs_to_jiffies(10);
		}

231
		wait_event_freezable_timeout(ucb->ts_wait,
232 233
			ucb->irq_pending || ucb->ts_restart ||
			kthread_should_stop(), timeout);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	}

	/* Send the "pen off" if we are stopping with the pen still active */
	if (valid)
		ucb1400_ts_event_release(ucb->ts_idev);

	ucb->ts_task = NULL;
	return 0;
}

/*
 * A restriction with interrupts exists when using the ucb1400, as
 * the codec read/write routines may sleep while waiting for codec
 * access completion and uses semaphores for access control to the
 * AC97 bus.  A complete codec read cycle could take  anywhere from
 * 60 to 100uSec so we *definitely* don't want to spin inside the
 * interrupt handler waiting for codec access.  So, we handle the
 * interrupt by scheduling a RT kernel thread to run in process
 * context instead of interrupt context.
 */
static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
{
256
	struct ucb1400_ts *ucb = devid;
257 258

	if (irqnr == ucb->irq) {
259
		disable_irq_nosync(ucb->irq);
260 261 262 263 264 265 266 267 268
		ucb->irq_pending = 1;
		wake_up(&ucb->ts_wait);
		return IRQ_HANDLED;
	}
	return IRQ_NONE;
}

static int ucb1400_ts_open(struct input_dev *idev)
{
269
	struct ucb1400_ts *ucb = input_get_drvdata(idev);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	int ret = 0;

	BUG_ON(ucb->ts_task);

	ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
	if (IS_ERR(ucb->ts_task)) {
		ret = PTR_ERR(ucb->ts_task);
		ucb->ts_task = NULL;
	}

	return ret;
}

static void ucb1400_ts_close(struct input_dev *idev)
{
285
	struct ucb1400_ts *ucb = input_get_drvdata(idev);
286 287 288 289

	if (ucb->ts_task)
		kthread_stop(ucb->ts_task);

290 291
	ucb1400_ts_irq_disable(ucb->ac97);
	ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
292 293 294 295 296 297 298 299 300 301
}

#ifndef NO_IRQ
#define NO_IRQ	0
#endif

/*
 * Try to probe our interrupt, rather than relying on lots of
 * hard-coded machine dependencies.
 */
302
static int __devinit ucb1400_ts_detect_irq(struct ucb1400_ts *ucb)
303 304 305 306 307 308
{
	unsigned long mask, timeout;

	mask = probe_irq_on();

	/* Enable the ADC interrupt. */
309 310 311 312
	ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
	ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
	ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
	ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
313 314

	/* Cause an ADC interrupt. */
315 316
	ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
	ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
317 318 319

	/* Wait for the conversion to complete. */
	timeout = jiffies + HZ/2;
320 321
	while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
						UCB_ADC_DAT_VALID)) {
322 323 324 325 326 327 328
		cpu_relax();
		if (time_after(jiffies, timeout)) {
			printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
			probe_irq_off(mask);
			return -ENODEV;
		}
	}
329
	ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
330 331

	/* Disable and clear interrupt. */
332 333 334 335
	ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
	ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
	ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
	ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
336 337 338 339 340 341 342 343 344

	/* Read triggered interrupt. */
	ucb->irq = probe_irq_off(mask);
	if (ucb->irq < 0 || ucb->irq == NO_IRQ)
		return -ENODEV;

	return 0;
}

345
static int __devinit ucb1400_ts_probe(struct platform_device *dev)
346
{
347
	int error, x_res, y_res;
348
	u16 fcsr;
349
	struct ucb1400_ts *ucb = dev->dev.platform_data;
350

351 352
	ucb->ts_idev = input_allocate_device();
	if (!ucb->ts_idev) {
353
		error = -ENOMEM;
354
		goto err;
355 356
	}

357 358 359 360 361 362 363
	/* Only in case the IRQ line wasn't supplied, try detecting it */
	if (ucb->irq < 0) {
		error = ucb1400_ts_detect_irq(ucb);
		if (error) {
			printk(KERN_ERR "UCB1400: IRQ probe failed\n");
			goto err_free_devs;
		}
364 365
	}

366 367
	init_waitqueue_head(&ucb->ts_wait);

368 369 370 371 372 373 374 375 376
	error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
				"UCB1400", ucb);
	if (error) {
		printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
				ucb->irq, error);
		goto err_free_devs;
	}
	printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);

377
	input_set_drvdata(ucb->ts_idev, ucb);
378

379 380 381 382 383 384 385
	ucb->ts_idev->dev.parent	= &dev->dev;
	ucb->ts_idev->name		= "UCB1400 touchscreen interface";
	ucb->ts_idev->id.vendor		= ucb1400_reg_read(ucb->ac97,
						AC97_VENDOR_ID1);
	ucb->ts_idev->id.product	= ucb->id;
	ucb->ts_idev->open		= ucb1400_ts_open;
	ucb->ts_idev->close		= ucb1400_ts_close;
386 387
	ucb->ts_idev->evbit[0]		= BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
	ucb->ts_idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
388

389 390 391 392 393 394 395 396
	/*
	 * Enable ADC filter to prevent horrible jitter on Colibri.
	 * This also further reduces jitter on boards where ADCSYNC
	 * pin is connected.
	 */
	fcsr = ucb1400_reg_read(ucb->ac97, UCB_FCSR);
	ucb1400_reg_write(ucb->ac97, UCB_FCSR, fcsr | UCB_FCSR_AVE);

397
	ucb1400_adc_enable(ucb->ac97);
398 399
	x_res = ucb1400_ts_read_xres(ucb);
	y_res = ucb1400_ts_read_yres(ucb);
400
	ucb1400_adc_disable(ucb->ac97);
401 402
	printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);

403 404 405
	input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
	input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
	input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
406

407
	error = input_register_device(ucb->ts_idev);
408 409 410 411 412
	if (error)
		goto err_free_irq;

	return 0;

413
err_free_irq:
414
	free_irq(ucb->irq, ucb);
415 416 417
err_free_devs:
	input_free_device(ucb->ts_idev);
err:
418 419 420
	return error;
}

421
static int __devexit ucb1400_ts_remove(struct platform_device *dev)
422
{
423
	struct ucb1400_ts *ucb = dev->dev.platform_data;
424 425 426

	free_irq(ucb->irq, ucb);
	input_unregister_device(ucb->ts_idev);
427

428 429 430
	return 0;
}

431 432
#ifdef CONFIG_PM_SLEEP
static int ucb1400_ts_resume(struct device *dev)
433
{
434
	struct ucb1400_ts *ucb = dev->platform_data;
435 436 437 438 439 440 441 442 443 444 445 446 447 448

	if (ucb->ts_task) {
		/*
		 * Restart the TS thread to ensure the
		 * TS interrupt mode is set up again
		 * after sleep.
		 */
		ucb->ts_restart = 1;
		wake_up(&ucb->ts_wait);
	}
	return 0;
}
#endif

449 450
static SIMPLE_DEV_PM_OPS(ucb1400_ts_pm_ops, NULL, ucb1400_ts_resume);

451 452
static struct platform_driver ucb1400_ts_driver = {
	.probe	= ucb1400_ts_probe,
453
	.remove	= __devexit_p(ucb1400_ts_remove),
454 455
	.driver	= {
		.name	= "ucb1400_ts",
456
		.owner	= THIS_MODULE,
457
		.pm	= &ucb1400_ts_pm_ops,
458
	},
459
};
460
module_platform_driver(ucb1400_ts_driver);
461

462 463 464 465
module_param(adcsync, bool, 0444);
MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");

module_param(ts_delay, int, 0444);
466 467
MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
			    " position read. Default = 55us.");
468 469 470

module_param(ts_delay_pressure, int, 0444);
MODULE_PARM_DESC(ts_delay_pressure,
471 472
		"delay between panel setup and pressure read."
		"  Default = 0us.");
473 474 475

MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
MODULE_LICENSE("GPL");