sched.c 11.9 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34 35
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
36 37
#include <linux/numa.h>
#include <linux/mutex.h>
38
#include <linux/notifier.h>
39 40 41 42 43

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
44
#include <asm/spu_priv1.h>
45 46
#include "spufs.h"

47
#define SPU_MIN_TIMESLICE 	(100 * HZ / 1000)
48

49
struct spu_prio_array {
50
	DECLARE_BITMAP(bitmap, MAX_PRIO);
51 52
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
53 54
	struct list_head active_list[MAX_NUMNODES];
	struct mutex active_mutex[MAX_NUMNODES];
55 56
};

57
static struct spu_prio_array *spu_prio;
58

59
static inline int node_allowed(int node)
60
{
61
	cpumask_t mask;
62

63 64 65 66 67 68
	if (!nr_cpus_node(node))
		return 0;
	mask = node_to_cpumask(node);
	if (!cpus_intersects(mask, current->cpus_allowed))
		return 0;
	return 1;
69 70
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/**
 * spu_add_to_active_list - add spu to active list
 * @spu:	spu to add to the active list
 */
static void spu_add_to_active_list(struct spu *spu)
{
	mutex_lock(&spu_prio->active_mutex[spu->node]);
	list_add_tail(&spu->list, &spu_prio->active_list[spu->node]);
	mutex_unlock(&spu_prio->active_mutex[spu->node]);
}

/**
 * spu_remove_from_active_list - remove spu from active list
 * @spu:       spu to remove from the active list
 */
86
static void spu_remove_from_active_list(struct spu *spu)
87 88 89 90
{
	int node = spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
91
	list_del_init(&spu->list);
92 93 94
	mutex_unlock(&spu_prio->active_mutex[node]);
}

95 96
static inline void mm_needs_global_tlbie(struct mm_struct *mm)
{
97 98
	int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;

99
	/* Global TLBIE broadcast required with SPEs. */
100
	__cpus_setall(&mm->cpu_vm_mask, nr);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);

static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
{
	blocking_notifier_call_chain(&spu_switch_notifier,
			    ctx ? ctx->object_id : 0, spu);
}

int spu_switch_event_register(struct notifier_block * n)
{
	return blocking_notifier_chain_register(&spu_switch_notifier, n);
}

int spu_switch_event_unregister(struct notifier_block * n)
{
	return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
}

121 122 123 124 125 126
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
127
{
128 129
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
130 131 132 133 134 135 136 137 138
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
	spu->mm = ctx->owner;
	mm_needs_global_tlbie(spu->mm);
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
139
	spu->stop_callback = spufs_stop_callback;
140
	spu->mfc_callback = spufs_mfc_callback;
141
	spu->dma_callback = spufs_dma_callback;
142
	mb();
143
	spu_unmap_mappings(ctx);
144
	spu_restore(&ctx->csa, spu);
145
	spu->timestamp = jiffies;
146
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
147
	spu_switch_notify(spu, ctx);
148
	spu_add_to_active_list(spu);
149
	ctx->state = SPU_STATE_RUNNABLE;
150 151
}

152 153 154 155 156
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
157
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
158
{
159 160
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
161

162
	spu_remove_from_active_list(spu);
163
	spu_switch_notify(spu, NULL);
164
	spu_unmap_mappings(ctx);
165
	spu_save(&ctx->csa, spu);
166
	spu->timestamp = jiffies;
167 168 169
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
170
	spu->stop_callback = NULL;
171
	spu->mfc_callback = NULL;
172
	spu->dma_callback = NULL;
173 174 175 176
	spu->mm = NULL;
	spu->pid = 0;
	ctx->ops = &spu_backing_ops;
	ctx->spu = NULL;
177
	spu->flags = 0;
178 179 180
	spu->ctx = NULL;
}

181 182 183 184 185
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
static void spu_add_to_rq(struct spu_context *ctx)
186
{
187 188 189 190
	spin_lock(&spu_prio->runq_lock);
	list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
	set_bit(ctx->prio, spu_prio->bitmap);
	spin_unlock(&spu_prio->runq_lock);
191
}
192

193 194 195 196 197
/**
 * spu_del_from_rq - remove a context from the runqueue
 * @ctx:       context to remove
 */
static void spu_del_from_rq(struct spu_context *ctx)
198
{
199 200 201 202 203 204
	spin_lock(&spu_prio->runq_lock);
	list_del_init(&ctx->rq);
	if (list_empty(&spu_prio->runq[ctx->prio]))
		clear_bit(ctx->prio, spu_prio->bitmap);
	spin_unlock(&spu_prio->runq_lock);
}
205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/**
 * spu_grab_context - remove one context from the runqueue
 * @prio:      priority of the context to be removed
 *
 * This function removes one context from the runqueue for priority @prio.
 * If there is more than one context with the given priority the first
 * task on the runqueue will be taken.
 *
 * Returns the spu_context it just removed.
 *
 * Must be called with spu_prio->runq_lock held.
 */
static struct spu_context *spu_grab_context(int prio)
{
	struct list_head *rq = &spu_prio->runq[prio];
221

222 223 224
	if (list_empty(rq))
		return NULL;
	return list_entry(rq->next, struct spu_context, rq);
225 226
}

227
static void spu_prio_wait(struct spu_context *ctx)
228
{
229
	DEFINE_WAIT(wait);
230

231
	set_bit(SPU_SCHED_WAKE, &ctx->sched_flags);
232
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
233
	if (!signal_pending(current)) {
234
		mutex_unlock(&ctx->state_mutex);
235
		schedule();
236
		mutex_lock(&ctx->state_mutex);
237
	}
238 239
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
240
	clear_bit(SPU_SCHED_WAKE, &ctx->sched_flags);
241 242
}

243 244 245 246 247 248 249 250
/**
 * spu_reschedule - try to find a runnable context for a spu
 * @spu:       spu available
 *
 * This function is called whenever a spu becomes idle.  It looks for the
 * most suitable runnable spu context and schedules it for execution.
 */
static void spu_reschedule(struct spu *spu)
251
{
252 253 254 255 256 257
	int best;

	spu_free(spu);

	spin_lock(&spu_prio->runq_lock);
	best = sched_find_first_bit(spu_prio->bitmap);
258
	if (best < MAX_PRIO) {
259
		struct spu_context *ctx = spu_grab_context(best);
260
		if (ctx && test_bit(SPU_SCHED_WAKE, &ctx->sched_flags))
261
			wake_up(&ctx->stop_wq);
262
	}
263
	spin_unlock(&spu_prio->runq_lock);
264 265
}

266
static struct spu *spu_get_idle(struct spu_context *ctx)
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
{
	struct spu *spu = NULL;
	int node = cpu_to_node(raw_smp_processor_id());
	int n;

	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(node))
			continue;
		spu = spu_alloc_node(node);
		if (spu)
			break;
	}
	return spu;
}
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
	 * exactly fair, but so far the whole spu schedule tries to keep
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(node))
			continue;

		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry(spu, &spu_prio->active_list[node], list) {
			struct spu_context *tmp = spu->ctx;

			if (tmp->rt_priority < ctx->rt_priority &&
			    (!victim || tmp->rt_priority < victim->rt_priority))
				victim = spu->ctx;
		}
		mutex_unlock(&spu_prio->active_mutex[node]);

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
			if (!spu) {
				/*
				 * This race can happen because we've dropped
				 * the active list mutex.  No a problem, just
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
			spu_unbind_context(spu, victim);
			mutex_unlock(&victim->state_mutex);
			return spu;
		}
	}

	return NULL;
}

351 352 353 354 355 356 357 358 359
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
 * Tries to find a free spu to run @ctx.  If no free spu is availble
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
360
int spu_activate(struct spu_context *ctx, unsigned long flags)
361 362
{

363 364 365 366 367 368 369
	if (ctx->spu)
		return 0;

	do {
		struct spu *spu;

		spu = spu_get_idle(ctx);
370 371 372 373 374 375
		/*
		 * If this is a realtime thread we try to get it running by
		 * preempting a lower priority thread.
		 */
		if (!spu && ctx->rt_priority)
			spu = find_victim(ctx);
376
		if (spu) {
377
			spu_bind_context(spu, ctx);
378
			return 0;
379
		}
380 381

		spu_add_to_rq(ctx);
382 383
		if (!(flags & SPU_ACTIVATE_NOWAKE))
			spu_prio_wait(ctx);
384 385 386 387
		spu_del_from_rq(ctx);
	} while (!signal_pending(current));

	return -ERESTARTSYS;
388 389
}

390 391 392 393 394 395 396
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
397 398
void spu_deactivate(struct spu_context *ctx)
{
399
	struct spu *spu = ctx->spu;
400

401 402
	if (spu) {
		spu_unbind_context(spu, ctx);
403
		spu_reschedule(spu);
404
	}
405 406
}

407 408 409 410 411 412 413 414
/**
 * spu_yield -  yield a physical spu if others are waiting
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
415 416 417
void spu_yield(struct spu_context *ctx)
{
	struct spu *spu;
418
	int need_yield = 0;
419

420
	if (mutex_trylock(&ctx->state_mutex)) {
421 422 423 424 425 426 427 428 429
		if ((spu = ctx->spu) != NULL) {
			int best = sched_find_first_bit(spu_prio->bitmap);
			if (best < MAX_PRIO) {
				pr_debug("%s: yielding SPU %d NODE %d\n",
					 __FUNCTION__, spu->number, spu->node);
				spu_deactivate(ctx);
				need_yield = 1;
			}
		}
430
		mutex_unlock(&ctx->state_mutex);
431
	}
432 433
	if (unlikely(need_yield))
		yield();
434 435 436 437 438 439
}

int __init spu_sched_init(void)
{
	int i;

440 441 442
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
	if (!spu_prio) {
		printk(KERN_WARNING "%s: Unable to allocate priority queue.\n",
443 444 445 446
		       __FUNCTION__);
		return 1;
	}
	for (i = 0; i < MAX_PRIO; i++) {
447
		INIT_LIST_HEAD(&spu_prio->runq[i]);
448
		__clear_bit(i, spu_prio->bitmap);
449
	}
450 451 452 453
	__set_bit(MAX_PRIO, spu_prio->bitmap);
	for (i = 0; i < MAX_NUMNODES; i++) {
		mutex_init(&spu_prio->active_mutex[i]);
		INIT_LIST_HEAD(&spu_prio->active_list[i]);
454
	}
455
	spin_lock_init(&spu_prio->runq_lock);
456 457 458 459 460
	return 0;
}

void __exit spu_sched_exit(void)
{
461 462 463 464 465 466 467 468 469 470 471
	struct spu *spu, *tmp;
	int node;

	for (node = 0; node < MAX_NUMNODES; node++) {
		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
					 list) {
			list_del_init(&spu->list);
			spu_free(spu);
		}
		mutex_unlock(&spu_prio->active_mutex[node]);
472
	}
473
	kfree(spu_prio);
474
}