machine.c 48.6 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	map_groups__init(&machine->kmaps, machine);
29
	RB_CLEAR_NODE(&machine->rb_node);
30
	dsos__init(&machine->dsos);
31 32

	machine->threads = RB_ROOT;
33
	pthread_rwlock_init(&machine->threads_lock, NULL);
34 35 36
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

37
	machine->vdso_info = NULL;
38
	machine->env = NULL;
39

40 41
	machine->pid = pid;

42
	machine->symbol_filter = NULL;
43
	machine->id_hdr_size = 0;
44
	machine->comm_exec = false;
45
	machine->kernel_start = 0;
46

47 48 49 50 51
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
52
		struct thread *thread = machine__findnew_thread(machine, -1,
53
								pid);
54 55 56 57 58 59
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60
		thread__set_comm(thread, comm, 0);
61
		thread__put(thread);
62 63
	}

64 65
	machine->current_tid = NULL;

66 67 68
	return 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

86
static void dsos__purge(struct dsos *dsos)
87 88 89
{
	struct dso *pos, *n;

90 91
	pthread_rwlock_wrlock(&dsos->lock);

92
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
93
		RB_CLEAR_NODE(&pos->rb_node);
94
		pos->root = NULL;
95 96
		list_del_init(&pos->node);
		dso__put(pos);
97
	}
98 99

	pthread_rwlock_unlock(&dsos->lock);
100
}
101

102 103 104
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
105
	pthread_rwlock_destroy(&dsos->lock);
106 107
}

108 109
void machine__delete_threads(struct machine *machine)
{
110
	struct rb_node *nd;
111

112 113
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
114 115 116 117
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
118
		__machine__remove_thread(machine, t, false);
119
	}
120
	pthread_rwlock_unlock(&machine->threads_lock);
121 122
}

123 124 125
void machine__exit(struct machine *machine)
{
	map_groups__exit(&machine->kmaps);
126
	dsos__exit(&machine->dsos);
127
	machine__exit_vdso(machine);
128
	zfree(&machine->root_dir);
129
	zfree(&machine->current_tid);
130
	pthread_rwlock_destroy(&machine->threads_lock);
131 132 133 134 135 136 137 138
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

139 140 141 142
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
143
	machines->symbol_filter = NULL;
144 145 146 147 148 149 150 151 152
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
153 154
			      const char *root_dir)
{
155
	struct rb_node **p = &machines->guests.rb_node;
156 157 158 159 160 161 162 163 164 165 166
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

167 168
	machine->symbol_filter = machines->symbol_filter;

169 170 171 172 173 174 175 176 177 178
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
179
	rb_insert_color(&machine->rb_node, &machines->guests);
180 181 182 183

	return machine;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

199 200 201 202 203 204 205 206 207 208 209 210 211
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

212
struct machine *machines__find(struct machines *machines, pid_t pid)
213
{
214
	struct rb_node **p = &machines->guests.rb_node;
215 216 217 218
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

219 220 221
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

238
struct machine *machines__findnew(struct machines *machines, pid_t pid)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
255
				seen = strlist__new(NULL, NULL);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

272 273
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
274 275 276
{
	struct rb_node *nd;

277
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

297
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
298 299 300 301
{
	struct rb_node *node;
	struct machine *machine;

302 303 304
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
305 306 307 308 309 310 311
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

312 313 314 315 316 317 318 319 320 321 322 323 324
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

325
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
326 327 328 329
	if (!leader)
		goto out_err;

	if (!leader->mg)
330
		leader->mg = map_groups__new(machine);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
347
		map_groups__put(th->mg);
348 349 350 351 352 353 354 355 356 357
	}

	th->mg = map_groups__get(leader->mg);

	return;

out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
}

358 359 360
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
361 362 363 364 365 366
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
367
	 * Front-end cache - TID lookups come in blocks,
368 369 370
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
371
	th = machine->last_match;
372 373 374 375 376 377
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return th;
		}

378
		machine->last_match = NULL;
379
	}
380 381 382 383 384

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

385
		if (th->tid == tid) {
386
			machine->last_match = th;
387
			machine__update_thread_pid(machine, th, pid);
388 389 390
			return th;
		}

391
		if (tid < th->tid)
392 393 394 395 396 397 398 399
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

400
	th = thread__new(pid, tid);
401 402 403
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
404 405 406 407 408 409 410 411 412

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
413
		if (thread__init_map_groups(th, machine)) {
414
			rb_erase_init(&th->rb_node, &machine->threads);
415
			RB_CLEAR_NODE(&th->rb_node);
416
			thread__delete(th);
417
			return NULL;
418
		}
419 420 421 422
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
423
		machine->last_match = th;
424 425 426 427 428
	}

	return th;
}

429 430 431 432 433
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

434 435
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
436
{
437 438 439 440 441 442
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
	th = thread__get(__machine__findnew_thread(machine, pid, tid));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
443 444
}

445 446
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
447
{
448 449 450 451 452
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
453
}
454

455 456 457 458 459 460 461 462 463
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

464 465
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
466
{
467 468 469
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
470
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
471
	int err = 0;
472

473 474 475
	if (exec)
		machine->comm_exec = true;

476 477 478
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

479 480
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
481
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
482
		err = -1;
483 484
	}

485 486 487
	thread__put(thread);

	return err;
488 489 490
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
491
				union perf_event *event, struct perf_sample *sample __maybe_unused)
492 493 494 495 496 497
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

498 499 500 501 502 503 504 505
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

506 507 508
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
509 510 511
{
	struct dso *dso;

512 513 514
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
515
	if (!dso) {
516
		dso = __dsos__addnew(&machine->dsos, m->name);
517
		if (dso == NULL)
518
			goto out_unlock;
519 520 521 522 523 524 525

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
526
		if (m->kmod && m->comp)
527
			dso->symtab_type++;
528 529 530

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
531 532
	}

533
	dso__get(dso);
534 535
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
536 537 538
	return dso;
}

539 540 541 542 543 544 545 546
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

547 548 549 550 551 552 553 554
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

555 556 557 558 559 560 561 562
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

563 564
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
565
{
566 567 568
	struct map *map = NULL;
	struct dso *dso;
	struct kmod_path m;
569

570
	if (kmod_path__parse_name(&m, filename))
571 572
		return NULL;

573 574 575 576 577
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
	if (map)
		goto out;

578
	dso = machine__findnew_module_dso(machine, &m, filename);
579 580 581
	if (dso == NULL)
		goto out;

582 583
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
584
		goto out;
585 586

	map_groups__insert(&machine->kmaps, map);
587 588 589

out:
	free(m.name);
590 591 592
	return map;
}

593
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
594 595
{
	struct rb_node *nd;
596
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
597

598
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
599
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
600
		ret += __dsos__fprintf(&pos->dsos.head, fp);
601 602 603 604 605
	}

	return ret;
}

606
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
607 608
				     bool (skip)(struct dso *dso, int parm), int parm)
{
609
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
610 611
}

612
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
613 614 615
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
616
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
617

618
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
619 620 621 622 623 624 625 626 627 628
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
629
	struct dso *kdso = machine__kernel_map(machine)->dso;
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

649 650
	pthread_rwlock_rdlock(&machine->threads_lock);

651 652 653 654 655 656
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

657 658
	pthread_rwlock_unlock(&machine->threads_lock);

659 660 661 662 663 664 665 666 667 668 669 670 671
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

672 673
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
674 675 676 677 678 679 680 681 682
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

683 684 685
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
686 687 688 689 690 691 692 693 694 695 696 697
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

698 699 700 701 702 703 704 705 706
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

707 708 709 710 711 712
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
713 714
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
715
{
716
	char filename[PATH_MAX];
717 718 719
	int i;
	const char *name;
	u64 addr = 0;
720

721
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
722 723 724 725

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

726 727 728 729 730 731 732 733
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
734

735
	return addr;
736 737 738 739 740
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
741
	u64 start = machine__get_running_kernel_start(machine, NULL);
742 743 744

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
745
		struct map *map;
746 747 748 749 750 751 752 753

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
754
		map = __machine__kernel_map(machine, type);
755
		kmap = map__kmap(map);
756 757 758
		if (!kmap)
			return -1;

759
		kmap->kmaps = &machine->kmaps;
760
		map_groups__insert(&machine->kmaps, map);
761 762 763 764 765 766 767 768 769 770 771
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
772
		struct map *map = __machine__kernel_map(machine, type);
773

774
		if (map == NULL)
775 776
			continue;

777 778
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
779
		if (kmap && kmap->ref_reloc_sym) {
780 781 782 783 784
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
785 786 787 788
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
789 790 791 792 793 794
		}

		machine->vmlinux_maps[type] = NULL;
	}
}

795
int machines__create_guest_kernel_maps(struct machines *machines)
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

844
void machines__destroy_kernel_maps(struct machines *machines)
845
{
846 847 848
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
849 850 851 852 853

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
854
		rb_erase(&pos->rb_node, &machines->guests);
855 856 857 858
		machine__delete(pos);
	}
}

859
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
860 861 862 863 864 865 866 867 868 869 870 871
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
872
	struct map *map = machine__kernel_map(machine);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
891
	struct map *map = machine__kernel_map(machine);
892 893
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

894
	if (ret > 0)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

967
static int map_groups__set_modules_path_dir(struct map_groups *mg,
968
				const char *dir_name, int depth)
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

993 994 995 996 997 998 999 1000 1001
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1002 1003 1004
			if (ret < 0)
				goto out;
		} else {
1005
			struct kmod_path m;
1006

1007 1008 1009
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1010

1011 1012
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1013

1014
			free(m.name);
1015

1016
			if (ret)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1035
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1036 1037 1038
		 machine->root_dir, version);
	free(version);

1039
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1040 1041
}

1042
static int machine__create_module(void *arg, const char *name, u64 start)
1043
{
1044
	struct machine *machine = arg;
1045
	struct map *map;
1046

1047
	map = machine__findnew_module_map(machine, start, name);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1058 1059 1060
	const char *modules;
	char path[PATH_MAX];

1061
	if (machine__is_default_guest(machine)) {
1062
		modules = symbol_conf.default_guest_modules;
1063 1064
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1065 1066 1067
		modules = path;
	}

1068
	if (symbol__restricted_filename(modules, "/proc/modules"))
1069 1070
		return -1;

1071
	if (modules__parse(modules, machine, machine__create_module))
1072 1073
		return -1;

1074 1075
	if (!machine__set_modules_path(machine))
		return 0;
1076

1077
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1078

1079
	return 0;
1080 1081 1082 1083 1084
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1085
	const char *name;
1086
	u64 addr = machine__get_running_kernel_start(machine, &name);
1087 1088
	if (!addr)
		return -1;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	if (kernel == NULL ||
	    __machine__create_kernel_maps(machine, kernel) < 0)
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1107 1108 1109 1110 1111 1112 1113

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1114 1115 1116
	return 0;
}

1117 1118 1119
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1133 1134
}

1135 1136 1137 1138
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1139
	list_for_each_entry(dso, &machine->dsos.head, node) {
1140 1141 1142 1143 1144 1145 1146
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1147 1148 1149 1150 1151 1152 1153 1154
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1155 1156 1157 1158
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1170 1171
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1183 1184 1185
		struct dso *kernel = NULL;
		struct dso *dso;

1186 1187
		pthread_rwlock_rdlock(&machine->dsos.lock);

1188
		list_for_each_entry(dso, &machine->dsos.head, node) {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1209 1210
				continue;

1211

1212 1213 1214 1215
			kernel = dso;
			break;
		}

1216 1217
		pthread_rwlock_unlock(&machine->dsos.lock);

1218
		if (kernel == NULL)
1219
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1220 1221 1222 1223
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1224 1225
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1226
			goto out_problem;
1227
		}
1228

1229 1230
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1249
			dso__load(kernel, machine__kernel_map(machine), NULL);
1250 1251 1252 1253 1254 1255 1256
		}
	}
	return 0;
out_problem:
	return -1;
}

1257
int machine__process_mmap2_event(struct machine *machine,
1258 1259
				 union perf_event *event,
				 struct perf_sample *sample __maybe_unused)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1279
					event->mmap2.tid);
1280 1281 1282 1283 1284 1285 1286 1287
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1288
	map = map__new(machine, event->mmap2.start,
1289 1290 1291 1292
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1293 1294
			event->mmap2.prot,
			event->mmap2.flags,
1295
			event->mmap2.filename, type, thread);
1296 1297

	if (map == NULL)
1298
		goto out_problem_map;
1299 1300

	thread__insert_map(thread, map);
1301
	thread__put(thread);
1302
	map__put(map);
1303 1304
	return 0;

1305 1306
out_problem_map:
	thread__put(thread);
1307 1308 1309 1310 1311
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1312 1313
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1314 1315 1316 1317
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
1318
	enum map_type type;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1332
	thread = machine__findnew_thread(machine, event->mmap.pid,
1333
					 event->mmap.tid);
1334 1335
	if (thread == NULL)
		goto out_problem;
1336 1337 1338 1339 1340 1341

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1342
	map = map__new(machine, event->mmap.start,
1343
			event->mmap.len, event->mmap.pgoff,
1344
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1345
			event->mmap.filename,
1346
			type, thread);
1347

1348
	if (map == NULL)
1349
		goto out_problem_map;
1350 1351

	thread__insert_map(thread, map);
1352
	thread__put(thread);
1353
	map__put(map);
1354 1355
	return 0;

1356 1357
out_problem_map:
	thread__put(thread);
1358 1359 1360 1361 1362
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1363
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1364
{
1365
	if (machine->last_match == th)
1366
		machine->last_match = NULL;
1367

1368
	BUG_ON(atomic_read(&th->refcnt) == 0);
1369 1370
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1371
	rb_erase_init(&th->rb_node, &machine->threads);
1372
	RB_CLEAR_NODE(&th->rb_node);
1373
	/*
1374 1375 1376
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1377 1378
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1379 1380
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1381
	thread__put(th);
1382 1383
}

1384 1385 1386 1387 1388
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1389 1390
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1391
{
1392 1393 1394
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1395 1396 1397
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1398
	int err = 0;
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1418
	/* if a thread currently exists for the thread id remove it */
1419
	if (thread != NULL) {
1420
		machine__remove_thread(machine, thread);
1421 1422
		thread__put(thread);
	}
1423

1424 1425
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1426 1427

	if (thread == NULL || parent == NULL ||
1428
	    thread__fork(thread, parent, sample->time) < 0) {
1429
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1430
		err = -1;
1431
	}
1432 1433
	thread__put(thread);
	thread__put(parent);
1434

1435
	return err;
1436 1437
}

1438 1439
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1440
{
1441 1442 1443
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1444 1445 1446 1447

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1448
	if (thread != NULL) {
1449
		thread__exited(thread);
1450 1451
		thread__put(thread);
	}
1452 1453 1454 1455

	return 0;
}

1456 1457
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1458 1459 1460 1461 1462
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1463
		ret = machine__process_comm_event(machine, event, sample); break;
1464
	case PERF_RECORD_MMAP:
1465
		ret = machine__process_mmap_event(machine, event, sample); break;
1466
	case PERF_RECORD_MMAP2:
1467
		ret = machine__process_mmap2_event(machine, event, sample); break;
1468
	case PERF_RECORD_FORK:
1469
		ret = machine__process_fork_event(machine, event, sample); break;
1470
	case PERF_RECORD_EXIT:
1471
		ret = machine__process_exit_event(machine, event, sample); break;
1472
	case PERF_RECORD_LOST:
1473
		ret = machine__process_lost_event(machine, event, sample); break;
1474 1475
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1476
	case PERF_RECORD_ITRACE_START:
1477
		ret = machine__process_itrace_start_event(machine, event); break;
1478 1479
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1480 1481 1482
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1483 1484 1485 1486 1487 1488 1489
	default:
		ret = -1;
		break;
	}

	return ret;
}
1490

1491
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1492
{
1493
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1494 1495 1496 1497
		return 1;
	return 0;
}

1498
static void ip__resolve_ams(struct thread *thread,
1499 1500 1501 1502 1503 1504
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1505 1506 1507 1508 1509 1510 1511
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1512
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1513 1514 1515 1516 1517 1518 1519

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1520
static void ip__resolve_data(struct thread *thread,
1521 1522 1523 1524 1525 1526
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1527
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1528 1529 1530 1531 1532 1533
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1534
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1535 1536
	}

1537 1538 1539 1540 1541 1542
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1543 1544
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1545 1546 1547 1548 1549 1550
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1551 1552
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1553 1554 1555 1556 1557
	mi->data_src.val = sample->data_src;

	return mi;
}

1558 1559 1560
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1561
			    u8 *cpumode,
1562 1563 1564 1565 1566 1567
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1568
	if (!cpumode) {
1569 1570
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1571
	} else {
1572 1573 1574
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1575
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1576 1577
				break;
			case PERF_CONTEXT_KERNEL:
1578
				*cpumode = PERF_RECORD_MISC_KERNEL;
1579 1580
				break;
			case PERF_CONTEXT_USER:
1581
				*cpumode = PERF_RECORD_MISC_USER;
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1595 1596
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1597 1598
	}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1612
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1613 1614
}

1615 1616
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1617 1618
{
	unsigned int i;
1619 1620
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1621 1622 1623 1624 1625

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1626 1627
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1628 1629 1630 1631 1632
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1686
{
K
Kan Liang 已提交
1687 1688
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1689
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1736
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1755
	int chain_nr = min(max_stack, (int)chain->nr);
1756
	u8 cpumode = PERF_RECORD_MISC_USER;
1757
	int i, j, err;
1758 1759 1760
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1770 1771 1772 1773 1774 1775
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1822
					       NULL, be[i].to);
1823 1824
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1825
						       NULL, be[i].from);
1826 1827 1828 1829 1830 1831 1832 1833 1834
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1835
	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1836 1837 1838 1839
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1840
	for (i = first_call; i < chain_nr; i++) {
1841 1842 1843
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1844
			j = i;
1845
		else
1846 1847 1848 1849 1850 1851 1852
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1853

1854
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1855 1856

		if (err)
1857
			return (err < 0) ? err : 0;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1870 1871 1872 1873 1874 1875
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1876
{
K
Kan Liang 已提交
1877 1878 1879
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1893
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1894
				   thread, sample, max_stack);
1895 1896

}
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1942
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1943
				  struct target *target, struct thread_map *threads,
1944 1945
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1946
{
1947
	if (target__has_task(target))
1948
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1949
	else if (target__has_cpu(target))
1950
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1951 1952 1953
	/* command specified */
	return 0;
}
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
1994
	thread__put(thread);
1995 1996 1997

	return 0;
}
1998 1999 2000

int machine__get_kernel_start(struct machine *machine)
{
2001
	struct map *map = machine__kernel_map(machine);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2020 2021 2022

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2023
	return dsos__findnew(&machine->dsos, filename);
2024
}
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}