cast6-avx-x86_64-asm_64.S 10.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Cast6 Cipher 8-way parallel algorithm (AVX/x86_64)
 *
 * Copyright (C) 2012 Johannes Goetzfried
 *     <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
 *
7
 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
8
 *
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
 * USA
 *
 */

26
#include <linux/linkage.h>
27 28
#include "glue_helper-asm-avx.S"

29 30
.file "cast6-avx-x86_64-asm_64.S"

31 32 33 34
.extern cast_s1
.extern cast_s2
.extern cast_s3
.extern cast_s4
35 36 37 38 39 40

/* structure of crypto context */
#define km	0
#define kr	(12*4*4)

/* s-boxes */
41 42 43 44
#define s1	cast_s1
#define s2	cast_s2
#define s3	cast_s3
#define s4	cast_s4
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

/**********************************************************************
  8-way AVX cast6
 **********************************************************************/
#define CTX %rdi

#define RA1 %xmm0
#define RB1 %xmm1
#define RC1 %xmm2
#define RD1 %xmm3

#define RA2 %xmm4
#define RB2 %xmm5
#define RC2 %xmm6
#define RD2 %xmm7

61
#define RX  %xmm8
62 63

#define RKM  %xmm9
64 65 66 67 68
#define RKR  %xmm10
#define RKRF %xmm11
#define RKRR %xmm12
#define R32  %xmm13
#define R1ST %xmm14
69

70
#define RTMP %xmm15
71

72 73 74 75
#define RID1  %rbp
#define RID1d %ebp
#define RID2  %rsi
#define RID2d %esi
76 77 78 79 80 81 82 83

#define RGI1   %rdx
#define RGI1bl %dl
#define RGI1bh %dh
#define RGI2   %rcx
#define RGI2bl %cl
#define RGI2bh %ch

84 85 86 87 88 89 90
#define RGI3   %rax
#define RGI3bl %al
#define RGI3bh %ah
#define RGI4   %rbx
#define RGI4bl %bl
#define RGI4bh %bh

91 92 93 94 95 96 97 98
#define RFS1  %r8
#define RFS1d %r8d
#define RFS2  %r9
#define RFS2d %r9d
#define RFS3  %r10
#define RFS3d %r10d


99 100 101 102
#define lookup_32bit(src, dst, op1, op2, op3, interleave_op, il_reg) \
	movzbl		src ## bh,     RID1d;    \
	movzbl		src ## bl,     RID2d;    \
	shrq $16,	src;                     \
103 104
	movl		s1(, RID1, 4), dst ## d; \
	op1		s2(, RID2, 4), dst ## d; \
105 106 107
	movzbl		src ## bh,     RID1d;    \
	movzbl		src ## bl,     RID2d;    \
	interleave_op(il_reg);			 \
108 109 110
	op2		s3(, RID1, 4), dst ## d; \
	op3		s4(, RID2, 4), dst ## d;

111 112 113 114 115 116
#define dummy(d) /* do nothing */

#define shr_next(reg) \
	shrq $16,	reg;

#define F_head(a, x, gi1, gi2, op0) \
117
	op0	a,	RKM,  x;                 \
118 119
	vpslld	RKRF,	x,    RTMP;              \
	vpsrld	RKRR,	x,    x;                 \
120 121
	vpor	RTMP,	x,    x;                 \
	\
122 123 124 125 126 127
	vmovq		x,    gi1;               \
	vpextrq $1,	x,    gi2;

#define F_tail(a, x, gi1, gi2, op1, op2, op3) \
	lookup_32bit(##gi1, RFS1, op1, op2, op3, shr_next, ##gi1); \
	lookup_32bit(##gi2, RFS3, op1, op2, op3, shr_next, ##gi2); \
128
	\
129 130 131 132 133 134
	lookup_32bit(##gi1, RFS2, op1, op2, op3, dummy, none);     \
	shlq $32,	RFS2;                                      \
	orq		RFS1, RFS2;                                \
	lookup_32bit(##gi2, RFS1, op1, op2, op3, dummy, none);     \
	shlq $32,	RFS1;                                      \
	orq		RFS1, RFS3;                                \
135
	\
136
	vmovq		RFS2, x;                                   \
137 138
	vpinsrq $1,	RFS3, x, x;

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
#define F_2(a1, b1, a2, b2, op0, op1, op2, op3) \
	F_head(b1, RX, RGI1, RGI2, op0);              \
	F_head(b2, RX, RGI3, RGI4, op0);              \
	\
	F_tail(b1, RX, RGI1, RGI2, op1, op2, op3);    \
	F_tail(b2, RTMP, RGI3, RGI4, op1, op2, op3);  \
	\
	vpxor		a1, RX,   a1;                 \
	vpxor		a2, RTMP, a2;

#define F1_2(a1, b1, a2, b2) \
	F_2(a1, b1, a2, b2, vpaddd, xorl, subl, addl)
#define F2_2(a1, b1, a2, b2) \
	F_2(a1, b1, a2, b2, vpxor, subl, addl, xorl)
#define F3_2(a1, b1, a2, b2) \
	F_2(a1, b1, a2, b2, vpsubd, addl, xorl, subl)
155

156 157 158 159 160 161 162 163
#define qop(in, out, f) \
	F ## f ## _2(out ## 1, in ## 1, out ## 2, in ## 2);

#define get_round_keys(nn) \
	vbroadcastss	(km+(4*(nn)))(CTX), RKM;        \
	vpand		R1ST,               RKR,  RKRF; \
	vpsubq		RKRF,               R32,  RKRR; \
	vpsrldq $1,	RKR,                RKR;
164 165

#define Q(n) \
166 167
	get_round_keys(4*n+0); \
	qop(RD, RC, 1);        \
168
	\
169 170
	get_round_keys(4*n+1); \
	qop(RC, RB, 2);        \
171
	\
172 173
	get_round_keys(4*n+2); \
	qop(RB, RA, 3);        \
174
	\
175 176
	get_round_keys(4*n+3); \
	qop(RA, RD, 1);
177 178

#define QBAR(n) \
179 180
	get_round_keys(4*n+3); \
	qop(RA, RD, 1);        \
181
	\
182 183
	get_round_keys(4*n+2); \
	qop(RB, RA, 3);        \
184
	\
185 186
	get_round_keys(4*n+1); \
	qop(RC, RB, 2);        \
187
	\
188 189 190 191 192
	get_round_keys(4*n+0); \
	qop(RD, RC, 1);

#define shuffle(mask) \
	vpshufb		mask,            RKR, RKR;
193

194 195 196 197 198
#define preload_rkr(n, do_mask, mask) \
	vbroadcastss	.L16_mask,                RKR;      \
	/* add 16-bit rotation to key rotations (mod 32) */ \
	vpxor		(kr+n*16)(CTX),           RKR, RKR; \
	do_mask(mask);
199 200 201 202 203 204 205 206 207 208 209 210

#define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
	vpunpckldq		x1, x0, t0; \
	vpunpckhdq		x1, x0, t2; \
	vpunpckldq		x3, x2, t1; \
	vpunpckhdq		x3, x2, x3; \
	\
	vpunpcklqdq		t1, t0, x0; \
	vpunpckhqdq		t1, t0, x1; \
	vpunpcklqdq		x3, t2, x2; \
	vpunpckhqdq		x3, t2, x3;

211
#define inpack_blocks(x0, x1, x2, x3, t0, t1, t2, rmask) \
212 213 214 215
	vpshufb rmask, x0,	x0; \
	vpshufb rmask, x1,	x1; \
	vpshufb rmask, x2,	x2; \
	vpshufb rmask, x3,	x3; \
216 217 218
	\
	transpose_4x4(x0, x1, x2, x3, t0, t1, t2)

219
#define outunpack_blocks(x0, x1, x2, x3, t0, t1, t2, rmask) \
220 221
	transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
	\
222 223 224
	vpshufb rmask,		x0, x0;       \
	vpshufb rmask,		x1, x1;       \
	vpshufb rmask,		x2, x2;       \
225
	vpshufb rmask,		x3, x3;
226

227 228
.data

229
.align 16
230 231
.Lxts_gf128mul_and_shl1_mask:
	.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
232 233
.Lbswap_mask:
	.byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
234 235
.Lbswap128_mask:
	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
236 237 238 239 240 241 242 243 244 245 246 247
.Lrkr_enc_Q_Q_QBAR_QBAR:
	.byte 0, 1, 2, 3, 4, 5, 6, 7, 11, 10, 9, 8, 15, 14, 13, 12
.Lrkr_enc_QBAR_QBAR_QBAR_QBAR:
	.byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
.Lrkr_dec_Q_Q_Q_Q:
	.byte 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3
.Lrkr_dec_Q_Q_QBAR_QBAR:
	.byte 12, 13, 14, 15, 8, 9, 10, 11, 7, 6, 5, 4, 3, 2, 1, 0
.Lrkr_dec_QBAR_QBAR_QBAR_QBAR:
	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
.L16_mask:
	.byte 16, 16, 16, 16
248
.L32_mask:
249 250 251 252 253
	.byte 32, 0, 0, 0
.Lfirst_mask:
	.byte 0x1f, 0, 0, 0

.text
254

255 256
.align 8
__cast6_enc_blk8:
257 258
	/* input:
	 *	%rdi: ctx, CTX
259 260 261
	 *	RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks
	 * output:
	 *	RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: encrypted blocks
262 263
	 */

264
	pushq %rbp;
265 266
	pushq %rbx;

267 268 269
	vmovdqa .Lbswap_mask, RKM;
	vmovd .Lfirst_mask, R1ST;
	vmovd .L32_mask, R32;
270

271 272
	inpack_blocks(RA1, RB1, RC1, RD1, RTMP, RX, RKRF, RKM);
	inpack_blocks(RA2, RB2, RC2, RD2, RTMP, RX, RKRF, RKM);
273

274
	preload_rkr(0, dummy, none);
275 276 277 278
	Q(0);
	Q(1);
	Q(2);
	Q(3);
279
	preload_rkr(1, shuffle, .Lrkr_enc_Q_Q_QBAR_QBAR);
280 281 282 283
	Q(4);
	Q(5);
	QBAR(6);
	QBAR(7);
284
	preload_rkr(2, shuffle, .Lrkr_enc_QBAR_QBAR_QBAR_QBAR);
285 286 287 288 289 290
	QBAR(8);
	QBAR(9);
	QBAR(10);
	QBAR(11);

	popq %rbx;
291
	popq %rbp;
292

293
	vmovdqa .Lbswap_mask, RKM;
294

295 296
	outunpack_blocks(RA1, RB1, RC1, RD1, RTMP, RX, RKRF, RKM);
	outunpack_blocks(RA2, RB2, RC2, RD2, RTMP, RX, RKRF, RKM);
297 298

	ret;
299
ENDPROC(__cast6_enc_blk8)
300

301 302
.align 8
__cast6_dec_blk8:
303 304
	/* input:
	 *	%rdi: ctx, CTX
305 306 307
	 *	RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: encrypted blocks
	 * output:
	 *	RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks
308 309
	 */

310
	pushq %rbp;
311 312
	pushq %rbx;

313 314 315
	vmovdqa .Lbswap_mask, RKM;
	vmovd .Lfirst_mask, R1ST;
	vmovd .L32_mask, R32;
316

317 318
	inpack_blocks(RA1, RB1, RC1, RD1, RTMP, RX, RKRF, RKM);
	inpack_blocks(RA2, RB2, RC2, RD2, RTMP, RX, RKRF, RKM);
319

320
	preload_rkr(2, shuffle, .Lrkr_dec_Q_Q_Q_Q);
321 322 323 324
	Q(11);
	Q(10);
	Q(9);
	Q(8);
325
	preload_rkr(1, shuffle, .Lrkr_dec_Q_Q_QBAR_QBAR);
326 327 328 329
	Q(7);
	Q(6);
	QBAR(5);
	QBAR(4);
330
	preload_rkr(0, shuffle, .Lrkr_dec_QBAR_QBAR_QBAR_QBAR);
331 332 333 334 335 336
	QBAR(3);
	QBAR(2);
	QBAR(1);
	QBAR(0);

	popq %rbx;
337
	popq %rbp;
338

339
	vmovdqa .Lbswap_mask, RKM;
340 341 342 343
	outunpack_blocks(RA1, RB1, RC1, RD1, RTMP, RX, RKRF, RKM);
	outunpack_blocks(RA2, RB2, RC2, RD2, RTMP, RX, RKRF, RKM);

	ret;
344
ENDPROC(__cast6_dec_blk8)
345

346
ENTRY(cast6_ecb_enc_8way)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src
	 */

	movq %rsi, %r11;

	load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	call __cast6_enc_blk8;

	store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	ret;
362
ENDPROC(cast6_ecb_enc_8way)
363

364
ENTRY(cast6_ecb_dec_8way)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src
	 */

	movq %rsi, %r11;

	load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	call __cast6_dec_blk8;

	store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	ret;
380
ENDPROC(cast6_ecb_dec_8way)
381

382
ENTRY(cast6_cbc_dec_8way)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src
	 */

	pushq %r12;

	movq %rsi, %r11;
	movq %rdx, %r12;

	load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	call __cast6_dec_blk8;

	store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	popq %r12;

	ret;
403
ENDPROC(cast6_cbc_dec_8way)
404

405
ENTRY(cast6_ctr_8way)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src
	 *	%rcx: iv (little endian, 128bit)
	 */

	pushq %r12;

	movq %rsi, %r11;
	movq %rdx, %r12;

	load_ctr_8way(%rcx, .Lbswap128_mask, RA1, RB1, RC1, RD1, RA2, RB2, RC2,
		      RD2, RX, RKR, RKM);

	call __cast6_enc_blk8;

	store_ctr_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	popq %r12;
426 427

	ret;
428
ENDPROC(cast6_ctr_8way)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

ENTRY(cast6_xts_enc_8way)
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src
	 *	%rcx: iv (t  αⁿ  GF(2¹²⁸))
	 */

	movq %rsi, %r11;

	/* regs <= src, dst <= IVs, regs <= regs xor IVs */
	load_xts_8way(%rcx, %rdx, %rsi, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2,
		      RX, RKR, RKM, .Lxts_gf128mul_and_shl1_mask);

	call __cast6_enc_blk8;

	/* dst <= regs xor IVs(in dst) */
	store_xts_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	ret;
ENDPROC(cast6_xts_enc_8way)

ENTRY(cast6_xts_dec_8way)
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src
	 *	%rcx: iv (t  αⁿ  GF(2¹²⁸))
	 */

	movq %rsi, %r11;

	/* regs <= src, dst <= IVs, regs <= regs xor IVs */
	load_xts_8way(%rcx, %rdx, %rsi, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2,
		      RX, RKR, RKM, .Lxts_gf128mul_and_shl1_mask);

	call __cast6_dec_blk8;

	/* dst <= regs xor IVs(in dst) */
	store_xts_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);

	ret;
ENDPROC(cast6_xts_dec_8way)