bitops.h 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#ifndef _ASM_X86_BITOPS_H
#define _ASM_X86_BITOPS_H

/*
 * Copyright 1992, Linus Torvalds.
 */

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <asm/alternative.h>

/*
 * These have to be done with inline assembly: that way the bit-setting
 * is guaranteed to be atomic. All bit operations return 0 if the bit
 * was cleared before the operation and != 0 if it was not.
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
/* Technically wrong, but this avoids compilation errors on some gcc
   versions. */
26 27
#define ADDR "=m" (*(volatile long *)addr)
#define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
28 29
#else
#define ADDR "+m" (*(volatile long *) addr)
30
#define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
31
#endif
32
#define BASE_ADDR "m" (*(volatile int *)addr)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 *
 * Note: there are no guarantees that this function will not be reordered
 * on non x86 architectures, so if you are writing portable code,
 * make sure not to rely on its reordering guarantees.
 *
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
49
static inline void set_bit(int nr, volatile void *addr)
50
{
51
	asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
52 53 54 55 56 57 58 59 60 61 62
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
63
static inline void __set_bit(int nr, volatile void *addr)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
{
	asm volatile("bts %1,%0"
		     : ADDR
		     : "Ir" (nr) : "memory");
}


/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
81
static inline void clear_bit(int nr, volatile void *addr)
82
{
83
	asm volatile(LOCK_PREFIX "btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
84 85 86 87 88 89 90 91 92 93
}

/*
 * clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and implies release semantics before the memory
 * operation. It can be used for an unlock.
 */
94
static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
95 96 97 98 99
{
	barrier();
	clear_bit(nr, addr);
}

100
static inline void __clear_bit(int nr, volatile void *addr)
101
{
J
Jan Beulich 已提交
102
	asm volatile("btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
103 104 105 106 107 108 109 110 111 112 113 114 115 116
}

/*
 * __clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * __clear_bit() is non-atomic and implies release semantics before the memory
 * operation. It can be used for an unlock if no other CPUs can concurrently
 * modify other bits in the word.
 *
 * No memory barrier is required here, because x86 cannot reorder stores past
 * older loads. Same principle as spin_unlock.
 */
117
static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	barrier();
	__clear_bit(nr, addr);
}

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
135
static inline void __change_bit(int nr, volatile void *addr)
136
{
J
Jan Beulich 已提交
137
	asm volatile("btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
138 139 140 141 142 143 144 145 146 147 148
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
149
static inline void change_bit(int nr, volatile void *addr)
150
{
151
	asm volatile(LOCK_PREFIX "btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
152 153 154 155 156 157 158 159 160 161
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
162
static inline int test_and_set_bit(int nr, volatile void *addr)
163 164 165 166
{
	int oldbit;

	asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
167
		     "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
168 169 170 171 172 173 174 175 176 177 178

	return oldbit;
}

/**
 * test_and_set_bit_lock - Set a bit and return its old value for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is the same as test_and_set_bit on x86.
 */
179
static inline int test_and_set_bit_lock(int nr, volatile void *addr)
180 181 182 183 184 185 186 187 188 189 190 191 192
{
	return test_and_set_bit(nr, addr);
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
193
static inline int __test_and_set_bit(int nr, volatile void *addr)
194 195 196
{
	int oldbit;

J
Jan Beulich 已提交
197 198
	asm volatile("bts %2,%3\n\t"
		     "sbb %0,%0"
199
		     : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
200 201 202 203 204 205 206 207 208 209 210
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
211
static inline int test_and_clear_bit(int nr, volatile void *addr)
212 213 214 215 216
{
	int oldbit;

	asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
		     "sbb %0,%0"
217
		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
218 219 220 221 222 223 224 225 226 227 228 229 230

	return oldbit;
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
231
static inline int __test_and_clear_bit(int nr, volatile void *addr)
232 233 234
{
	int oldbit;

J
Jan Beulich 已提交
235
	asm volatile("btr %2,%3\n\t"
236
		     "sbb %0,%0"
237
		     : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
238 239 240 241
	return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
242
static inline int __test_and_change_bit(int nr, volatile void *addr)
243 244 245
{
	int oldbit;

J
Jan Beulich 已提交
246
	asm volatile("btc %2,%3\n\t"
247
		     "sbb %0,%0"
248
		     : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
249 250 251 252 253 254 255 256 257 258 259 260

	return oldbit;
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
261
static inline int test_and_change_bit(int nr, volatile void *addr)
262 263 264 265 266
{
	int oldbit;

	asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
		     "sbb %0,%0"
267
		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
268 269 270 271

	return oldbit;
}

272
static inline int constant_test_bit(int nr, const volatile void *addr)
273
{
274 275
	return ((1UL << (nr % BITS_PER_LONG)) &
		(((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
276 277
}

278
static inline int variable_test_bit(int nr, volatile const void *addr)
279 280 281
{
	int oldbit;

J
Jan Beulich 已提交
282
	asm volatile("bt %2,%3\n\t"
283 284
		     "sbb %0,%0"
		     : "=r" (oldbit)
J
Jan Beulich 已提交
285 286
		     : "m" (((volatile const int *)addr)[nr >> 5]),
		       "Ir" (nr), BASE_ADDR);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

	return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
static int test_bit(int nr, const volatile unsigned long *addr);
#endif

#define test_bit(nr,addr)			\
	(__builtin_constant_p(nr) ?		\
	 constant_test_bit((nr),(addr)) :	\
	 variable_test_bit((nr),(addr)))

J
Jan Beulich 已提交
305 306
#undef BASE_ADDR
#undef BIT_ADDR
307 308
#undef ADDR

309 310 311 312 313 314
unsigned long find_next_bit(const unsigned long *addr,
		unsigned long size, unsigned long offset);
unsigned long find_next_zero_bit(const unsigned long *addr,
		unsigned long size, unsigned long offset);


315 316 317 318 319
#ifdef CONFIG_X86_32
# include "bitops_32.h"
#else
# include "bitops_64.h"
#endif
320 321

#endif	/* _ASM_X86_BITOPS_H */