callchain.c 8.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
 *
 * Handle the callchains from the stream in an ad-hoc radix tree and then
 * sort them in an rbtree.
 *
7 8 9
 * Using a radix for code path provides a fast retrieval and factorizes
 * memory use. Also that lets us use the paths in a hierarchical graph view.
 *
10 11 12 13 14 15
 */

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
16
#include <math.h>
17 18 19

#include "callchain.h"

20 21 22
#define chain_for_each_child(child, parent)	\
	list_for_each_entry(child, &parent->children, brothers)

23
static void
24 25
rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
		    enum chain_mode mode)
26 27 28 29
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct callchain_node *rnode;
30
	u64 chain_cumul = cumul_hits(chain);
31 32

	while (*p) {
33 34
		u64 rnode_cumul;

35 36
		parent = *p;
		rnode = rb_entry(parent, struct callchain_node, rb_node);
37
		rnode_cumul = cumul_hits(rnode);
38

39
		switch (mode) {
40
		case CHAIN_FLAT:
41 42 43 44 45
			if (rnode->hit < chain->hit)
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
46 47
		case CHAIN_GRAPH_ABS: /* Falldown */
		case CHAIN_GRAPH_REL:
48
			if (rnode_cumul < chain_cumul)
49 50 51 52
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
53
		case CHAIN_NONE:
54 55 56
		default:
			break;
		}
57 58 59 60 61 62
	}

	rb_link_node(&chain->rb_node, parent, p);
	rb_insert_color(&chain->rb_node, root);
}

63 64 65 66 67 68 69 70 71 72 73 74 75
static void
__sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
		  u64 min_hit)
{
	struct callchain_node *child;

	chain_for_each_child(child, node)
		__sort_chain_flat(rb_root, child, min_hit);

	if (node->hit && node->hit >= min_hit)
		rb_insert_callchain(rb_root, node, CHAIN_FLAT);
}

76 77 78 79
/*
 * Once we get every callchains from the stream, we can now
 * sort them by hit
 */
80 81 82 83 84 85 86 87 88
static void
sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
		u64 min_hit, struct callchain_param *param __used)
{
	__sort_chain_flat(rb_root, node, min_hit);
}

static void __sort_chain_graph_abs(struct callchain_node *node,
				   u64 min_hit)
89 90 91
{
	struct callchain_node *child;

92
	node->rb_root = RB_ROOT;
93

94 95
	chain_for_each_child(child, node) {
		__sort_chain_graph_abs(child, min_hit);
96
		if (cumul_hits(child) >= min_hit)
97 98 99 100 101 102 103 104 105 106 107
			rb_insert_callchain(&node->rb_root, child,
					    CHAIN_GRAPH_ABS);
	}
}

static void
sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_node *chain_root,
		     u64 min_hit, struct callchain_param *param __used)
{
	__sort_chain_graph_abs(chain_root, min_hit);
	rb_root->rb_node = chain_root->rb_root.rb_node;
108 109
}

110 111
static void __sort_chain_graph_rel(struct callchain_node *node,
				   double min_percent)
112 113
{
	struct callchain_node *child;
114
	u64 min_hit;
115 116

	node->rb_root = RB_ROOT;
117
	min_hit = ceil(node->children_hit * min_percent);
118 119

	chain_for_each_child(child, node) {
120
		__sort_chain_graph_rel(child, min_percent);
121
		if (cumul_hits(child) >= min_hit)
122 123
			rb_insert_callchain(&node->rb_root, child,
					    CHAIN_GRAPH_REL);
124 125 126
	}
}

127 128 129
static void
sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_node *chain_root,
		     u64 min_hit __used, struct callchain_param *param)
130
{
131
	__sort_chain_graph_rel(chain_root, param->min_percent / 100.0);
132
	rb_root->rb_node = chain_root->rb_root.rb_node;
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146
int register_callchain_param(struct callchain_param *param)
{
	switch (param->mode) {
	case CHAIN_GRAPH_ABS:
		param->sort = sort_chain_graph_abs;
		break;
	case CHAIN_GRAPH_REL:
		param->sort = sort_chain_graph_rel;
		break;
	case CHAIN_FLAT:
		param->sort = sort_chain_flat;
		break;
147
	case CHAIN_NONE:
148 149 150 151 152 153
	default:
		return -1;
	}
	return 0;
}

154 155 156 157 158 159
/*
 * Create a child for a parent. If inherit_children, then the new child
 * will become the new parent of it's parent children
 */
static struct callchain_node *
create_child(struct callchain_node *parent, bool inherit_children)
160 161 162 163 164 165 166 167 168 169 170
{
	struct callchain_node *new;

	new = malloc(sizeof(*new));
	if (!new) {
		perror("not enough memory to create child for code path tree");
		return NULL;
	}
	new->parent = parent;
	INIT_LIST_HEAD(&new->children);
	INIT_LIST_HEAD(&new->val);
171 172 173 174 175 176 177

	if (inherit_children) {
		struct callchain_node *next;

		list_splice(&parent->children, &new->children);
		INIT_LIST_HEAD(&parent->children);

178
		chain_for_each_child(next, new)
179 180
			next->parent = new;
	}
181 182 183 184 185
	list_add_tail(&new->brothers, &parent->children);

	return new;
}

186 187 188
/*
 * Fill the node with callchain values
 */
189
static void
190 191
fill_node(struct callchain_node *node, struct ip_callchain *chain,
	  int start, struct symbol **syms)
192
{
193
	unsigned int i;
194 195 196 197

	for (i = start; i < chain->nr; i++) {
		struct callchain_list *call;

198
		call = malloc(sizeof(*call));
199 200 201 202 203
		if (!call) {
			perror("not enough memory for the code path tree");
			return;
		}
		call->ip = chain->ips[i];
204
		call->sym = syms[i];
205 206
		list_add_tail(&call->list, &node->val);
	}
207 208
	node->val_nr = chain->nr - start;
	if (!node->val_nr)
209
		pr_warning("Warning: empty node in callchain tree\n");
210 211
}

212 213 214
static void
add_child(struct callchain_node *parent, struct ip_callchain *chain,
	  int start, struct symbol **syms)
215 216 217
{
	struct callchain_node *new;

218 219
	new = create_child(parent, false);
	fill_node(new, chain, start, syms);
220

221 222
	new->children_hit = 0;
	new->hit = 1;
223 224
}

225 226 227 228 229
/*
 * Split the parent in two parts (a new child is created) and
 * give a part of its callchain to the created child.
 * Then create another child to host the given callchain of new branch
 */
230 231
static void
split_add_child(struct callchain_node *parent, struct ip_callchain *chain,
232 233
		struct callchain_list *to_split, int idx_parents, int idx_local,
		struct symbol **syms)
234 235
{
	struct callchain_node *new;
236
	struct list_head *old_tail;
237
	unsigned int idx_total = idx_parents + idx_local;
238 239

	/* split */
240 241 242 243 244 245 246 247 248
	new = create_child(parent, true);

	/* split the callchain and move a part to the new child */
	old_tail = parent->val.prev;
	list_del_range(&to_split->list, old_tail);
	new->val.next = &to_split->list;
	new->val.prev = old_tail;
	to_split->list.prev = &new->val;
	old_tail->next = &new->val;
249

250 251
	/* split the hits */
	new->hit = parent->hit;
252 253
	new->children_hit = parent->children_hit;
	parent->children_hit = cumul_hits(new);
254 255 256 257 258 259 260
	new->val_nr = parent->val_nr - idx_local;
	parent->val_nr = idx_local;

	/* create a new child for the new branch if any */
	if (idx_total < chain->nr) {
		parent->hit = 0;
		add_child(parent, chain, idx_total, syms);
261
		parent->children_hit++;
262 263 264
	} else {
		parent->hit = 1;
	}
265 266 267 268
}

static int
__append_chain(struct callchain_node *root, struct ip_callchain *chain,
269
	       unsigned int start, struct symbol **syms);
270

271
static void
272
__append_chain_children(struct callchain_node *root, struct ip_callchain *chain,
273
			struct symbol **syms, unsigned int start)
274 275 276 277
{
	struct callchain_node *rnode;

	/* lookup in childrens */
278
	chain_for_each_child(rnode, root) {
279 280
		unsigned int ret = __append_chain(rnode, chain, start, syms);

281
		if (!ret)
282
			goto inc_children_hit;
283
	}
284 285
	/* nothing in children, add to the current node */
	add_child(root, chain, start, syms);
286

287 288
inc_children_hit:
	root->children_hit++;
289 290 291 292
}

static int
__append_chain(struct callchain_node *root, struct ip_callchain *chain,
293
	       unsigned int start, struct symbol **syms)
294 295
{
	struct callchain_list *cnode;
296
	unsigned int i = start;
297 298
	bool found = false;

299 300 301 302 303
	/*
	 * Lookup in the current node
	 * If we have a symbol, then compare the start to match
	 * anywhere inside a function.
	 */
304
	list_for_each_entry(cnode, &root->val, list) {
305 306 307 308 309 310
		if (i == chain->nr)
			break;
		if (cnode->sym && syms[i]) {
			if (cnode->sym->start != syms[i]->start)
				break;
		} else if (cnode->ip != chain->ips[i])
311 312 313
			break;
		if (!found)
			found = true;
314
		i++;
315 316 317 318 319 320 321
	}

	/* matches not, relay on the parent */
	if (!found)
		return -1;

	/* we match only a part of the node. Split it and add the new chain */
322 323
	if (i - start < root->val_nr) {
		split_add_child(root, chain, cnode, start, i - start, syms);
324 325 326 327
		return 0;
	}

	/* we match 100% of the path, increment the hit */
328
	if (i - start == root->val_nr && i == chain->nr) {
329 330 331 332
		root->hit++;
		return 0;
	}

333 334 335 336
	/* We match the node and still have a part remaining */
	__append_chain_children(root, chain, syms, i);

	return 0;
337 338
}

339 340
void append_chain(struct callchain_node *root, struct ip_callchain *chain,
		  struct symbol **syms)
341
{
342 343
	if (!chain->nr)
		return;
344
	__append_chain_children(root, chain, syms, 0);
345
}