revoke.c 22.3 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/revoke.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
 *
 * Copyright 2000 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Journal revoke routines for the generic filesystem journaling code;
 * part of the ext2fs journaling system.
 *
 * Revoke is the mechanism used to prevent old log records for deleted
 * metadata from being replayed on top of newer data using the same
 * blocks.  The revoke mechanism is used in two separate places:
 *
 * + Commit: during commit we write the entire list of the current
 *   transaction's revoked blocks to the journal
 *
 * + Recovery: during recovery we record the transaction ID of all
 *   revoked blocks.  If there are multiple revoke records in the log
 *   for a single block, only the last one counts, and if there is a log
 *   entry for a block beyond the last revoke, then that log entry still
 *   gets replayed.
 *
 * We can get interactions between revokes and new log data within a
 * single transaction:
 *
 * Block is revoked and then journaled:
 *   The desired end result is the journaling of the new block, so we
 *   cancel the revoke before the transaction commits.
 *
 * Block is journaled and then revoked:
 *   The revoke must take precedence over the write of the block, so we
 *   need either to cancel the journal entry or to write the revoke
 *   later in the log than the log block.  In this case, we choose the
 *   latter: journaling a block cancels any revoke record for that block
 *   in the current transaction, so any revoke for that block in the
 *   transaction must have happened after the block was journaled and so
 *   the revoke must take precedence.
 *
 * Block is revoked and then written as data:
 *   The data write is allowed to succeed, but the revoke is _not_
 *   cancelled.  We still need to prevent old log records from
 *   overwriting the new data.  We don't even need to clear the revoke
 *   bit here.
 *
50 51 52 53
 * We cache revoke status of a buffer in the current transaction in b_states
 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 * status of a buffer is valid and we can rely on the cached status.
 *
54 55 56 57 58 59 60 61
 * Revoke information on buffers is a tri-state value:
 *
 * RevokeValid clear:	no cached revoke status, need to look it up
 * RevokeValid set, Revoked clear:
 *			buffer has not been revoked, and cancel_revoke
 *			need do nothing.
 * RevokeValid set, Revoked set:
 *			buffer has been revoked.
J
Jan Kara 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 *
 * Locking rules:
 * We keep two hash tables of revoke records. One hashtable belongs to the
 * running transaction (is pointed to by journal->j_revoke), the other one
 * belongs to the committing transaction. Accesses to the second hash table
 * happen only from the kjournald and no other thread touches this table.  Also
 * journal_switch_revoke_table() which switches which hashtable belongs to the
 * running and which to the committing transaction is called only from
 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 * to the committing transaction.
 *
 * All users operating on the hash table belonging to the running transaction
 * have a handle to the transaction. Therefore they are safe from kjournald
 * switching hash tables under them. For operations on the lists of entries in
 * the hash table j_revoke_lock is used.
 *
L
Lucas De Marchi 已提交
78
 * Finally, also replay code uses the hash tables but at this moment no one else
J
Jan Kara 已提交
79 80
 * can touch them (filesystem isn't mounted yet) and hence no locking is
 * needed.
81 82 83 84 85 86 87
 */

#ifndef __KERNEL__
#include "jfs_user.h"
#else
#include <linux/time.h>
#include <linux/fs.h>
88
#include <linux/jbd2.h>
89 90 91 92
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/init.h>
93
#include <linux/bio.h>
V
vignesh babu 已提交
94
#include <linux/log2.h>
95
#include <linux/hash.h>
96
#endif
97

98 99
static struct kmem_cache *jbd2_revoke_record_cache;
static struct kmem_cache *jbd2_revoke_table_cache;
100 101 102 103 104

/* Each revoke record represents one single revoked block.  During
   journal replay, this involves recording the transaction ID of the
   last transaction to revoke this block. */

105
struct jbd2_revoke_record_s
106 107 108
{
	struct list_head  hash;
	tid_t		  sequence;	/* Used for recovery only */
109
	unsigned long long	  blocknr;
110 111 112 113
};


/* The revoke table is just a simple hash table of revoke records. */
114
struct jbd2_revoke_table_s
115 116 117 118 119 120 121 122 123 124 125
{
	/* It is conceivable that we might want a larger hash table
	 * for recovery.  Must be a power of two. */
	int		  hash_size;
	int		  hash_shift;
	struct list_head *hash_table;
};


#ifdef __KERNEL__
static void write_one_revoke_record(journal_t *, transaction_t *,
126 127
				    struct list_head *,
				    struct buffer_head **, int *,
128
				    struct jbd2_revoke_record_s *, int);
129
static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
130 131 132 133
#endif

/* Utility functions to maintain the revoke table */

134
static inline int hash(journal_t *journal, unsigned long long block)
135
{
136
	return hash_64(block, journal->j_revoke->hash_shift);
137 138
}

139
static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140 141 142
			      tid_t seq)
{
	struct list_head *hash_list;
143
	struct jbd2_revoke_record_s *record;
144 145

repeat:
146
	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
147 148 149 150 151 152 153 154 155 156 157 158 159 160
	if (!record)
		goto oom;

	record->sequence = seq;
	record->blocknr = blocknr;
	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
	spin_lock(&journal->j_revoke_lock);
	list_add(&record->hash, hash_list);
	spin_unlock(&journal->j_revoke_lock);
	return 0;

oom:
	if (!journal_oom_retry)
		return -ENOMEM;
161
	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
162 163 164 165 166 167
	yield();
	goto repeat;
}

/* Find a revoke record in the journal's hash table. */

168
static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
169
						      unsigned long long blocknr)
170 171
{
	struct list_head *hash_list;
172
	struct jbd2_revoke_record_s *record;
173 174 175 176

	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];

	spin_lock(&journal->j_revoke_lock);
177
	record = (struct jbd2_revoke_record_s *) hash_list->next;
178 179 180 181 182
	while (&(record->hash) != hash_list) {
		if (record->blocknr == blocknr) {
			spin_unlock(&journal->j_revoke_lock);
			return record;
		}
183
		record = (struct jbd2_revoke_record_s *) record->hash.next;
184 185 186 187 188
	}
	spin_unlock(&journal->j_revoke_lock);
	return NULL;
}

189 190 191 192 193 194 195 196 197 198 199 200
void jbd2_journal_destroy_revoke_caches(void)
{
	if (jbd2_revoke_record_cache) {
		kmem_cache_destroy(jbd2_revoke_record_cache);
		jbd2_revoke_record_cache = NULL;
	}
	if (jbd2_revoke_table_cache) {
		kmem_cache_destroy(jbd2_revoke_table_cache);
		jbd2_revoke_table_cache = NULL;
	}
}

201
int __init jbd2_journal_init_revoke_caches(void)
202
{
203 204 205
	J_ASSERT(!jbd2_revoke_record_cache);
	J_ASSERT(!jbd2_revoke_table_cache);

206 207
	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
A
Al Viro 已提交
208
	if (!jbd2_revoke_record_cache)
209
		goto record_cache_failure;
210

211 212
	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
					     SLAB_TEMPORARY);
213 214
	if (!jbd2_revoke_table_cache)
		goto table_cache_failure;
215
	return 0;
216 217 218 219
table_cache_failure:
	jbd2_journal_destroy_revoke_caches();
record_cache_failure:
		return -ENOMEM;
220 221
}

222
static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
223
{
224 225 226
	int shift = 0;
	int tmp = hash_size;
	struct jbd2_revoke_table_s *table;
227

228 229 230
	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
	if (!table)
		goto out;
231 232 233 234

	while((tmp >>= 1UL) != 0UL)
		shift++;

235 236 237
	table->hash_size = hash_size;
	table->hash_shift = shift;
	table->hash_table =
238
		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
239 240 241 242
	if (!table->hash_table) {
		kmem_cache_free(jbd2_revoke_table_cache, table);
		table = NULL;
		goto out;
243 244 245
	}

	for (tmp = 0; tmp < hash_size; tmp++)
246
		INIT_LIST_HEAD(&table->hash_table[tmp]);
247

248 249 250 251 252 253 254 255 256 257 258 259
out:
	return table;
}

static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
{
	int i;
	struct list_head *hash_list;

	for (i = 0; i < table->hash_size; i++) {
		hash_list = &table->hash_table[i];
		J_ASSERT(list_empty(hash_list));
260 261
	}

262 263 264
	kfree(table->hash_table);
	kmem_cache_free(jbd2_revoke_table_cache, table);
}
265

266 267 268 269
/* Initialise the revoke table for a given journal to a given size. */
int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
{
	J_ASSERT(journal->j_revoke_table[0] == NULL);
V
vignesh babu 已提交
270
	J_ASSERT(is_power_of_2(hash_size));
271

272 273 274
	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
	if (!journal->j_revoke_table[0])
		goto fail0;
275

276 277 278
	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
	if (!journal->j_revoke_table[1])
		goto fail1;
279

280
	journal->j_revoke = journal->j_revoke_table[1];
281 282 283 284 285

	spin_lock_init(&journal->j_revoke_lock);

	return 0;

286 287 288 289 290
fail1:
	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
fail0:
	return -ENOMEM;
}
291

292
/* Destroy a journal's revoke table.  The table must already be empty! */
293
void jbd2_journal_destroy_revoke(journal_t *journal)
294 295
{
	journal->j_revoke = NULL;
296 297 298 299
	if (journal->j_revoke_table[0])
		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
	if (journal->j_revoke_table[1])
		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
300 301 302 303 304 305
}


#ifdef __KERNEL__

/*
306
 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
307 308 309 310 311 312 313 314 315 316 317
 * prevents the block from being replayed during recovery if we take a
 * crash after this current transaction commits.  Any subsequent
 * metadata writes of the buffer in this transaction cancel the
 * revoke.
 *
 * Note that this call may block --- it is up to the caller to make
 * sure that there are no further calls to journal_write_metadata
 * before the revoke is complete.  In ext3, this implies calling the
 * revoke before clearing the block bitmap when we are deleting
 * metadata.
 *
318
 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
319 320 321 322 323 324
 * parameter, but does _not_ forget the buffer_head if the bh was only
 * found implicitly.
 *
 * bh_in may not be a journalled buffer - it may have come off
 * the hash tables without an attached journal_head.
 *
325
 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
326 327 328
 * by one.
 */

329
int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
330 331 332 333 334 335 336 337 338 339 340 341
		   struct buffer_head *bh_in)
{
	struct buffer_head *bh = NULL;
	journal_t *journal;
	struct block_device *bdev;
	int err;

	might_sleep();
	if (bh_in)
		BUFFER_TRACE(bh_in, "enter");

	journal = handle->h_transaction->t_journal;
342
	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
343 344 345 346 347 348 349 350 351 352 353 354
		J_ASSERT (!"Cannot set revoke feature!");
		return -EINVAL;
	}

	bdev = journal->j_fs_dev;
	bh = bh_in;

	if (!bh) {
		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
		if (bh)
			BUFFER_TRACE(bh, "found on hash");
	}
355
#ifdef JBD2_EXPENSIVE_CHECKING
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	else {
		struct buffer_head *bh2;

		/* If there is a different buffer_head lying around in
		 * memory anywhere... */
		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
		if (bh2) {
			/* ... and it has RevokeValid status... */
			if (bh2 != bh && buffer_revokevalid(bh2))
				/* ...then it better be revoked too,
				 * since it's illegal to create a revoke
				 * record against a buffer_head which is
				 * not marked revoked --- that would
				 * risk missing a subsequent revoke
				 * cancel. */
				J_ASSERT_BH(bh2, buffer_revoked(bh2));
			put_bh(bh2);
		}
	}
#endif

	/* We really ought not ever to revoke twice in a row without
           first having the revoke cancelled: it's illegal to free a
           block twice without allocating it in between! */
	if (bh) {
		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
				 "inconsistent data on disk")) {
			if (!bh_in)
				brelse(bh);
			return -EIO;
		}
		set_buffer_revoked(bh);
		set_buffer_revokevalid(bh);
		if (bh_in) {
390 391
			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
			jbd2_journal_forget(handle, bh_in);
392 393 394 395 396 397
		} else {
			BUFFER_TRACE(bh, "call brelse");
			__brelse(bh);
		}
	}

M
Mingming Cao 已提交
398
	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
399 400 401 402 403 404 405 406
	err = insert_revoke_hash(journal, blocknr,
				handle->h_transaction->t_tid);
	BUFFER_TRACE(bh_in, "exit");
	return err;
}

/*
 * Cancel an outstanding revoke.  For use only internally by the
407
 * journaling code (called from jbd2_journal_get_write_access).
408 409 410 411 412 413 414 415 416 417 418 419
 *
 * We trust buffer_revoked() on the buffer if the buffer is already
 * being journaled: if there is no revoke pending on the buffer, then we
 * don't do anything here.
 *
 * This would break if it were possible for a buffer to be revoked and
 * discarded, and then reallocated within the same transaction.  In such
 * a case we would have lost the revoked bit, but when we arrived here
 * the second time we would still have a pending revoke to cancel.  So,
 * do not trust the Revoked bit on buffers unless RevokeValid is also
 * set.
 */
420
int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
421
{
422
	struct jbd2_revoke_record_s *record;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	journal_t *journal = handle->h_transaction->t_journal;
	int need_cancel;
	int did_revoke = 0;	/* akpm: debug */
	struct buffer_head *bh = jh2bh(jh);

	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);

	/* Is the existing Revoke bit valid?  If so, we trust it, and
	 * only perform the full cancel if the revoke bit is set.  If
	 * not, we can't trust the revoke bit, and we need to do the
	 * full search for a revoke record. */
	if (test_set_buffer_revokevalid(bh)) {
		need_cancel = test_clear_buffer_revoked(bh);
	} else {
		need_cancel = 1;
		clear_buffer_revoked(bh);
	}

	if (need_cancel) {
		record = find_revoke_record(journal, bh->b_blocknr);
		if (record) {
			jbd_debug(4, "cancelled existing revoke on "
				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
			spin_lock(&journal->j_revoke_lock);
			list_del(&record->hash);
			spin_unlock(&journal->j_revoke_lock);
449
			kmem_cache_free(jbd2_revoke_record_cache, record);
450 451 452 453
			did_revoke = 1;
		}
	}

454
#ifdef JBD2_EXPENSIVE_CHECKING
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	/* There better not be one left behind by now! */
	record = find_revoke_record(journal, bh->b_blocknr);
	J_ASSERT_JH(jh, record == NULL);
#endif

	/* Finally, have we just cleared revoke on an unhashed
	 * buffer_head?  If so, we'd better make sure we clear the
	 * revoked status on any hashed alias too, otherwise the revoke
	 * state machine will get very upset later on. */
	if (need_cancel) {
		struct buffer_head *bh2;
		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
		if (bh2) {
			if (bh2 != bh)
				clear_buffer_revoked(bh2);
			__brelse(bh2);
		}
	}
	return did_revoke;
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * journal_clear_revoked_flag clears revoked flag of buffers in
 * revoke table to reflect there is no revoked buffers in the next
 * transaction which is going to be started.
 */
void jbd2_clear_buffer_revoked_flags(journal_t *journal)
{
	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
	int i = 0;

	for (i = 0; i < revoke->hash_size; i++) {
		struct list_head *hash_list;
		struct list_head *list_entry;
		hash_list = &revoke->hash_table[i];

		list_for_each(list_entry, hash_list) {
			struct jbd2_revoke_record_s *record;
			struct buffer_head *bh;
			record = (struct jbd2_revoke_record_s *)list_entry;
			bh = __find_get_block(journal->j_fs_dev,
					      record->blocknr,
					      journal->j_blocksize);
			if (bh) {
				clear_buffer_revoked(bh);
				__brelse(bh);
			}
		}
	}
}

506 507 508 509
/* journal_switch_revoke table select j_revoke for next transaction
 * we do not want to suspend any processing until all revokes are
 * written -bzzz
 */
510
void jbd2_journal_switch_revoke_table(journal_t *journal)
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
{
	int i;

	if (journal->j_revoke == journal->j_revoke_table[0])
		journal->j_revoke = journal->j_revoke_table[1];
	else
		journal->j_revoke = journal->j_revoke_table[0];

	for (i = 0; i < journal->j_revoke->hash_size; i++)
		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
}

/*
 * Write revoke records to the journal for all entries in the current
 * revoke hash, deleting the entries as we go.
 */
527
void jbd2_journal_write_revoke_records(journal_t *journal,
528
				       transaction_t *transaction,
529
				       struct list_head *log_bufs,
530
				       int write_op)
531
{
532
	struct buffer_head *descriptor;
533 534
	struct jbd2_revoke_record_s *record;
	struct jbd2_revoke_table_s *revoke;
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	struct list_head *hash_list;
	int i, offset, count;

	descriptor = NULL;
	offset = 0;
	count = 0;

	/* select revoke table for committing transaction */
	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
		journal->j_revoke_table[1] : journal->j_revoke_table[0];

	for (i = 0; i < revoke->hash_size; i++) {
		hash_list = &revoke->hash_table[i];

		while (!list_empty(hash_list)) {
550
			record = (struct jbd2_revoke_record_s *)
551
				hash_list->next;
552
			write_one_revoke_record(journal, transaction, log_bufs,
553
						&descriptor, &offset,
554
						record, write_op);
555 556
			count++;
			list_del(&record->hash);
557
			kmem_cache_free(jbd2_revoke_record_cache, record);
558 559 560
		}
	}
	if (descriptor)
561
		flush_descriptor(journal, descriptor, offset, write_op);
562 563 564 565 566 567 568 569 570 571
	jbd_debug(1, "Wrote %d revoke records\n", count);
}

/*
 * Write out one revoke record.  We need to create a new descriptor
 * block if the old one is full or if we have not already created one.
 */

static void write_one_revoke_record(journal_t *journal,
				    transaction_t *transaction,
572 573
				    struct list_head *log_bufs,
				    struct buffer_head **descriptorp,
574
				    int *offsetp,
575 576
				    struct jbd2_revoke_record_s *record,
				    int write_op)
577
{
578
	int csum_size = 0;
579
	struct buffer_head *descriptor;
580
	int sz, offset;
581 582 583 584
	journal_header_t *header;

	/* If we are already aborting, this all becomes a noop.  We
           still need to go round the loop in
585
           jbd2_journal_write_revoke_records in order to free all of the
586 587 588 589 590 591 592
           revoke records: only the IO to the journal is omitted. */
	if (is_journal_aborted(journal))
		return;

	descriptor = *descriptorp;
	offset = *offsetp;

593
	/* Do we need to leave space at the end for a checksum? */
594
	if (jbd2_journal_has_csum_v2or3(journal))
595 596
		csum_size = sizeof(struct jbd2_journal_revoke_tail);

597 598 599 600 601
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
		sz = 8;
	else
		sz = 4;

602 603
	/* Make sure we have a descriptor with space left for the record */
	if (descriptor) {
604
		if (offset + sz > journal->j_blocksize - csum_size) {
605
			flush_descriptor(journal, descriptor, offset, write_op);
606 607 608 609 610
			descriptor = NULL;
		}
	}

	if (!descriptor) {
611
		descriptor = jbd2_journal_get_descriptor_buffer(journal);
612 613
		if (!descriptor)
			return;
614
		header = (journal_header_t *)descriptor->b_data;
615 616
		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
617 618 619
		header->h_sequence  = cpu_to_be32(transaction->t_tid);

		/* Record it so that we can wait for IO completion later */
620 621
		BUFFER_TRACE(descriptor, "file in log_bufs");
		jbd2_file_log_bh(log_bufs, descriptor);
622

623
		offset = sizeof(jbd2_journal_revoke_header_t);
624 625 626
		*descriptorp = descriptor;
	}

627
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
628
		* ((__be64 *)(&descriptor->b_data[offset])) =
Z
Zach Brown 已提交
629
			cpu_to_be64(record->blocknr);
630
	else
631
		* ((__be32 *)(&descriptor->b_data[offset])) =
Z
Zach Brown 已提交
632
			cpu_to_be32(record->blocknr);
633
	offset += sz;
Z
Zach Brown 已提交
634

635 636 637
	*offsetp = offset;
}

638
static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
639 640 641 642
{
	struct jbd2_journal_revoke_tail *tail;
	__u32 csum;

643
	if (!jbd2_journal_has_csum_v2or3(j))
644 645
		return;

646
	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
647 648
			sizeof(struct jbd2_journal_revoke_tail));
	tail->r_checksum = 0;
649
	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
650 651 652
	tail->r_checksum = cpu_to_be32(csum);
}

653 654 655 656 657 658 659 660
/*
 * Flush a revoke descriptor out to the journal.  If we are aborting,
 * this is a noop; otherwise we are generating a buffer which needs to
 * be waited for during commit, so it has to go onto the appropriate
 * journal buffer list.
 */

static void flush_descriptor(journal_t *journal,
661
			     struct buffer_head *descriptor,
662
			     int offset, int write_op)
663
{
664
	jbd2_journal_revoke_header_t *header;
665 666

	if (is_journal_aborted(journal)) {
667
		put_bh(descriptor);
668 669 670
		return;
	}

671
	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
672
	header->r_count = cpu_to_be32(offset);
673 674
	jbd2_revoke_csum_set(journal, descriptor);

675 676 677 678
	set_buffer_jwrite(descriptor);
	BUFFER_TRACE(descriptor, "write");
	set_buffer_dirty(descriptor);
	write_dirty_buffer(descriptor, write_op);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
}
#endif

/*
 * Revoke support for recovery.
 *
 * Recovery needs to be able to:
 *
 *  record all revoke records, including the tid of the latest instance
 *  of each revoke in the journal
 *
 *  check whether a given block in a given transaction should be replayed
 *  (ie. has not been revoked by a revoke record in that or a subsequent
 *  transaction)
 *
 *  empty the revoke table after recovery.
 */

/*
 * First, setting revoke records.  We create a new revoke record for
 * every block ever revoked in the log as we scan it for recovery, and
 * we update the existing records if we find multiple revokes for a
 * single block.
 */

704
int jbd2_journal_set_revoke(journal_t *journal,
705
		       unsigned long long blocknr,
706 707
		       tid_t sequence)
{
708
	struct jbd2_revoke_record_s *record;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

	record = find_revoke_record(journal, blocknr);
	if (record) {
		/* If we have multiple occurrences, only record the
		 * latest sequence number in the hashed record */
		if (tid_gt(sequence, record->sequence))
			record->sequence = sequence;
		return 0;
	}
	return insert_revoke_hash(journal, blocknr, sequence);
}

/*
 * Test revoke records.  For a given block referenced in the log, has
 * that block been revoked?  A revoke record with a given transaction
 * sequence number revokes all blocks in that transaction and earlier
 * ones, but later transactions still need replayed.
 */

728
int jbd2_journal_test_revoke(journal_t *journal,
729
			unsigned long long blocknr,
730 731
			tid_t sequence)
{
732
	struct jbd2_revoke_record_s *record;
733 734 735 736 737 738 739 740 741 742 743 744 745 746

	record = find_revoke_record(journal, blocknr);
	if (!record)
		return 0;
	if (tid_gt(sequence, record->sequence))
		return 0;
	return 1;
}

/*
 * Finally, once recovery is over, we need to clear the revoke table so
 * that it can be reused by the running filesystem.
 */

747
void jbd2_journal_clear_revoke(journal_t *journal)
748 749 750
{
	int i;
	struct list_head *hash_list;
751 752
	struct jbd2_revoke_record_s *record;
	struct jbd2_revoke_table_s *revoke;
753 754 755 756 757 758

	revoke = journal->j_revoke;

	for (i = 0; i < revoke->hash_size; i++) {
		hash_list = &revoke->hash_table[i];
		while (!list_empty(hash_list)) {
759
			record = (struct jbd2_revoke_record_s*) hash_list->next;
760
			list_del(&record->hash);
761
			kmem_cache_free(jbd2_revoke_record_cache, record);
762 763 764
		}
	}
}