phy.c 48.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/******************************************************************************
 *
 * Copyright(c) 2009-2010  Realtek Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
 * wlanfae <wlanfae@realtek.com>
 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
 * Hsinchu 300, Taiwan.
 *
 * Larry Finger <Larry.Finger@lwfinger.net>
 *
 *****************************************************************************/

30 31
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "../wifi.h"
#include "../pci.h"
#include "../ps.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "fw.h"
#include "hw.h"
#include "table.h"

static u32 _rtl92s_phy_calculate_bit_shift(u32 bitmask)
{
	u32 i;

	for (i = 0; i <= 31; i++) {
		if (((bitmask >> i) & 0x1) == 1)
			break;
	}

	return i;
}

u32 rtl92s_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 returnvalue = 0, originalvalue, bitshift;

61 62
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n",
		 regaddr, bitmask);
63 64 65 66 67

	originalvalue = rtl_read_dword(rtlpriv, regaddr);
	bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
	returnvalue = (originalvalue & bitmask) >> bitshift;

68 69
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "BBR MASK=0x%x Addr[0x%x]=0x%x\n",
		 bitmask, regaddr, originalvalue);
70 71 72 73 74 75 76 77 78 79 80

	return returnvalue;

}

void rtl92s_phy_set_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask,
			   u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 originalvalue, bitshift;

81 82 83
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), bitmask(%#x), data(%#x)\n",
		 regaddr, bitmask, data);
84 85 86 87 88 89 90 91 92

	if (bitmask != MASKDWORD) {
		originalvalue = rtl_read_dword(rtlpriv, regaddr);
		bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
		data = ((originalvalue & (~bitmask)) | (data << bitshift));
	}

	rtl_write_dword(rtlpriv, regaddr, data);

93 94 95
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), bitmask(%#x), data(%#x)\n",
		 regaddr, bitmask, data);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

}

static u32 _rtl92s_phy_rf_serial_read(struct ieee80211_hw *hw,
				      enum radio_path rfpath, u32 offset)
{

	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
	u32 newoffset;
	u32 tmplong, tmplong2;
	u8 rfpi_enable = 0;
	u32 retvalue = 0;

	offset &= 0x3f;
	newoffset = offset;

	tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);

	if (rfpath == RF90_PATH_A)
		tmplong2 = tmplong;
	else
		tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);

	tmplong2 = (tmplong2 & (~BLSSI_READADDRESS)) | (newoffset << 23) |
			BLSSI_READEDGE;

	rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
		      tmplong & (~BLSSI_READEDGE));

	mdelay(1);

	rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
	mdelay(1);

	rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD, tmplong |
		      BLSSI_READEDGE);
	mdelay(1);

	if (rfpath == RF90_PATH_A)
		rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
						BIT(8));
	else if (rfpath == RF90_PATH_B)
		rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
						BIT(8));

	if (rfpi_enable)
		retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readbackpi,
					 BLSSI_READBACK_DATA);
	else
		retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readback,
					 BLSSI_READBACK_DATA);

	retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readback,
				 BLSSI_READBACK_DATA);

153 154
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x]=0x%x\n",
		 rfpath, pphyreg->rflssi_readback, retvalue);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

	return retvalue;

}

static void _rtl92s_phy_rf_serial_write(struct ieee80211_hw *hw,
					enum radio_path rfpath, u32 offset,
					u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
	u32 data_and_addr = 0;
	u32 newoffset;

	offset &= 0x3f;
	newoffset = offset;

	data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
	rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);

176 177
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n",
		 rfpath, pphyreg->rf3wire_offset, data_and_addr);
178 179 180 181 182 183 184 185 186
}


u32 rtl92s_phy_query_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
			    u32 regaddr, u32 bitmask)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 original_value, readback_value, bitshift;

187 188 189
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
		 regaddr, rfpath, bitmask);
190

191
	spin_lock(&rtlpriv->locks.rf_lock);
192 193 194 195 196 197

	original_value = _rtl92s_phy_rf_serial_read(hw, rfpath, regaddr);

	bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
	readback_value = (original_value & bitmask) >> bitshift;

198
	spin_unlock(&rtlpriv->locks.rf_lock);
199

200 201 202
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
		 regaddr, rfpath, bitmask, original_value);
203 204 205 206 207 208 209 210 211 212 213 214 215 216

	return readback_value;
}

void rtl92s_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
			   u32 regaddr, u32 bitmask, u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 original_value, bitshift;

	if (!((rtlphy->rf_pathmap >> rfpath) & 0x1))
		return;

217 218 219
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
		 regaddr, bitmask, data, rfpath);
220

221
	spin_lock(&rtlpriv->locks.rf_lock);
222 223 224 225 226 227 228 229 230 231

	if (bitmask != RFREG_OFFSET_MASK) {
		original_value = _rtl92s_phy_rf_serial_read(hw, rfpath,
							    regaddr);
		bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
		data = ((original_value & (~bitmask)) | (data << bitshift));
	}

	_rtl92s_phy_rf_serial_write(hw, rfpath, regaddr, data);

232
	spin_unlock(&rtlpriv->locks.rf_lock);
233

234 235 236
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
		 regaddr, bitmask, data, rfpath);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

}

void rtl92s_phy_scan_operation_backup(struct ieee80211_hw *hw,
				      u8 operation)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));

	if (!is_hal_stop(rtlhal)) {
		switch (operation) {
		case SCAN_OPT_BACKUP:
			rtl92s_phy_set_fw_cmd(hw, FW_CMD_PAUSE_DM_BY_SCAN);
			break;
		case SCAN_OPT_RESTORE:
			rtl92s_phy_set_fw_cmd(hw, FW_CMD_RESUME_DM_BY_SCAN);
			break;
		default:
			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
256
				 "Unknown operation\n");
257 258 259 260 261 262 263 264 265 266 267 268 269 270
			break;
		}
	}
}

void rtl92s_phy_set_bw_mode(struct ieee80211_hw *hw,
			    enum nl80211_channel_type ch_type)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	u8 reg_bw_opmode;

271 272 273
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
		 rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
		 "20MHz" : "40MHz");
274 275 276 277 278 279 280 281 282

	if (rtlphy->set_bwmode_inprogress)
		return;
	if (is_hal_stop(rtlhal))
		return;

	rtlphy->set_bwmode_inprogress = true;

	reg_bw_opmode = rtl_read_byte(rtlpriv, BW_OPMODE);
283 284
	/* dummy read */
	rtl_read_byte(rtlpriv, RRSR + 2);
285 286 287 288 289 290 291 292 293 294 295 296

	switch (rtlphy->current_chan_bw) {
	case HT_CHANNEL_WIDTH_20:
		reg_bw_opmode |= BW_OPMODE_20MHZ;
		rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
		break;
	case HT_CHANNEL_WIDTH_20_40:
		reg_bw_opmode &= ~BW_OPMODE_20MHZ;
		rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
297
			 "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
		break;
	}

	switch (rtlphy->current_chan_bw) {
	case HT_CHANNEL_WIDTH_20:
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);

		if (rtlhal->version >= VERSION_8192S_BCUT)
			rtl_write_byte(rtlpriv, RFPGA0_ANALOGPARAMETER2, 0x58);
		break;
	case HT_CHANNEL_WIDTH_20_40:
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);

		rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
				(mac->cur_40_prime_sc >> 1));
		rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);

		if (rtlhal->version >= VERSION_8192S_BCUT)
			rtl_write_byte(rtlpriv, RFPGA0_ANALOGPARAMETER2, 0x18);
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
322
			 "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
323 324 325 326 327
		break;
	}

	rtl92s_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
	rtlphy->set_bwmode_inprogress = false;
328
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
329 330 331 332 333 334 335 336 337
}

static bool _rtl92s_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
		u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
		u32 para1, u32 para2, u32 msdelay)
{
	struct swchnlcmd *pcmd;

	if (cmdtable == NULL) {
338
		RT_ASSERT(false, "cmdtable cannot be NULL\n");
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		return false;
	}

	if (cmdtableidx >= cmdtablesz)
		return false;

	pcmd = cmdtable + cmdtableidx;
	pcmd->cmdid = cmdid;
	pcmd->para1 = para1;
	pcmd->para2 = para2;
	pcmd->msdelay = msdelay;

	return true;
}

static bool _rtl92s_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
	     u8 channel, u8 *stage, u8 *step, u32 *delay)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
	u32 precommoncmdcnt;
	struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
	u32 postcommoncmdcnt;
	struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
	u32 rfdependcmdcnt;
	struct swchnlcmd *currentcmd = NULL;
	u8 rfpath;
	u8 num_total_rfpath = rtlphy->num_total_rfpath;

	precommoncmdcnt = 0;
	_rtl92s_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
			MAX_PRECMD_CNT, CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
	_rtl92s_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
			MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);

	postcommoncmdcnt = 0;

	_rtl92s_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
			MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);

	rfdependcmdcnt = 0;

	RT_ASSERT((channel >= 1 && channel <= 14),
383
		  "invalid channel for Zebra: %d\n", channel);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

	_rtl92s_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
					 MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
					 RF_CHNLBW, channel, 10);

	_rtl92s_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
			MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0, 0);

	do {
		switch (*stage) {
		case 0:
			currentcmd = &precommoncmd[*step];
			break;
		case 1:
			currentcmd = &rfdependcmd[*step];
			break;
		case 2:
			currentcmd = &postcommoncmd[*step];
			break;
		}

		if (currentcmd->cmdid == CMDID_END) {
			if ((*stage) == 2) {
				return true;
			} else {
				(*stage)++;
				(*step) = 0;
				continue;
			}
		}

		switch (currentcmd->cmdid) {
		case CMDID_SET_TXPOWEROWER_LEVEL:
			rtl92s_phy_set_txpower(hw, channel);
			break;
		case CMDID_WRITEPORT_ULONG:
			rtl_write_dword(rtlpriv, currentcmd->para1,
					currentcmd->para2);
			break;
		case CMDID_WRITEPORT_USHORT:
			rtl_write_word(rtlpriv, currentcmd->para1,
				       (u16)currentcmd->para2);
			break;
		case CMDID_WRITEPORT_UCHAR:
			rtl_write_byte(rtlpriv, currentcmd->para1,
				       (u8)currentcmd->para2);
			break;
		case CMDID_RF_WRITEREG:
			for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
				rtlphy->rfreg_chnlval[rfpath] =
					 ((rtlphy->rfreg_chnlval[rfpath] &
					 0xfffffc00) | currentcmd->para2);
				rtl_set_rfreg(hw, (enum radio_path)rfpath,
					      currentcmd->para1,
					      RFREG_OFFSET_MASK,
					      rtlphy->rfreg_chnlval[rfpath]);
			}
			break;
		default:
			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
444
				 "switch case not processed\n");
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
			break;
		}

		break;
	} while (true);

	(*delay) = currentcmd->msdelay;
	(*step)++;
	return false;
}

u8 rtl92s_phy_sw_chnl(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 delay;
	bool ret;

464 465
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "switch to channel%d\n",
		 rtlphy->current_channel);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	if (rtlphy->sw_chnl_inprogress)
		return 0;

	if (rtlphy->set_bwmode_inprogress)
		return 0;

	if (is_hal_stop(rtlhal))
		return 0;

	rtlphy->sw_chnl_inprogress = true;
	rtlphy->sw_chnl_stage = 0;
	rtlphy->sw_chnl_step = 0;

	do {
		if (!rtlphy->sw_chnl_inprogress)
			break;

		ret = _rtl92s_phy_sw_chnl_step_by_step(hw,
				 rtlphy->current_channel,
				 &rtlphy->sw_chnl_stage,
				 &rtlphy->sw_chnl_step, &delay);
		if (!ret) {
			if (delay > 0)
				mdelay(delay);
			else
				continue;
		} else {
			rtlphy->sw_chnl_inprogress = false;
		}
		break;
	} while (true);

	rtlphy->sw_chnl_inprogress = false;

501
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

	return 1;
}

static void _rtl92se_phy_set_rf_sleep(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 u1btmp;

	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
	u1btmp |= BIT(0);

	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
	rtl_write_word(rtlpriv, CMDR, 0x57FC);
	udelay(100);

	rtl_write_word(rtlpriv, CMDR, 0x77FC);
	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
	udelay(10);

	rtl_write_word(rtlpriv, CMDR, 0x37FC);
	udelay(10);

	rtl_write_word(rtlpriv, CMDR, 0x77FC);
	udelay(10);

	rtl_write_word(rtlpriv, CMDR, 0x57FC);

	/* we should chnge GPIO to input mode
	 * this will drop away current about 25mA*/
	rtl8192se_gpiobit3_cfg_inputmode(hw);
}

bool rtl92s_phy_set_rf_power_state(struct ieee80211_hw *hw,
				   enum rf_pwrstate rfpwr_state)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	bool bresult = true;
	u8 i, queue_id;
	struct rtl8192_tx_ring *ring = NULL;

	if (rfpwr_state == ppsc->rfpwr_state)
		return false;

	switch (rfpwr_state) {
	case ERFON:{
			if ((ppsc->rfpwr_state == ERFOFF) &&
			    RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {

				bool rtstatus;
				u32 InitializeCount = 0;
				do {
					InitializeCount++;
					RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
561
						 "IPS Set eRf nic enable\n");
562 563 564 565 566 567 568 569
					rtstatus = rtl_ps_enable_nic(hw);
				} while ((rtstatus != true) &&
					 (InitializeCount < 10));

				RT_CLEAR_PS_LEVEL(ppsc,
						  RT_RF_OFF_LEVL_HALT_NIC);
			} else {
				RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
570 571 572 573 574
					 "awake, sleeped:%d ms state_inap:%x\n",
					 jiffies_to_msecs(jiffies -
							  ppsc->
							  last_sleep_jiffies),
					 rtlpriv->psc.state_inap);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
				ppsc->last_awake_jiffies = jiffies;
				rtl_write_word(rtlpriv, CMDR, 0x37FC);
				rtl_write_byte(rtlpriv, TXPAUSE, 0x00);
				rtl_write_byte(rtlpriv, PHY_CCA, 0x3);
			}

			if (mac->link_state == MAC80211_LINKED)
				rtlpriv->cfg->ops->led_control(hw,
							 LED_CTL_LINK);
			else
				rtlpriv->cfg->ops->led_control(hw,
							 LED_CTL_NO_LINK);
			break;
		}
	case ERFOFF:{
			if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
				RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
592
					 "IPS Set eRf nic disable\n");
593 594 595 596 597 598 599 600 601 602 603 604 605 606
				rtl_ps_disable_nic(hw);
				RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
			} else {
				if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
					rtlpriv->cfg->ops->led_control(hw,
							 LED_CTL_NO_LINK);
				else
					rtlpriv->cfg->ops->led_control(hw,
							 LED_CTL_POWER_OFF);
			}
			break;
		}
	case ERFSLEEP:
			if (ppsc->rfpwr_state == ERFOFF)
607
				return false;
608 609 610 611 612 613 614 615 616 617

			for (queue_id = 0, i = 0;
			     queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
				ring = &pcipriv->dev.tx_ring[queue_id];
				if (skb_queue_len(&ring->queue) == 0 ||
					queue_id == BEACON_QUEUE) {
					queue_id++;
					continue;
				} else {
					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
618 619 620
						 "eRf Off/Sleep: %d times TcbBusyQueue[%d] = %d before doze!\n",
						 i + 1, queue_id,
						 skb_queue_len(&ring->queue));
621 622 623 624 625 626 627

					udelay(10);
					i++;
				}

				if (i >= MAX_DOZE_WAITING_TIMES_9x) {
					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
628
						 "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n",
629 630
						 MAX_DOZE_WAITING_TIMES_9x,
						 queue_id,
631
						 skb_queue_len(&ring->queue));
632 633 634 635 636
					break;
				}
			}

			RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
637
				 "Set ERFSLEEP awaked:%d ms\n",
638
				 jiffies_to_msecs(jiffies -
639
						  ppsc->last_awake_jiffies));
640 641

			RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
642 643 644 645
				 "sleep awaked:%d ms state_inap:%x\n",
				 jiffies_to_msecs(jiffies -
						  ppsc->last_awake_jiffies),
				 rtlpriv->psc.state_inap);
646 647 648 649 650
			ppsc->last_sleep_jiffies = jiffies;
			_rtl92se_phy_set_rf_sleep(hw);
	    break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
651
			 "switch case not processed\n");
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
		bresult = false;
		break;
	}

	if (bresult)
		ppsc->rfpwr_state = rfpwr_state;

	return bresult;
}

static bool _rtl92s_phy_config_rfpa_bias_current(struct ieee80211_hw *hw,
						 enum radio_path rfpath)
{
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	bool rtstatus = true;
	u32 tmpval = 0;

	/* If inferiority IC, we have to increase the PA bias current */
	if (rtlhal->ic_class != IC_INFERIORITY_A) {
		tmpval = rtl92s_phy_query_rf_reg(hw, rfpath, RF_IPA, 0xf);
		rtl92s_phy_set_rf_reg(hw, rfpath, RF_IPA, 0xf, tmpval + 1);
	}

	return rtstatus;
}

static void _rtl92s_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
		u32 reg_addr, u32 bitmask, u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	if (reg_addr == RTXAGC_RATE18_06)
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][0] =
									 data;
	if (reg_addr == RTXAGC_RATE54_24)
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][1] =
									 data;
	if (reg_addr == RTXAGC_CCK_MCS32)
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][6] =
									 data;
	if (reg_addr == RTXAGC_MCS03_MCS00)
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][2] =
									 data;
	if (reg_addr == RTXAGC_MCS07_MCS04)
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][3] =
									 data;
	if (reg_addr == RTXAGC_MCS11_MCS08)
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][4] =
									 data;
	if (reg_addr == RTXAGC_MCS15_MCS12) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][5] =
									 data;
		rtlphy->pwrgroup_cnt++;
	}
}

static void _rtl92s_phy_init_register_definition(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	/*RF Interface Sowrtware Control */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
	rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
	rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
	rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;

	/* RF Interface Readback Value */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
	rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
	rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
	rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;

	/* RF Interface Output (and Enable) */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
	rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
	rtlphy->phyreg_def[RF90_PATH_C].rfintfo = RFPGA0_XC_RFINTERFACEOE;
	rtlphy->phyreg_def[RF90_PATH_D].rfintfo = RFPGA0_XD_RFINTERFACEOE;

	/* RF Interface (Output and)  Enable */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
	rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
	rtlphy->phyreg_def[RF90_PATH_C].rfintfe = RFPGA0_XC_RFINTERFACEOE;
	rtlphy->phyreg_def[RF90_PATH_D].rfintfe = RFPGA0_XD_RFINTERFACEOE;

	/* Addr of LSSI. Wirte RF register by driver */
	rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
						 RFPGA0_XA_LSSIPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
						 RFPGA0_XB_LSSIPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_C].rf3wire_offset =
						 RFPGA0_XC_LSSIPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_D].rf3wire_offset =
						 RFPGA0_XD_LSSIPARAMETER;

	/* RF parameter */
	rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;

	/* Tx AGC Gain Stage (same for all path. Should we remove this?) */
	rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
	rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
	rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
	rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;

	/* Tranceiver A~D HSSI Parameter-1 */
	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
	rtlphy->phyreg_def[RF90_PATH_C].rfhssi_para1 = RFPGA0_XC_HSSIPARAMETER1;
	rtlphy->phyreg_def[RF90_PATH_D].rfhssi_para1 = RFPGA0_XD_HSSIPARAMETER1;

	/* Tranceiver A~D HSSI Parameter-2 */
	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
	rtlphy->phyreg_def[RF90_PATH_C].rfhssi_para2 = RFPGA0_XC_HSSIPARAMETER2;
	rtlphy->phyreg_def[RF90_PATH_D].rfhssi_para2 = RFPGA0_XD_HSSIPARAMETER2;

	/* RF switch Control */
	rtlphy->phyreg_def[RF90_PATH_A].rfswitch_control =
						 RFPGA0_XAB_SWITCHCONTROL;
	rtlphy->phyreg_def[RF90_PATH_B].rfswitch_control =
						 RFPGA0_XAB_SWITCHCONTROL;
	rtlphy->phyreg_def[RF90_PATH_C].rfswitch_control =
						 RFPGA0_XCD_SWITCHCONTROL;
	rtlphy->phyreg_def[RF90_PATH_D].rfswitch_control =
						 RFPGA0_XCD_SWITCHCONTROL;

	/* AGC control 1  */
	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;

	/* AGC control 2  */
	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;

	/* RX AFE control 1  */
	rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbalance =
						 ROFDM0_XARXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbalance =
						 ROFDM0_XBRXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbalance =
						 ROFDM0_XCRXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbalance =
						 ROFDM0_XDRXIQIMBALANCE;

	/* RX AFE control 1   */
	rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
	rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
	rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
	rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;

	/* Tx AFE control 1  */
	rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbalance =
						 ROFDM0_XATXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbalance =
						 ROFDM0_XBTXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbalance =
						 ROFDM0_XCTXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbalance =
						 ROFDM0_XDTXIQIMBALANCE;

	/* Tx AFE control 2  */
	rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATXAFE;
	rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTXAFE;
	rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTXAFE;
	rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTXAFE;

	/* Tranceiver LSSI Readback */
	rtlphy->phyreg_def[RF90_PATH_A].rflssi_readback =
			 RFPGA0_XA_LSSIREADBACK;
	rtlphy->phyreg_def[RF90_PATH_B].rflssi_readback =
			 RFPGA0_XB_LSSIREADBACK;
	rtlphy->phyreg_def[RF90_PATH_C].rflssi_readback =
			 RFPGA0_XC_LSSIREADBACK;
	rtlphy->phyreg_def[RF90_PATH_D].rflssi_readback =
			 RFPGA0_XD_LSSIREADBACK;

	/* Tranceiver LSSI Readback PI mode  */
	rtlphy->phyreg_def[RF90_PATH_A].rflssi_readbackpi =
			 TRANSCEIVERA_HSPI_READBACK;
	rtlphy->phyreg_def[RF90_PATH_B].rflssi_readbackpi =
			 TRANSCEIVERB_HSPI_READBACK;
}


static bool _rtl92s_phy_config_bb(struct ieee80211_hw *hw, u8 configtype)
{
	int i;
	u32 *phy_reg_table;
	u32 *agc_table;
	u16 phy_reg_len, agc_len;

	agc_len = AGCTAB_ARRAYLENGTH;
	agc_table = rtl8192seagctab_array;
	/* Default RF_type: 2T2R */
	phy_reg_len = PHY_REG_2T2RARRAYLENGTH;
	phy_reg_table = rtl8192sephy_reg_2t2rarray;

	if (configtype == BASEBAND_CONFIG_PHY_REG) {
		for (i = 0; i < phy_reg_len; i = i + 2) {
			if (phy_reg_table[i] == 0xfe)
				mdelay(50);
			else if (phy_reg_table[i] == 0xfd)
				mdelay(5);
			else if (phy_reg_table[i] == 0xfc)
				mdelay(1);
			else if (phy_reg_table[i] == 0xfb)
				udelay(50);
			else if (phy_reg_table[i] == 0xfa)
				udelay(5);
			else if (phy_reg_table[i] == 0xf9)
				udelay(1);

			/* Add delay for ECS T20 & LG malow platform, */
			udelay(1);

			rtl92s_phy_set_bb_reg(hw, phy_reg_table[i], MASKDWORD,
					phy_reg_table[i + 1]);
		}
	} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
		for (i = 0; i < agc_len; i = i + 2) {
			rtl92s_phy_set_bb_reg(hw, agc_table[i], MASKDWORD,
					agc_table[i + 1]);

			/* Add delay for ECS T20 & LG malow platform */
			udelay(1);
		}
	}

	return true;
}

static bool _rtl92s_phy_set_bb_to_diff_rf(struct ieee80211_hw *hw,
					  u8 configtype)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 *phy_regarray2xtxr_table;
	u16 phy_regarray2xtxr_len;
	int i;

	if (rtlphy->rf_type == RF_1T1R) {
		phy_regarray2xtxr_table = rtl8192sephy_changeto_1t1rarray;
		phy_regarray2xtxr_len = PHY_CHANGETO_1T1RARRAYLENGTH;
	} else if (rtlphy->rf_type == RF_1T2R) {
		phy_regarray2xtxr_table = rtl8192sephy_changeto_1t2rarray;
		phy_regarray2xtxr_len = PHY_CHANGETO_1T2RARRAYLENGTH;
	} else {
		return false;
	}

	if (configtype == BASEBAND_CONFIG_PHY_REG) {
		for (i = 0; i < phy_regarray2xtxr_len; i = i + 3) {
			if (phy_regarray2xtxr_table[i] == 0xfe)
				mdelay(50);
			else if (phy_regarray2xtxr_table[i] == 0xfd)
				mdelay(5);
			else if (phy_regarray2xtxr_table[i] == 0xfc)
				mdelay(1);
			else if (phy_regarray2xtxr_table[i] == 0xfb)
				udelay(50);
			else if (phy_regarray2xtxr_table[i] == 0xfa)
				udelay(5);
			else if (phy_regarray2xtxr_table[i] == 0xf9)
				udelay(1);

			rtl92s_phy_set_bb_reg(hw, phy_regarray2xtxr_table[i],
				phy_regarray2xtxr_table[i + 1],
				phy_regarray2xtxr_table[i + 2]);
		}
	}

	return true;
}

static bool _rtl92s_phy_config_bb_with_pg(struct ieee80211_hw *hw,
					  u8 configtype)
{
	int i;
	u32 *phy_table_pg;
	u16 phy_pg_len;

	phy_pg_len = PHY_REG_ARRAY_PGLENGTH;
	phy_table_pg = rtl8192sephy_reg_array_pg;

	if (configtype == BASEBAND_CONFIG_PHY_REG) {
		for (i = 0; i < phy_pg_len; i = i + 3) {
			if (phy_table_pg[i] == 0xfe)
				mdelay(50);
			else if (phy_table_pg[i] == 0xfd)
				mdelay(5);
			else if (phy_table_pg[i] == 0xfc)
				mdelay(1);
			else if (phy_table_pg[i] == 0xfb)
				udelay(50);
			else if (phy_table_pg[i] == 0xfa)
				udelay(5);
			else if (phy_table_pg[i] == 0xf9)
				udelay(1);

			_rtl92s_store_pwrindex_diffrate_offset(hw,
					phy_table_pg[i],
					phy_table_pg[i + 1],
					phy_table_pg[i + 2]);
			rtl92s_phy_set_bb_reg(hw, phy_table_pg[i],
					phy_table_pg[i + 1],
					phy_table_pg[i + 2]);
		}
	}

	return true;
}

static bool _rtl92s_phy_bb_config_parafile(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	bool rtstatus = true;

	/* 1. Read PHY_REG.TXT BB INIT!! */
	/* We will separate as 1T1R/1T2R/1T2R_GREEN/2T2R */
	if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_2T2R ||
	    rtlphy->rf_type == RF_1T1R || rtlphy->rf_type == RF_2T2R_GREEN) {
		rtstatus = _rtl92s_phy_config_bb(hw, BASEBAND_CONFIG_PHY_REG);

		if (rtlphy->rf_type != RF_2T2R &&
		    rtlphy->rf_type != RF_2T2R_GREEN)
			/* so we should reconfig BB reg with the right
			 * PHY parameters. */
			rtstatus = _rtl92s_phy_set_bb_to_diff_rf(hw,
						BASEBAND_CONFIG_PHY_REG);
	} else {
		rtstatus = false;
	}

	if (rtstatus != true) {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
997
			 "Write BB Reg Fail!!\n");
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		goto phy_BB8190_Config_ParaFile_Fail;
	}

	/* 2. If EEPROM or EFUSE autoload OK, We must config by
	 *    PHY_REG_PG.txt */
	if (rtlefuse->autoload_failflag == false) {
		rtlphy->pwrgroup_cnt = 0;

		rtstatus = _rtl92s_phy_config_bb_with_pg(hw,
						 BASEBAND_CONFIG_PHY_REG);
	}
	if (rtstatus != true) {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
1011
			 "_rtl92s_phy_bb_config_parafile(): BB_PG Reg Fail!!\n");
1012 1013 1014 1015 1016 1017 1018
		goto phy_BB8190_Config_ParaFile_Fail;
	}

	/* 3. BB AGC table Initialization */
	rtstatus = _rtl92s_phy_config_bb(hw, BASEBAND_CONFIG_AGC_TAB);

	if (rtstatus != true) {
1019
		pr_err("%s(): AGC Table Fail\n", __func__);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		goto phy_BB8190_Config_ParaFile_Fail;
	}

	/* Check if the CCK HighPower is turned ON. */
	/* This is used to calculate PWDB. */
	rtlphy->cck_high_power = (bool)(rtl92s_phy_query_bb_reg(hw,
			RFPGA0_XA_HSSIPARAMETER2, 0x200));

phy_BB8190_Config_ParaFile_Fail:
	return rtstatus;
}

u8 rtl92s_phy_config_rf(struct ieee80211_hw *hw, enum radio_path rfpath)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	int i;
	bool rtstatus = true;
	u32 *radio_a_table;
	u32 *radio_b_table;
	u16 radio_a_tblen, radio_b_tblen;

	radio_a_tblen = RADIOA_1T_ARRAYLENGTH;
	radio_a_table = rtl8192seradioa_1t_array;

	/* Using Green mode array table for RF_2T2R_GREEN */
	if (rtlphy->rf_type == RF_2T2R_GREEN) {
		radio_b_table = rtl8192seradiob_gm_array;
		radio_b_tblen = RADIOB_GM_ARRAYLENGTH;
	} else {
		radio_b_table = rtl8192seradiob_array;
		radio_b_tblen = RADIOB_ARRAYLENGTH;
	}

1054
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	rtstatus = true;

	switch (rfpath) {
	case RF90_PATH_A:
		for (i = 0; i < radio_a_tblen; i = i + 2) {
			if (radio_a_table[i] == 0xfe)
				/* Delay specific ms. Only RF configuration
				 * requires delay. */
				mdelay(50);
			else if (radio_a_table[i] == 0xfd)
				mdelay(5);
			else if (radio_a_table[i] == 0xfc)
				mdelay(1);
			else if (radio_a_table[i] == 0xfb)
				udelay(50);
			else if (radio_a_table[i] == 0xfa)
				udelay(5);
			else if (radio_a_table[i] == 0xf9)
				udelay(1);
			else
				rtl92s_phy_set_rf_reg(hw, rfpath,
						      radio_a_table[i],
						      MASK20BITS,
						      radio_a_table[i + 1]);

			/* Add delay for ECS T20 & LG malow platform */
			udelay(1);
		}

		/* PA Bias current for inferiority IC */
		_rtl92s_phy_config_rfpa_bias_current(hw, rfpath);
		break;
	case RF90_PATH_B:
		for (i = 0; i < radio_b_tblen; i = i + 2) {
			if (radio_b_table[i] == 0xfe)
				/* Delay specific ms. Only RF configuration
				 * requires delay.*/
				mdelay(50);
			else if (radio_b_table[i] == 0xfd)
				mdelay(5);
			else if (radio_b_table[i] == 0xfc)
				mdelay(1);
			else if (radio_b_table[i] == 0xfb)
				udelay(50);
			else if (radio_b_table[i] == 0xfa)
				udelay(5);
			else if (radio_b_table[i] == 0xf9)
				udelay(1);
			else
				rtl92s_phy_set_rf_reg(hw, rfpath,
						      radio_b_table[i],
						      MASK20BITS,
						      radio_b_table[i + 1]);

			/* Add delay for ECS T20 & LG malow platform */
			udelay(1);
		}
		break;
	case RF90_PATH_C:
		;
		break;
	case RF90_PATH_D:
		;
		break;
	default:
		break;
	}

	return rtstatus;
}


bool rtl92s_phy_mac_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 i;
	u32 arraylength;
	u32 *ptraArray;

	arraylength = MAC_2T_ARRAYLENGTH;
	ptraArray = rtl8192semac_2t_array;

	for (i = 0; i < arraylength; i = i + 2)
		rtl_write_byte(rtlpriv, ptraArray[i], (u8)ptraArray[i + 1]);

	return true;
}


bool rtl92s_phy_bb_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	bool rtstatus = true;
	u8 pathmap, index, rf_num = 0;
	u8 path1, path2;

	_rtl92s_phy_init_register_definition(hw);

	/* Config BB and AGC */
	rtstatus = _rtl92s_phy_bb_config_parafile(hw);


	/* Check BB/RF confiuration setting. */
	/* We only need to configure RF which is turned on. */
	path1 = (u8)(rtl92s_phy_query_bb_reg(hw, RFPGA0_TXINFO, 0xf));
	mdelay(10);
	path2 = (u8)(rtl92s_phy_query_bb_reg(hw, ROFDM0_TRXPATHENABLE, 0xf));
	pathmap = path1 | path2;

	rtlphy->rf_pathmap = pathmap;
	for (index = 0; index < 4; index++) {
		if ((pathmap >> index) & 0x1)
			rf_num++;
	}

	if ((rtlphy->rf_type == RF_1T1R && rf_num != 1) ||
	    (rtlphy->rf_type == RF_1T2R && rf_num != 2) ||
	    (rtlphy->rf_type == RF_2T2R && rf_num != 2) ||
	    (rtlphy->rf_type == RF_2T2R_GREEN && rf_num != 2)) {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
1176 1177
			 "RF_Type(%x) does not match RF_Num(%x)!!\n",
			 rtlphy->rf_type, rf_num);
1178
		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
1179 1180
			 "path1 0x%x, path2 0x%x, pathmap 0x%x\n",
			 path1, path2, pathmap);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	}

	return rtstatus;
}

bool rtl92s_phy_rf_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	/* Initialize general global value */
	if (rtlphy->rf_type == RF_1T1R)
		rtlphy->num_total_rfpath = 1;
	else
		rtlphy->num_total_rfpath = 2;

	/* Config BB and RF */
	return rtl92s_phy_rf6052_config(hw);
}

void rtl92s_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	/* read rx initial gain */
	rtlphy->default_initialgain[0] = rtl_get_bbreg(hw,
			ROFDM0_XAAGCCORE1, MASKBYTE0);
	rtlphy->default_initialgain[1] = rtl_get_bbreg(hw,
			ROFDM0_XBAGCCORE1, MASKBYTE0);
	rtlphy->default_initialgain[2] = rtl_get_bbreg(hw,
			ROFDM0_XCAGCCORE1, MASKBYTE0);
	rtlphy->default_initialgain[3] = rtl_get_bbreg(hw,
			ROFDM0_XDAGCCORE1, MASKBYTE0);
1215 1216
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n",
1217 1218 1219
		 rtlphy->default_initialgain[0],
		 rtlphy->default_initialgain[1],
		 rtlphy->default_initialgain[2],
1220
		 rtlphy->default_initialgain[3]);
1221 1222 1223 1224 1225 1226

	/* read framesync */
	rtlphy->framesync = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3, MASKBYTE0);
	rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
					      MASKDWORD);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1227 1228
		 "Default framesync (0x%x) = 0x%x\n",
		 ROFDM0_RXDETECTOR3, rtlphy->framesync);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

}

static void _rtl92s_phy_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
					  u8 *cckpowerlevel, u8 *ofdmpowerLevel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u8 index = (channel - 1);

	/* 1. CCK */
	/* RF-A */
	cckpowerlevel[0] = rtlefuse->txpwrlevel_cck[0][index];
	/* RF-B */
	cckpowerlevel[1] = rtlefuse->txpwrlevel_cck[1][index];

	/* 2. OFDM for 1T or 2T */
	if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
		/* Read HT 40 OFDM TX power */
		ofdmpowerLevel[0] = rtlefuse->txpwrlevel_ht40_1s[0][index];
		ofdmpowerLevel[1] = rtlefuse->txpwrlevel_ht40_1s[1][index];
	} else if (rtlphy->rf_type == RF_2T2R) {
		/* Read HT 40 OFDM TX power */
		ofdmpowerLevel[0] = rtlefuse->txpwrlevel_ht40_2s[0][index];
		ofdmpowerLevel[1] = rtlefuse->txpwrlevel_ht40_2s[1][index];
	}
}

static void _rtl92s_phy_ccxpower_indexcheck(struct ieee80211_hw *hw,
		u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
	rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
}

void rtl92s_phy_set_txpower(struct ieee80211_hw *hw, u8	channel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	/* [0]:RF-A, [1]:RF-B */
	u8 cckpowerlevel[2], ofdmpowerLevel[2];

	if (rtlefuse->txpwr_fromeprom == false)
		return;

	/* Mainly we use RF-A Tx Power to write the Tx Power registers,
	 * but the RF-B Tx Power must be calculated by the antenna diff.
	 * So we have to rewrite Antenna gain offset register here.
	 * Please refer to BB register 0x80c
	 * 1. For CCK.
	 * 2. For OFDM 1T or 2T */
	_rtl92s_phy_get_txpower_index(hw, channel, &cckpowerlevel[0],
			&ofdmpowerLevel[0]);

	RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
1288 1289 1290
		 "Channel-%d, cckPowerLevel (A / B) = 0x%x / 0x%x, ofdmPowerLevel (A / B) = 0x%x / 0x%x\n",
		 channel, cckpowerlevel[0], cckpowerlevel[1],
		 ofdmpowerLevel[0], ofdmpowerLevel[1]);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	_rtl92s_phy_ccxpower_indexcheck(hw, channel, &cckpowerlevel[0],
			&ofdmpowerLevel[0]);

	rtl92s_phy_rf6052_set_ccktxpower(hw, cckpowerlevel[0]);
	rtl92s_phy_rf6052_set_ofdmtxpower(hw, &ofdmpowerLevel[0], channel);

}

void rtl92s_phy_chk_fwcmd_iodone(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u16 pollingcnt = 10000;
	u32 tmpvalue;

	/* Make sure that CMD IO has be accepted by FW. */
	do {
		udelay(10);

		tmpvalue = rtl_read_dword(rtlpriv, WFM5);
		if (tmpvalue == 0)
			break;
	} while (--pollingcnt);

	if (pollingcnt == 0)
1316
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Set FW Cmd fail!!\n");
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
}


static void _rtl92s_phy_set_fwcmd_io(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 input, current_aid = 0;

	if (is_hal_stop(rtlhal))
		return;

	/* We re-map RA related CMD IO to combinational ones */
	/* if FW version is v.52 or later. */
	switch (rtlhal->current_fwcmd_io) {
	case FW_CMD_RA_REFRESH_N:
		rtlhal->current_fwcmd_io = FW_CMD_RA_REFRESH_N_COMB;
		break;
	case FW_CMD_RA_REFRESH_BG:
		rtlhal->current_fwcmd_io = FW_CMD_RA_REFRESH_BG_COMB;
		break;
	default:
		break;
	}

	switch (rtlhal->current_fwcmd_io) {
	case FW_CMD_RA_RESET:
1345
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_RESET\n");
1346 1347 1348 1349
		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_RA_ACTIVE:
1350
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_ACTIVE\n");
1351 1352 1353 1354
		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_RA_REFRESH_N:
1355
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_REFRESH_N\n");
1356 1357 1358 1359 1360 1361 1362 1363
		input = FW_RA_REFRESH;
		rtl_write_dword(rtlpriv, WFM5, input);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		rtl_write_dword(rtlpriv, WFM5, FW_RA_ENABLE_RSSI_MASK);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_RA_REFRESH_BG:
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
1364
			 "FW_CMD_RA_REFRESH_BG\n");
1365 1366 1367 1368 1369 1370 1371
		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		rtl_write_dword(rtlpriv, WFM5, FW_RA_DISABLE_RSSI_MASK);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_RA_REFRESH_N_COMB:
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
1372
			 "FW_CMD_RA_REFRESH_N_COMB\n");
1373 1374 1375 1376 1377 1378
		input = FW_RA_IOT_N_COMB;
		rtl_write_dword(rtlpriv, WFM5, input);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_RA_REFRESH_BG_COMB:
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
1379
			 "FW_CMD_RA_REFRESH_BG_COMB\n");
1380 1381 1382 1383 1384
		input = FW_RA_IOT_BG_COMB;
		rtl_write_dword(rtlpriv, WFM5, input);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_IQK_ENABLE:
1385
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_IQK_ENABLE\n");
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		rtl_write_dword(rtlpriv, WFM5, FW_IQK_ENABLE);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_PAUSE_DM_BY_SCAN:
		/* Lower initial gain */
		rtl_set_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0, 0x17);
		rtl_set_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0, 0x17);
		/* CCA threshold */
		rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0x40);
		break;
	case FW_CMD_RESUME_DM_BY_SCAN:
		/* CCA threshold */
		rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0xcd);
		rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
		break;
	case FW_CMD_HIGH_PWR_DISABLE:
		if (rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE)
			break;

		/* Lower initial gain */
		rtl_set_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0, 0x17);
		rtl_set_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0, 0x17);
		/* CCA threshold */
		rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0x40);
		break;
	case FW_CMD_HIGH_PWR_ENABLE:
		if ((rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) ||
1413
			rtlpriv->dm.dynamic_txpower_enable)
1414 1415 1416 1417 1418 1419
			break;

		/* CCA threshold */
		rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0xcd);
		break;
	case FW_CMD_LPS_ENTER:
1420
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_LPS_ENTER\n");
1421 1422 1423 1424 1425 1426 1427 1428
		current_aid = rtlpriv->mac80211.assoc_id;
		rtl_write_dword(rtlpriv, WFM5, (FW_LPS_ENTER |
				((current_aid | 0xc000) << 8)));
		rtl92s_phy_chk_fwcmd_iodone(hw);
		/* FW set TXOP disable here, so disable EDCA
		 * turbo mode until driver leave LPS */
		break;
	case FW_CMD_LPS_LEAVE:
1429
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_LPS_LEAVE\n");
1430 1431 1432 1433
		rtl_write_dword(rtlpriv, WFM5, FW_LPS_LEAVE);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_ADD_A2_ENTRY:
1434
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_ADD_A2_ENTRY\n");
1435 1436 1437 1438 1439
		rtl_write_dword(rtlpriv, WFM5, FW_ADD_A2_ENTRY);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;
	case FW_CMD_CTRL_DM_BY_DRIVER:
		RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1440
			 "FW_CMD_CTRL_DM_BY_DRIVER\n");
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		rtl_write_dword(rtlpriv, WFM5, FW_CTRL_DM_BY_DRIVER);
		rtl92s_phy_chk_fwcmd_iodone(hw);
		break;

	default:
		break;
	}

	rtl92s_phy_chk_fwcmd_iodone(hw);

	/* Clear FW CMD operation flag. */
	rtlhal->set_fwcmd_inprogress = false;
}

bool rtl92s_phy_set_fw_cmd(struct ieee80211_hw *hw, enum fwcmd_iotype fw_cmdio)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u32	fw_param = FW_CMD_IO_PARA_QUERY(rtlpriv);
	u16	fw_cmdmap = FW_CMD_IO_QUERY(rtlpriv);
	bool bPostProcessing = false;

	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1465 1466
		 "Set FW Cmd(%#x), set_fwcmd_inprogress(%d)\n",
		 fw_cmdio, rtlhal->set_fwcmd_inprogress);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	do {
		/* We re-map to combined FW CMD ones if firmware version */
		/* is v.53 or later. */
		switch (fw_cmdio) {
		case FW_CMD_RA_REFRESH_N:
			fw_cmdio = FW_CMD_RA_REFRESH_N_COMB;
			break;
		case FW_CMD_RA_REFRESH_BG:
			fw_cmdio = FW_CMD_RA_REFRESH_BG_COMB;
			break;
		default:
			break;
		}

		/* If firmware version is v.62 or later,
		 * use FW_CMD_IO_SET for FW_CMD_CTRL_DM_BY_DRIVER */
		if (hal_get_firmwareversion(rtlpriv) >= 0x3E) {
			if (fw_cmdio == FW_CMD_CTRL_DM_BY_DRIVER)
				fw_cmdio = FW_CMD_CTRL_DM_BY_DRIVER_NEW;
		}


		/* We shall revise all FW Cmd IO into Reg0x364
		 * DM map table in the future. */
		switch (fw_cmdio) {
		case FW_CMD_RA_INIT:
1494
			RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "RA init!!\n");
1495 1496 1497 1498 1499 1500 1501
			fw_cmdmap |= FW_RA_INIT_CTL;
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			/* Clear control flag to sync with FW. */
			FW_CMD_IO_CLR(rtlpriv, FW_RA_INIT_CTL);
			break;
		case FW_CMD_DIG_DISABLE:
			RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1502
				 "Set DIG disable!!\n");
1503 1504 1505 1506 1507 1508 1509
			fw_cmdmap &= ~FW_DIG_ENABLE_CTL;
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			break;
		case FW_CMD_DIG_ENABLE:
		case FW_CMD_DIG_RESUME:
			if (!(rtlpriv->dm.dm_flag & HAL_DM_DIG_DISABLE)) {
				RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1510
					 "Set DIG enable or resume!!\n");
1511 1512 1513 1514 1515 1516
				fw_cmdmap |= (FW_DIG_ENABLE_CTL | FW_SS_CTL);
				FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			}
			break;
		case FW_CMD_DIG_HALT:
			RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1517
				 "Set DIG halt!!\n");
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
			fw_cmdmap &= ~(FW_DIG_ENABLE_CTL | FW_SS_CTL);
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			break;
		case FW_CMD_TXPWR_TRACK_THERMAL: {
			u8	thermalval = 0;
			fw_cmdmap |= FW_PWR_TRK_CTL;

			/* Clear FW parameter in terms of thermal parts. */
			fw_param &= FW_PWR_TRK_PARAM_CLR;

			thermalval = rtlpriv->dm.thermalvalue;
			fw_param |= ((thermalval << 24) |
				     (rtlefuse->thermalmeter[0] << 16));

			RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1533 1534
				 "Set TxPwr tracking!! FwCmdMap(%#x), FwParam(%#x)\n",
				 fw_cmdmap, fw_param);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

			FW_CMD_PARA_SET(rtlpriv, fw_param);
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);

			/* Clear control flag to sync with FW. */
			FW_CMD_IO_CLR(rtlpriv, FW_PWR_TRK_CTL);
			}
			break;
		/* The following FW CMDs are only compatible to
		 * v.53 or later. */
		case FW_CMD_RA_REFRESH_N_COMB:
			fw_cmdmap |= FW_RA_N_CTL;

			/* Clear RA BG mode control. */
			fw_cmdmap &= ~(FW_RA_BG_CTL | FW_RA_INIT_CTL);

			/* Clear FW parameter in terms of RA parts. */
			fw_param &= FW_RA_PARAM_CLR;

			RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1555 1556
				 "[FW CMD] [New Version] Set RA/IOT Comb in n mode!! FwCmdMap(%#x), FwParam(%#x)\n",
				 fw_cmdmap, fw_param);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

			FW_CMD_PARA_SET(rtlpriv, fw_param);
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);

			/* Clear control flag to sync with FW. */
			FW_CMD_IO_CLR(rtlpriv, FW_RA_N_CTL);
			break;
		case FW_CMD_RA_REFRESH_BG_COMB:
			fw_cmdmap |= FW_RA_BG_CTL;

			/* Clear RA n-mode control. */
			fw_cmdmap &= ~(FW_RA_N_CTL | FW_RA_INIT_CTL);
			/* Clear FW parameter in terms of RA parts. */
			fw_param &= FW_RA_PARAM_CLR;

			FW_CMD_PARA_SET(rtlpriv, fw_param);
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);

			/* Clear control flag to sync with FW. */
			FW_CMD_IO_CLR(rtlpriv, FW_RA_BG_CTL);
			break;
		case FW_CMD_IQK_ENABLE:
			fw_cmdmap |= FW_IQK_CTL;
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			/* Clear control flag to sync with FW. */
			FW_CMD_IO_CLR(rtlpriv, FW_IQK_CTL);
			break;
		/* The following FW CMD is compatible to v.62 or later.  */
		case FW_CMD_CTRL_DM_BY_DRIVER_NEW:
			fw_cmdmap |= FW_DRIVER_CTRL_DM_CTL;
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			break;
		/*  The followed FW Cmds needs post-processing later. */
		case FW_CMD_RESUME_DM_BY_SCAN:
			fw_cmdmap |= (FW_DIG_ENABLE_CTL |
				      FW_HIGH_PWR_ENABLE_CTL |
				      FW_SS_CTL);

			if (rtlpriv->dm.dm_flag & HAL_DM_DIG_DISABLE ||
				!digtable.dig_enable_flag)
				fw_cmdmap &= ~FW_DIG_ENABLE_CTL;

			if ((rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) ||
1600
			    rtlpriv->dm.dynamic_txpower_enable)
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
				fw_cmdmap &= ~FW_HIGH_PWR_ENABLE_CTL;

			if ((digtable.dig_ext_port_stage ==
			    DIG_EXT_PORT_STAGE_0) ||
			    (digtable.dig_ext_port_stage ==
			    DIG_EXT_PORT_STAGE_1))
				fw_cmdmap &= ~FW_DIG_ENABLE_CTL;

			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			bPostProcessing = true;
			break;
		case FW_CMD_PAUSE_DM_BY_SCAN:
			fw_cmdmap &= ~(FW_DIG_ENABLE_CTL |
				       FW_HIGH_PWR_ENABLE_CTL |
				       FW_SS_CTL);
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			bPostProcessing = true;
			break;
		case FW_CMD_HIGH_PWR_DISABLE:
			fw_cmdmap &= ~FW_HIGH_PWR_ENABLE_CTL;
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			bPostProcessing = true;
			break;
		case FW_CMD_HIGH_PWR_ENABLE:
			if (!(rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) &&
				(rtlpriv->dm.dynamic_txpower_enable != true)) {
				fw_cmdmap |= (FW_HIGH_PWR_ENABLE_CTL |
					      FW_SS_CTL);
				FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
				bPostProcessing = true;
			}
			break;
		case FW_CMD_DIG_MODE_FA:
			fw_cmdmap |= FW_FA_CTL;
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			break;
		case FW_CMD_DIG_MODE_SS:
			fw_cmdmap &= ~FW_FA_CTL;
			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			break;
		case FW_CMD_PAPE_CONTROL:
			RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
1643
				 "[FW CMD] Set PAPE Control\n");
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
			fw_cmdmap &= ~FW_PAPE_CTL_BY_SW_HW;

			FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
			break;
		default:
			/* Pass to original FW CMD processing callback
			 * routine. */
			bPostProcessing = true;
			break;
		}
	} while (false);

	/* We shall post processing these FW CMD if
	 * variable bPostProcessing is set. */
	if (bPostProcessing && !rtlhal->set_fwcmd_inprogress) {
		rtlhal->set_fwcmd_inprogress = true;
		/* Update current FW Cmd for callback use. */
		rtlhal->current_fwcmd_io = fw_cmdio;
	} else {
		return false;
	}

	_rtl92s_phy_set_fwcmd_io(hw);
	return true;
}

static	void _rtl92s_phy_check_ephy_switchready(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32	delay = 100;
	u8	regu1;

	regu1 = rtl_read_byte(rtlpriv, 0x554);
	while ((regu1 & BIT(5)) && (delay > 0)) {
		regu1 = rtl_read_byte(rtlpriv, 0x554);
		delay--;
		/* We delay only 50us to prevent
		 * being scheduled out. */
		udelay(50);
	}
}

void rtl92s_phy_switch_ephy_parameter(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));

	/* The way to be capable to switch clock request
	 * when the PG setting does not support clock request.
	 * This is the backdoor solution to switch clock
	 * request before ASPM or D3. */
	rtl_write_dword(rtlpriv, 0x540, 0x73c11);
	rtl_write_dword(rtlpriv, 0x548, 0x2407c);

	/* Switch EPHY parameter!!!! */
	rtl_write_word(rtlpriv, 0x550, 0x1000);
	rtl_write_byte(rtlpriv, 0x554, 0x20);
	_rtl92s_phy_check_ephy_switchready(hw);

	rtl_write_word(rtlpriv, 0x550, 0xa0eb);
	rtl_write_byte(rtlpriv, 0x554, 0x3e);
	_rtl92s_phy_check_ephy_switchready(hw);

	rtl_write_word(rtlpriv, 0x550, 0xff80);
	rtl_write_byte(rtlpriv, 0x554, 0x39);
	_rtl92s_phy_check_ephy_switchready(hw);

	/* Delay L1 enter time */
	if (ppsc->support_aspm && !ppsc->support_backdoor)
		rtl_write_byte(rtlpriv, 0x560, 0x40);
	else
		rtl_write_byte(rtlpriv, 0x560, 0x00);

}

void rtl92s_phy_set_beacon_hwreg(struct ieee80211_hw *hw, u16 BeaconInterval)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	rtl_write_dword(rtlpriv, WFM5, 0xF1000000 | (BeaconInterval << 8));
}