es2lan.c 33.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2008 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
 */

#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/delay.h>
#include <linux/pci.h>

#include "e1000.h"

#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10

#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010

#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000

#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000

#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9

/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
#define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
#define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
#define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
#define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */

/* PHY Specific Control Register 2 (Page 0, Register 26) */
#define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
						/* 1=Reverse Auto-Negotiation */

/* MAC Specific Control Register (Page 2, Register 21) */
/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
#define GG82563_MSCR_TX_CLK_MASK		 0x0007
#define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
#define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
#define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007

#define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */

/* DSP Distance Register (Page 5, Register 26) */
#define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
							   1 = 50-80M
							   2 = 80-110M
							   3 = 110-140M
							   4 = >140M */

/* Kumeran Mode Control Register (Page 193, Register 16) */
#define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800

/* Power Management Control Register (Page 193, Register 20) */
#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
					   /* 1=Enable SERDES Electrical Idle */

/* In-Band Control Register (Page 194, Register 18) */
#define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */

95 96
/*
 * A table for the GG82563 cable length where the range is defined
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * with a lower bound at "index" and the upper bound at
 * "index + 5".
 */
static const u16 e1000_gg82563_cable_length_table[] =
	 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };

static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);

/**
 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

122
	if (hw->phy.media_type != e1000_media_type_copper) {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
		phy->type	= e1000_phy_none;
		return 0;
	}

	phy->addr		= 1;
	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us      = 100;
	phy->type		= e1000_phy_gg82563;

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000e_get_phy_id(hw);

	/* Verify phy id */
	if (phy->id != GG82563_E_PHY_ID)
		return -E1000_ERR_PHY;

	return ret_val;
}

/**
 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits	= 8;
	nvm->delay_usec	 = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size    = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size    = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

171
	nvm->type = e1000_nvm_eeprom_spi;
172 173 174 175

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
			  E1000_EECD_SIZE_EX_SHIFT);

176 177
	/*
	 * Added to a constant, "size" becomes the left-shift value
178 179 180
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;
181 182 183 184

	/* EEPROM access above 16k is unsupported */
	if (size > 14)
		size = 14;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	nvm->word_size	= 1 << size;

	return 0;
}

/**
 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_mac_operations *func = &mac->ops;

	/* Set media type */
	switch (adapter->pdev->device) {
	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
205
		hw->phy.media_type = e1000_media_type_internal_serdes;
206 207
		break;
	default:
208
		hw->phy.media_type = e1000_media_type_copper;
209 210 211 212 213 214 215 216
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Set if manageability features are enabled. */
217
	mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
218 219

	/* check for link */
220
	switch (hw->phy.media_type) {
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	case e1000_media_type_copper:
		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
		func->check_for_link = e1000e_check_for_copper_link;
		break;
	case e1000_media_type_fiber:
		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
		func->check_for_link = e1000e_check_for_fiber_link;
		break;
	case e1000_media_type_internal_serdes:
		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
		func->check_for_link = e1000e_check_for_serdes_link;
		break;
	default:
		return -E1000_ERR_CONFIG;
		break;
	}

	return 0;
}

J
Jeff Kirsher 已提交
241
static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_80003es2lan(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_80003es2lan(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_80003es2lan(hw);
	if (rc)
		return rc;

	return 0;
}

/**
 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to acquire access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;

	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
	e1000_release_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the semaphore to access the EEPROM.  This is a function
 *  pointer entry point called by the api module.
 **/
static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
	if (ret_val)
		return ret_val;

	ret_val = e1000e_acquire_nvm(hw);

	if (ret_val)
		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);

	return ret_val;
}

/**
 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 *  @hw: pointer to the HW structure
 *
 *  Release the semaphore used to access the EEPROM.  This is a
 *  function pointer entry point called by the api module.
 **/
static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
}

/**
 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 i = 0;
	s32 timeout = 200;

	while (i < timeout) {
		if (e1000e_get_hw_semaphore(hw))
			return -E1000_ERR_SWFW_SYNC;

		swfw_sync = er32(SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

352 353 354 355
		/*
		 * Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask)
		 */
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
		e1000e_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		hw_dbg(hw,
		       "Driver can't access resource, SW_FW_SYNC timeout.\n");
		return -E1000_ERR_SWFW_SYNC;
	}

	swfw_sync |= swmask;
	ew32(SW_FW_SYNC, swfw_sync);

	e1000e_put_hw_semaphore(hw);

	return 0;
}

/**
 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (e1000e_get_hw_semaphore(hw) != 0);
	/* Empty */

	swfw_sync = er32(SW_FW_SYNC);
	swfw_sync &= ~mask;
	ew32(SW_FW_SYNC, swfw_sync);

	e1000e_put_hw_semaphore(hw);
}

/**
 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @data: pointer to the data returned from the operation
 *
 *  Read the GG82563 PHY register.  This is a function pointer entry
 *  point called by the api module.
 **/
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
						  u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
		page_select = GG82563_PHY_PAGE_SELECT;
	else
417 418
		/*
		 * Use Alternative Page Select register to access
419 420 421 422 423 424 425 426 427
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
	if (ret_val)
		return ret_val;

428 429
	/*
	 * The "ready" bit in the MDIC register may be incorrectly set
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	 * before the device has completed the "Page Select" MDI
	 * transaction.  So we wait 200us after each MDI command...
	 */
	udelay(200);

	/* ...and verify the command was successful. */
	ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);

	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
		ret_val = -E1000_ERR_PHY;
		return ret_val;
	}

	udelay(200);

	ret_val = e1000e_read_phy_reg_m88(hw,
					 MAX_PHY_REG_ADDRESS & offset,
					 data);

	udelay(200);

	return ret_val;
}

/**
 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @data: value to write to the register
 *
 *  Write to the GG82563 PHY register.  This is a function pointer entry
 *  point called by the api module.
 **/
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
						   u32 offset, u16 data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
		page_select = GG82563_PHY_PAGE_SELECT;
	else
474 475
		/*
		 * Use Alternative Page Select register to access
476 477 478 479 480 481 482 483 484 485
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
	if (ret_val)
		return ret_val;


486 487
	/*
	 * The "ready" bit in the MDIC register may be incorrectly set
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	 * before the device has completed the "Page Select" MDI
	 * transaction.  So we wait 200us after each MDI command...
	 */
	udelay(200);

	/* ...and verify the command was successful. */
	ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);

	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
		return -E1000_ERR_PHY;

	udelay(200);

	ret_val = e1000e_write_phy_reg_m88(hw,
					  MAX_PHY_REG_ADDRESS & offset,
					  data);

	udelay(200);

	return ret_val;
}

/**
 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @words: number of words to write
 *  @data: buffer of data to write to the NVM
 *
 *  Write "words" of data to the ESB2 NVM.  This is a function
 *  pointer entry point called by the api module.
 **/
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
				       u16 words, u16 *data)
{
	return e1000e_write_nvm_spi(hw, offset, words, data);
}

/**
 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 *  @hw: pointer to the HW structure
 *
 *  Wait a specific amount of time for manageability processes to complete.
 *  This is a function pointer entry point called by the phy module.
 **/
static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;

	while (timeout) {
		if (er32(EEMNGCTL) & mask)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout) {
		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 *  @hw: pointer to the HW structure
 *
 *  Force the speed and duplex settings onto the PHY.  This is a
 *  function pointer entry point called by the phy module.
 **/
static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;
	bool link;

568 569
	/*
	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	/* Reset the phy to commit changes. */
	phy_data |= MII_CR_RESET;

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

	udelay(1);

598
	if (hw->phy.autoneg_wait_to_complete) {
599 600 601 602 603 604 605 606 607
		hw_dbg(hw, "Waiting for forced speed/duplex link "
			 "on GG82563 phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
608 609
			/*
			 * We didn't get link.
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
			 * Reset the DSP and cross our fingers.
			 */
			ret_val = e1000e_phy_reset_dsp(hw);
			if (ret_val)
				return ret_val;
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;
	}

	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

628 629
	/*
	 * Resetting the phy means we need to verify the TX_CLK corresponds
630 631 632 633 634 635 636 637
	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
	 */
	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
	else
		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;

638 639
	/*
	 * In addition, we must re-enable CRS on Tx for both half and full
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	 * duplex.
	 */
	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);

	return ret_val;
}

/**
 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 *  @hw: pointer to the HW structure
 *
 *  Find the approximate cable length as measured by the GG82563 PHY.
 *  This is a function pointer entry point called by the phy module.
 **/
static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	u16 index;

	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
	if (ret_val)
		return ret_val;

	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
	phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return 0;
}

/**
 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to speed buffer
 *  @duplex: pointer to duplex buffer
 *
 *  Retrieve the current speed and duplex configuration.
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
					      u16 *duplex)
{
	s32 ret_val;

689
	if (hw->phy.media_type == e1000_media_type_copper) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
		ret_val = e1000e_get_speed_and_duplex_copper(hw,
								    speed,
								    duplex);
		if (ret_val)
			return ret_val;
		if (*speed == SPEED_1000)
			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
		else
			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
							      *duplex);
	} else {
		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
								  speed,
								  duplex);
	}

	return ret_val;
}

/**
 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 *  @hw: pointer to the HW structure
 *
 *  Perform a global reset to the ESB2 controller.
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 icr;
	s32 ret_val;

722 723
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");

	hw_dbg(hw, "Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

	ctrl = er32(CTRL);

	hw_dbg(hw, "Issuing a global reset to MAC\n");
	ew32(CTRL, ctrl | E1000_CTRL_RST);

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

	return 0;
}

/**
 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 *  @hw: pointer to the HW structure
 *
 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_80003es2lan(hw);

	/* Initialize identification LED */
	ret_val = e1000e_id_led_init(hw);
	if (ret_val) {
		hw_dbg(hw, "Error initializing identification LED\n");
		return ret_val;
	}

	/* Disabling VLAN filtering */
	hw_dbg(hw, "Initializing the IEEE VLAN\n");
	e1000e_clear_vfta(hw);

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	hw_dbg(hw, "Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = e1000e_setup_link(hw);

	/* Set the transmit descriptor write-back policy */
795
	reg_data = er32(TXDCTL(0));
796 797
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
798
	ew32(TXDCTL(0), reg_data);
799 800

	/* ...for both queues. */
801
	reg_data = er32(TXDCTL(1));
802 803
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
804
	ew32(TXDCTL(1), reg_data);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/* Enable retransmit on late collisions */
	reg_data = er32(TCTL);
	reg_data |= E1000_TCTL_RTLC;
	ew32(TCTL, reg_data);

	/* Configure Gigabit Carry Extend Padding */
	reg_data = er32(TCTL_EXT);
	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
	ew32(TCTL_EXT, reg_data);

	/* Configure Transmit Inter-Packet Gap */
	reg_data = er32(TIPG);
	reg_data &= ~E1000_TIPG_IPGT_MASK;
	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	ew32(TIPG, reg_data);

	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
	reg_data &= ~0x00100000;
	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);

827 828
	/*
	 * Clear all of the statistics registers (clear on read).  It is
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_80003es2lan(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
849
	reg = er32(TXDCTL(0));
850
	reg |= (1 << 22);
851
	ew32(TXDCTL(0), reg);
852 853

	/* Transmit Descriptor Control 1 */
854
	reg = er32(TXDCTL(1));
855
	reg |= (1 << 22);
856
	ew32(TXDCTL(1), reg);
857 858

	/* Transmit Arbitration Control 0 */
859
	reg = er32(TARC(0));
860
	reg &= ~(0xF << 27); /* 30:27 */
861
	if (hw->phy.media_type != e1000_media_type_copper)
862
		reg &= ~(1 << 20);
863
	ew32(TARC(0), reg);
864 865

	/* Transmit Arbitration Control 1 */
866
	reg = er32(TARC(1));
867 868 869 870
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
871
	ew32(TARC(1), reg);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
}

/**
 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 *  @hw: pointer to the HW structure
 *
 *  Setup some GG82563 PHY registers for obtaining link
 **/
static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl_ext;
	u16 data;

	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
				     &data);
	if (ret_val)
		return ret_val;

	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;

	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
				      data);
	if (ret_val)
		return ret_val;

901 902
	/*
	 * Options:
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;

	switch (phy->mdix) {
	case 1:
		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
		break;
	case 2:
		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
		break;
	case 0:
	default:
		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
		break;
	}

928 929
	/*
	 * Options:
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
	if (phy->disable_polarity_correction)
		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;

	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
	if (ret_val)
		return ret_val;

	/* SW Reset the PHY so all changes take effect */
	ret_val = e1000e_commit_phy(hw);
	if (ret_val) {
		hw_dbg(hw, "Error Resetting the PHY\n");
		return ret_val;
	}

950 951 952
	/* Bypass Rx and Tx FIFO's */
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
	if (ret_val)
		return ret_val;

	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
	if (ret_val)
		return ret_val;

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
	ew32(CTRL_EXT, ctrl_ext);

	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
	if (ret_val)
		return ret_val;

974 975
	/*
	 * Do not init these registers when the HW is in IAMT mode, since the
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	 * firmware will have already initialized them.  We only initialize
	 * them if the HW is not in IAMT mode.
	 */
	if (!e1000e_check_mng_mode(hw)) {
		/* Enable Electrical Idle on the PHY */
		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
		if (ret_val)
			return ret_val;

		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
		if (ret_val)
			return ret_val;
	}

996 997
	/*
	 * Workaround: Disable padding in Kumeran interface in the MAC
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	 * and in the PHY to avoid CRC errors.
	 */
	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= GG82563_ICR_DIS_PADDING;
	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
	if (ret_val)
		return ret_val;

	return 0;
}

/**
 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
 *  @hw: pointer to the HW structure
 *
 *  Essentially a wrapper for setting up all things "copper" related.
 *  This is a function pointer entry point called by the mac module.
 **/
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

1030 1031
	/*
	 * Set the mac to wait the maximum time between each
1032
	 * iteration and increase the max iterations when
1033 1034
	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
	 */
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
	if (ret_val)
		return ret_val;
	ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
	ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
	if (ret_val)
		return ret_val;
	ret_val = e1000e_read_kmrn_reg(hw,
				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
				      &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1051 1052
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
					reg_data);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	if (ret_val)
		return ret_val;

	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1000e_setup_copper_link(hw);

	return 0;
}

/**
 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
 *  @hw: pointer to the HW structure
 *  @duplex: current duplex setting
 *
 *  Configure the KMRN interface by applying last minute quirks for
 *  10/100 operation.
 **/
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
{
	s32 ret_val;
	u32 tipg;
	u16 reg_data;

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1080 1081
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
					reg_data);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	if (ret_val)
		return ret_val;

	/* Configure Transmit Inter-Packet Gap */
	tipg = er32(TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
	ew32(TIPG, tipg);

	ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
	if (ret_val)
		return ret_val;

	if (duplex == HALF_DUPLEX)
		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
	else
		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

	return 0;
}

/**
 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
 *  @hw: pointer to the HW structure
 *
 *  Configure the KMRN interface by applying last minute quirks for
 *  gigabit operation.
 **/
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;
	u32 tipg;

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1119 1120
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
					reg_data);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	if (ret_val)
		return ret_val;

	/* Configure Transmit Inter-Packet Gap */
	tipg = er32(TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	ew32(TIPG, tipg);

	ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
	if (ret_val)
		return ret_val;

	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

	return ret_val;
}

/**
 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
{
	u32 temp;

	e1000e_clear_hw_cntrs_base(hw);

	temp = er32(PRC64);
	temp = er32(PRC127);
	temp = er32(PRC255);
	temp = er32(PRC511);
	temp = er32(PRC1023);
	temp = er32(PRC1522);
	temp = er32(PTC64);
	temp = er32(PTC127);
	temp = er32(PTC255);
	temp = er32(PTC511);
	temp = er32(PTC1023);
	temp = er32(PTC1522);

	temp = er32(ALGNERRC);
	temp = er32(RXERRC);
	temp = er32(TNCRS);
	temp = er32(CEXTERR);
	temp = er32(TSCTC);
	temp = er32(TSCTFC);

	temp = er32(MGTPRC);
	temp = er32(MGTPDC);
	temp = er32(MGTPTC);

	temp = er32(IAC);
	temp = er32(ICRXOC);

	temp = er32(ICRXPTC);
	temp = er32(ICRXATC);
	temp = er32(ICTXPTC);
	temp = er32(ICTXATC);
	temp = er32(ICTXQEC);
	temp = er32(ICTXQMTC);
	temp = er32(ICRXDMTC);
}

static struct e1000_mac_operations es2_mac_ops = {
	.mng_mode_enab		= E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
	/* check_for_link dependent on media type */
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
	.get_bus_info		= e1000e_get_bus_info_pcie,
	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
	.led_on			= e1000e_led_on_generic,
	.led_off		= e1000e_led_off_generic,
1197
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	.reset_hw		= e1000_reset_hw_80003es2lan,
	.init_hw		= e1000_init_hw_80003es2lan,
	.setup_link		= e1000e_setup_link,
	/* setup_physical_interface dependent on media type */
};

static struct e1000_phy_operations es2_phy_ops = {
	.acquire_phy		= e1000_acquire_phy_80003es2lan,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit_phy	 	= e1000e_phy_sw_reset,
	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
	.get_phy_info       	= e1000e_get_phy_info_m88,
	.read_phy_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
	.release_phy		= e1000_release_phy_80003es2lan,
	.reset_phy	  	= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state  	= NULL,
	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
	.write_phy_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
};

static struct e1000_nvm_operations es2_nvm_ops = {
	.acquire_nvm		= e1000_acquire_nvm_80003es2lan,
	.read_nvm		= e1000e_read_nvm_eerd,
	.release_nvm		= e1000_release_nvm_80003es2lan,
	.update_nvm		= e1000e_update_nvm_checksum_generic,
	.valid_led_default	= e1000e_valid_led_default,
	.validate_nvm		= e1000e_validate_nvm_checksum_generic,
	.write_nvm		= e1000_write_nvm_80003es2lan,
};

struct e1000_info e1000_es2_info = {
	.mac			= e1000_80003es2lan,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_STATS_PTC_PRC
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_STATS_ICR_ICT
				  | FLAG_RX_NEEDS_RESTART /* errata */
				  | FLAG_TARC_SET_BIT_ZERO /* errata */
				  | FLAG_APME_CHECK_PORT_B
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
	.pba			= 38,
J
Jeff Kirsher 已提交
1246
	.get_variants		= e1000_get_variants_80003es2lan,
1247 1248 1249 1250 1251
	.mac_ops		= &es2_mac_ops,
	.phy_ops		= &es2_phy_ops,
	.nvm_ops		= &es2_nvm_ops,
};