i915_gem_request.c 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/prefetch.h>

27 28
#include "i915_drv.h"

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
static const char *i915_fence_get_driver_name(struct fence *fence)
{
	return "i915";
}

static const char *i915_fence_get_timeline_name(struct fence *fence)
{
	/* Timelines are bound by eviction to a VM. However, since
	 * we only have a global seqno at the moment, we only have
	 * a single timeline. Note that each timeline will have
	 * multiple execution contexts (fence contexts) as we allow
	 * engines within a single timeline to execute in parallel.
	 */
	return "global";
}

static bool i915_fence_signaled(struct fence *fence)
{
	return i915_gem_request_completed(to_request(fence));
}

static bool i915_fence_enable_signaling(struct fence *fence)
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

static signed long i915_fence_wait(struct fence *fence,
				   bool interruptible,
				   signed long timeout_jiffies)
{
	s64 timeout_ns, *timeout;
	int ret;

	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
		timeout_ns = jiffies_to_nsecs(timeout_jiffies);
		timeout = &timeout_ns;
	} else {
		timeout = NULL;
	}

73 74 75
	ret = i915_wait_request(to_request(fence),
				interruptible, timeout,
				NO_WAITBOOST);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	if (ret == -ETIME)
		return 0;

	if (ret < 0)
		return ret;

	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
		timeout_jiffies = nsecs_to_jiffies(timeout_ns);

	return timeout_jiffies;
}

static void i915_fence_value_str(struct fence *fence, char *str, int size)
{
	snprintf(str, size, "%u", fence->seqno);
}

static void i915_fence_timeline_value_str(struct fence *fence, char *str,
					  int size)
{
	snprintf(str, size, "%u",
		 intel_engine_get_seqno(to_request(fence)->engine));
}

static void i915_fence_release(struct fence *fence)
{
	struct drm_i915_gem_request *req = to_request(fence);

	kmem_cache_free(req->i915->requests, req);
}

const struct fence_ops i915_fence_ops = {
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
	.fence_value_str = i915_fence_value_str,
	.timeline_value_str = i915_fence_timeline_value_str,
};

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

157 158 159 160 161 162
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

163 164
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
165 166
	struct i915_gem_active *active, *next;

167
	trace_i915_gem_request_retire(request);
168
	list_del(&request->link);
169 170 171 172 173 174 175 176 177

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
178
	list_del(&request->ring_link);
179
	request->ring->last_retired_head = request->postfix;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
203
		RCU_INIT_POINTER(active->request, NULL);
204 205 206 207

		active->retire(active, request);
	}

208 209 210 211 212 213 214 215
	i915_gem_request_remove_from_client(request);

	if (request->previous_context) {
		if (i915.enable_execlists)
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
	}

216
	i915_gem_context_put(request->ctx);
217
	i915_gem_request_put(request);
218 219 220 221 222 223 224 225
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
226
	GEM_BUG_ON(list_empty(&req->link));
227 228 229

	do {
		tmp = list_first_entry(&engine->request_list,
230
				       typeof(*tmp), link);
231 232 233 234 235

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

236
static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
237
{
238 239 240
	struct i915_gpu_error *error = &dev_priv->gpu_error;

	if (i915_terminally_wedged(error))
241 242
		return -EIO;

243
	if (i915_reset_in_progress(error)) {
244 245 246
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these.
		 */
247
		if (!dev_priv->mm.interruptible)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
{
	struct intel_engine_cs *engine;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	for_each_engine(engine, dev_priv) {
263 264 265
		ret = intel_engine_idle(engine,
					I915_WAIT_INTERRUPTIBLE |
					I915_WAIT_LOCKED);
266 267 268 269 270 271 272 273 274 275 276 277 278 279
		if (ret)
			return ret;
	}
	i915_gem_retire_requests(dev_priv);

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
		while (intel_kick_waiters(dev_priv) ||
		       intel_kick_signalers(dev_priv))
			yield();
	}

	/* Finally reset hw state */
	for_each_engine(engine, dev_priv)
280
		intel_engine_init_seqno(engine, seqno);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

	return 0;
}

int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
	if (ret)
		return ret;

	dev_priv->next_seqno = seqno;
	return 0;
}

static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
{
	/* reserve 0 for non-seqno */
	if (unlikely(dev_priv->next_seqno == 0)) {
		int ret;

		ret = i915_gem_init_seqno(dev_priv, 0);
		if (ret)
			return ret;

		dev_priv->next_seqno = 1;
	}

317
	*seqno = dev_priv->next_seqno++;
318 319 320
	return 0;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);

	/* Will be called from irq-context when using foreign DMA fences */

	switch (state) {
	case FENCE_COMPLETE:
		request->engine->submit_request(request);
		break;

	case FENCE_FREE:
		break;
	}

	return NOTIFY_DONE;
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
356 357 358
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
359
	u32 seqno;
360 361 362 363 364 365
	int ret;

	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
366
	ret = i915_gem_check_wedge(dev_priv);
367
	if (ret)
368
		return ERR_PTR(ret);
369

370
	/* Move the oldest request to the slab-cache (if not in use!) */
371
	req = list_first_entry_or_null(&engine->request_list,
372
				       typeof(*req), link);
373 374
	if (req && i915_gem_request_completed(req))
		i915_gem_request_retire(req);
375

376 377 378 379 380
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
381
	 * of being read by __i915_gem_active_get_rcu(). As such,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
	 * read the request->fence.seqno and increment the reference count.
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
	 * with fence_init(). This increment is safe for release as we check
	 * that the request we have a reference to and matches the active
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
405
	if (!req)
406
		return ERR_PTR(-ENOMEM);
407

408
	ret = i915_gem_get_seqno(dev_priv, &seqno);
409 410 411
	if (ret)
		goto err;

412 413 414 415 416 417 418
	spin_lock_init(&req->lock);
	fence_init(&req->fence,
		   &i915_fence_ops,
		   &req->lock,
		   engine->fence_context,
		   seqno);

419 420
	i915_sw_fence_init(&req->submit, submit_notify);

421
	INIT_LIST_HEAD(&req->active_list);
422 423
	req->i915 = dev_priv;
	req->engine = engine;
424
	req->ctx = i915_gem_context_get(ctx);
425

426 427 428
	/* No zalloc, must clear what we need by hand */
	req->previous_context = NULL;
	req->file_priv = NULL;
C
Chris Wilson 已提交
429
	req->batch = NULL;
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;

447 448 449 450 451 452 453
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

454
	return req;
455 456

err_ctx:
457
	i915_gem_context_put(ctx);
458 459
err:
	kmem_cache_free(dev_priv->requests, req);
460
	return ERR_PTR(ret);
461 462
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
	int idx, ret;

	GEM_BUG_ON(to == from);

	if (to->engine == from->engine)
		return 0;

	idx = intel_engine_sync_index(from->engine, to->engine);
	if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
480 481 482 483 484 485 486
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

	from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
	return 0;
}

/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	if (write) {
		active_mask = i915_gem_object_get_active(obj);
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

		ret = i915_gem_request_await_request(to, request);
		if (ret)
			return ret;
	}

	return 0;
}

551 552 553 554 555 556 557 558 559 560 561
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	dev_priv->gt.active_engines |= intel_engine_flag(engine);
	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

562
	intel_enable_gt_powersave(dev_priv);
563 564 565 566 567 568 569 570 571 572 573 574 575 576
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
577
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
578
{
579 580
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
581
	struct drm_i915_gem_request *prev;
582 583 584 585
	u32 request_start;
	u32 reserved_tail;
	int ret;

586 587
	trace_i915_gem_request_add(request);

588 589 590 591 592
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
593
	request_start = ring->tail;
594 595 596 597 598 599 600 601 602 603 604
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
605
		ret = engine->emit_flush(request, EMIT_FLUSH);
606

607
		/* Not allowed to fail! */
608
		WARN(ret, "engine->emit_flush() failed: %d!\n", ret);
609 610
	}

611
	/* Record the position of the start of the breadcrumb so that
612 613
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
614
	 * position of the ring's HEAD.
615
	 */
616
	request->postfix = ring->tail;
617 618

	/* Not allowed to fail! */
619 620
	ret = engine->emit_request(request);
	WARN(ret, "(%s)->emit_request failed: %d!\n", engine->name, ret);
621

622
	/* Sanity check that the reserved size was large enough. */
623
	ret = ring->tail - request_start;
624
	if (ret < 0)
625
		ret += ring->size;
626 627 628 629 630
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);

631 632 633 634 635
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
636 637 638 639 640 641 642

	prev = i915_gem_active_raw(&engine->last_request,
				   &request->i915->drm.struct_mutex);
	if (prev)
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);

643 644 645 646 647 648 649
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	engine->last_submitted_seqno = request->fence.seqno;
	i915_gem_active_set(&engine->last_request, request);
	list_add_tail(&request->link, &engine->request_list);
	list_add_tail(&request->ring_link, &ring->request_list);

650
	i915_gem_mark_busy(engine);
651 652 653 654

	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
655 656
}

657 658 659 660 661 662 663 664 665 666
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
	unsigned int cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
		if (i915_gem_request_completed(req))
			return true;

		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

		cpu_relax_lowlatency();
	} while (!need_resched());

	return false;
}

/**
732
 * i915_wait_request - wait until execution of request has finished
733
 * @req: duh!
734
 * @flags: how to wait
735 736 737 738 739 740 741 742 743 744 745 746 747
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 * @rps: client to charge for RPS boosting
 *
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
 * Returns 0 if the request was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
748
int i915_wait_request(struct drm_i915_gem_request *req,
749
		      unsigned int flags,
750 751
		      s64 *timeout,
		      struct intel_rps_client *rps)
752
{
753 754
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
755 756 757 758 759 760
	DEFINE_WAIT(reset);
	struct intel_wait wait;
	unsigned long timeout_remain;
	int ret = 0;

	might_sleep();
761 762 763 764
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(!!lockdep_is_held(&req->i915->drm.struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

	if (i915_gem_request_completed(req))
		return 0;

	timeout_remain = MAX_SCHEDULE_TIMEOUT;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		/* Record current time in case interrupted, or wedged */
		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
		*timeout += ktime_get_raw_ns();
	}

	trace_i915_gem_request_wait_begin(req);

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
799
	if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
800 801
		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);

802
	/* Optimistic short spin before touching IRQs */
803 804 805 806
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
807 808
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
809

810
	intel_wait_init(&wait, req->fence.seqno);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
			ret = -ERESTARTSYS;
			break;
		}

		timeout_remain = io_schedule_timeout(timeout_remain);
		if (timeout_remain == 0) {
			ret = -ETIME;
			break;
		}

		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
			reset_wait_queue(&req->i915->gpu_error.wait_queue,
					 &reset);
			continue;
		}

863 864 865 866 867 868
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
869 870
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
871
	__set_current_state(TASK_RUNNING);
872

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
complete:
	trace_i915_gem_request_wait_end(req);

	if (timeout) {
		*timeout -= ktime_get_raw_ns();
		if (*timeout < 0)
			*timeout = 0;

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
	}

892 893
	if (IS_RPS_USER(rps) &&
	    req->fence.seqno == req->engine->last_submitted_seqno) {
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&req->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&req->i915->rps.client_lock);
	}

	return ret;
}
911

912
static bool engine_retire_requests(struct intel_engine_cs *engine)
913 914 915 916 917
{
	struct drm_i915_gem_request *request, *next;

	list_for_each_entry_safe(request, next, &engine->request_list, link) {
		if (!i915_gem_request_completed(request))
918
			return false;
919 920 921

		i915_gem_request_retire(request);
	}
922 923

	return true;
924 925 926 927 928
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
929
	unsigned int tmp;
930 931 932 933 934 935 936 937

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);

938
	for_each_engine_masked(engine, dev_priv, dev_priv->gt.active_engines, tmp)
939
		if (engine_retire_requests(engine))
940 941 942 943 944 945 946
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);

	if (dev_priv->gt.active_engines == 0)
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
}