nommu.c 9.9 KB
Newer Older
1 2 3 4 5 6
/*
 *  linux/arch/arm/mm/nommu.c
 *
 * ARM uCLinux supporting functions.
 */
#include <linux/module.h>
7 8
#include <linux/mm.h>
#include <linux/pagemap.h>
9
#include <linux/io.h>
R
Russell King 已提交
10
#include <linux/memblock.h>
11
#include <linux/kernel.h>
12

13
#include <asm/cacheflush.h>
R
Russell King 已提交
14
#include <asm/sections.h>
15
#include <asm/page.h>
16
#include <asm/setup.h>
17
#include <asm/traps.h>
R
Russell King 已提交
18
#include <asm/mach/arch.h>
19 20
#include <asm/cputype.h>
#include <asm/mpu.h>
R
Russell King 已提交
21
#include <asm/procinfo.h>
22

23 24
#include "mm.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#ifdef CONFIG_ARM_MPU
struct mpu_rgn_info mpu_rgn_info;

/* Region number */
static void rgnr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
}

/* Data-side / unified region attributes */

/* Region access control register */
static void dracr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
}

/* Region size register */
static void drsr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
}

/* Region base address register */
static void drbar_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
}

static u32 drbar_read(void)
{
	u32 v;
	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
	return v;
}
/* Optional instruction-side region attributes */

/* I-side Region access control register */
static void iracr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
}

/* I-side Region size register */
static void irsr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
}

/* I-side Region base address register */
static void irbar_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
}

static unsigned long irbar_read(void)
{
	unsigned long v;
	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
	return v;
}

/* MPU initialisation functions */
void __init sanity_check_meminfo_mpu(void)
{
	int i;
	phys_addr_t phys_offset = PHYS_OFFSET;
	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
L
Laura Abbott 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	struct memblock_region *reg;
	bool first = true;
	phys_addr_t mem_start;
	phys_addr_t mem_end;

	for_each_memblock(memory, reg) {
		if (first) {
			/*
			 * Initially only use memory continuous from
			 * PHYS_OFFSET */
			if (reg->base != phys_offset)
				panic("First memory bank must be contiguous from PHYS_OFFSET");

			mem_start = reg->base;
			mem_end = reg->base + reg->size;
			specified_mem_size = reg->size;
			first = false;
110
		} else {
L
Laura Abbott 已提交
111 112 113 114 115 116 117
			/*
			 * memblock auto merges contiguous blocks, remove
			 * all blocks afterwards
			 */
			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
				  &mem_start, &reg->base);
			memblock_remove(reg->base, reg->size);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
		}
	}

	/*
	 * MPU has curious alignment requirements: Size must be power of 2, and
	 * region start must be aligned to the region size
	 */
	if (phys_offset != 0)
		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");

	/*
	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
	 * 0. Hence we keep everything below 4G until we take the smaller of
	 * the aligned_region_size and rounded_mem_size, one of which is
	 * guaranteed to be smaller than the maximum physical address.
	 */
	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
	/* Find the max power-of-two sized region that fits inside our bank */
L
Laura Abbott 已提交
136
	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;
137 138 139 140 141 142

	/* The actual region size is the smaller of the two */
	aligned_region_size = aligned_region_size < rounded_mem_size
				? aligned_region_size + 1
				: rounded_mem_size + 1;

L
Laura Abbott 已提交
143 144 145 146 147 148 149 150
	if (aligned_region_size != specified_mem_size) {
		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
				&specified_mem_size, &aligned_region_size);
		memblock_remove(mem_start + aligned_region_size,
				specified_mem_size - aligned_round_size);

		mem_end = mem_start + aligned_region_size;
	}
151

L
Laura Abbott 已提交
152 153
	pr_debug("MPU Region from %pa size %pa (end %pa))\n",
		&phys_offset, &aligned_region_size, &mem_end);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

}

static int mpu_present(void)
{
	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
}

static int mpu_max_regions(void)
{
	/*
	 * We don't support a different number of I/D side regions so if we
	 * have separate instruction and data memory maps then return
	 * whichever side has a smaller number of supported regions.
	 */
	u32 dregions, iregions, mpuir;
	mpuir = read_cpuid(CPUID_MPUIR);

	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;

	/* Check for separate d-side and i-side memory maps */
	if (mpuir & MPUIR_nU)
		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;

	/* Use the smallest of the two maxima */
	return min(dregions, iregions);
}

static int mpu_iside_independent(void)
{
	/* MPUIR.nU specifies whether there is *not* a unified memory map */
	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
}

static int mpu_min_region_order(void)
{
	u32 drbar_result, irbar_result;
	/* We've kept a region free for this probing */
	rgnr_write(MPU_PROBE_REGION);
	isb();
	/*
	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
	 * region order
	*/
	drbar_write(0xFFFFFFFC);
	drbar_result = irbar_result = drbar_read();
	drbar_write(0x0);
	/* If the MPU is non-unified, we use the larger of the two minima*/
	if (mpu_iside_independent()) {
		irbar_write(0xFFFFFFFC);
		irbar_result = irbar_read();
		irbar_write(0x0);
	}
	isb(); /* Ensure that MPU region operations have completed */
	/* Return whichever result is larger */
	return __ffs(max(drbar_result, irbar_result));
}

static int mpu_setup_region(unsigned int number, phys_addr_t start,
			unsigned int size_order, unsigned int properties)
{
	u32 size_data;

	/* We kept a region free for probing resolution of MPU regions*/
	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
		return -ENOENT;

	if (size_order > 32)
		return -ENOMEM;

	if (size_order < mpu_min_region_order())
		return -ENOMEM;

	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;

	dsb(); /* Ensure all previous data accesses occur with old mappings */
	rgnr_write(number);
	isb();
	drbar_write(start);
	dracr_write(properties);
	isb(); /* Propagate properties before enabling region */
	drsr_write(size_data);

	/* Check for independent I-side registers */
	if (mpu_iside_independent()) {
		irbar_write(start);
		iracr_write(properties);
		isb();
		irsr_write(size_data);
	}
	isb();

	/* Store region info (we treat i/d side the same, so only store d) */
	mpu_rgn_info.rgns[number].dracr = properties;
	mpu_rgn_info.rgns[number].drbar = start;
	mpu_rgn_info.rgns[number].drsr = size_data;
	return 0;
}

/*
* Set up default MPU regions, doing nothing if there is no MPU
*/
void __init mpu_setup(void)
{
	int region_err;
	if (!mpu_present())
		return;

	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
					ilog2(meminfo.bank[0].size),
					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
	if (region_err) {
		panic("MPU region initialization failure! %d", region_err);
	} else {
		pr_info("Using ARMv7 PMSA Compliant MPU. "
			 "Region independence: %s, Max regions: %d\n",
			mpu_iside_independent() ? "Yes" : "No",
			mpu_max_regions());
	}
}
275 276 277
#else
static void sanity_check_meminfo_mpu(void) {}
static void __init mpu_setup(void) {}
278 279
#endif /* CONFIG_ARM_MPU */

R
Russell King 已提交
280
void __init arm_mm_memblock_reserve(void)
281
{
282
#ifndef CONFIG_CPU_V7M
283 284 285 286 287
	/*
	 * Register the exception vector page.
	 * some architectures which the DRAM is the exception vector to trap,
	 * alloc_page breaks with error, although it is not NULL, but "0."
	 */
R
Russell King 已提交
288
	memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
289 290 291 292 293 294
#else /* ifndef CONFIG_CPU_V7M */
	/*
	 * There is no dedicated vector page on V7-M. So nothing needs to be
	 * reserved here.
	 */
#endif
295 296
}

297 298
void __init sanity_check_meminfo(void)
{
299 300
	phys_addr_t end;
	sanity_check_meminfo_mpu();
L
Laura Abbott 已提交
301
	end = memblock_end_of_DRAM();
302
	high_memory = __va(end - 1) + 1;
303
	memblock_set_current_limit(end);
304 305
}

306 307 308 309 310 311 312 313 314
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
}

315 316 317 318
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
319
void __init paging_init(const struct machine_desc *mdesc)
320
{
321
	early_trap_init((void *)CONFIG_VECTORS_BASE);
322
	mpu_setup();
323
	bootmem_init();
324 325
}

326 327 328
/*
 * We don't need to do anything here for nommu machines.
 */
329
void setup_mm_for_reboot(void)
330 331 332
{
}

333 334
void flush_dcache_page(struct page *page)
{
335
	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
336
}
337
EXPORT_SYMBOL(flush_dcache_page);
338

339 340 341 342 343 344
void flush_kernel_dcache_page(struct page *page)
{
	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
EXPORT_SYMBOL(flush_kernel_dcache_page);

345 346 347 348 349 350 351 352 353
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
		       unsigned long uaddr, void *dst, const void *src,
		       unsigned long len)
{
	memcpy(dst, src, len);
	if (vma->vm_flags & VM_EXEC)
		__cpuc_coherent_user_range(uaddr, uaddr + len);
}

354 355
void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
				size_t size, unsigned int mtype)
356 357 358 359 360
{
	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
		return NULL;
	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
}
361
EXPORT_SYMBOL(__arm_ioremap_pfn);
362

363 364 365 366 367 368
void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
			   size_t size, unsigned int mtype, void *caller)
{
	return __arm_ioremap_pfn(pfn, offset, size, mtype);
}

369
void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
370
			    unsigned int mtype)
371 372 373
{
	return (void __iomem *)phys_addr;
}
374
EXPORT_SYMBOL(__arm_ioremap);
375

376
void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
377

378
void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
379
				   unsigned int mtype, void *caller)
380 381 382 383
{
	return __arm_ioremap(phys_addr, size, mtype);
}

384 385 386
void (*arch_iounmap)(volatile void __iomem *);

void __arm_iounmap(volatile void __iomem *addr)
387 388
{
}
389
EXPORT_SYMBOL(__arm_iounmap);