rt2800pci.c 35.9 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static bool modparam_nohwcrypt = false;
54 55 56
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

57 58 59 60 61
static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
{
	return modparam_nohwcrypt;
}

62 63 64 65 66
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

67 68 69 70 71 72
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

73
	for (i = 0; i < 200; i++) {
74
		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
75 76 77 78 79 80 81 82 83 84 85 86 87

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

88 89
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
90 91
}

92
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
93 94
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
95
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
96 97

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
98 99

	iounmap(base_addr);
100 101 102 103 104
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
105
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
106

107
#ifdef CONFIG_PCI
108 109 110 111 112
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

113
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

135
	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
136 137 138 139 140 141 142
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

143
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
144 145 146 147

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
148 149 150 151 152 153 154 155 156 157 158 159
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
160 161 162 163 164 165 166 167 168
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

169 170
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
171
	return rt2800_efuse_detect(rt2x00dev);
172 173
}

174
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
175
{
176
	rt2800_read_eeprom_efuse(rt2x00dev);
177 178 179 180 181 182
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

183 184 185 186 187
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

188 189 190
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
191
#endif /* CONFIG_PCI */
192

193 194 195 196 197 198 199 200 201 202
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
203
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
204
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
205
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
206 207
		break;
	case QID_BEACON:
208
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
209 210 211
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
212
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
213

214
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
215
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
216
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
217 218 219
		break;
	default:
		break;
220
	}
221 222 223 224 225 226 227 228
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
229 230
	case QID_AC_VO:
	case QID_AC_VI:
231 232 233
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 235
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					 entry->entry_idx);
236 237 238
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
239 240
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
					 entry->entry_idx);
241 242 243 244 245 246 247 248 249 250 251 252 253
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
254
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
255
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
256
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
257 258
		break;
	case QID_BEACON:
259
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
260 261 262
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
263
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
264

265
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
266
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
267
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
268 269

		/*
270 271 272
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
273
		 */
274 275 276
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

277 278 279 280 281 282
		break;
	default:
		break;
	}
}

283 284 285 286 287
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
W
Woody Hung 已提交
288 289 290 291 292 293 294
	/*
	 * Chip rt3290 use specific 4KB firmware named rt3290.bin.
	 */
	if (rt2x00_rt(rt2x00dev, RT3290))
		return FIRMWARE_RT3290;
	else
		return FIRMWARE_RT2860;
295 296
}

297
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
298 299 300 301 302 303 304 305 306
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
307
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
308 309 310 311

	/*
	 * Write firmware to device.
	 */
312 313
	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);
314

315 316
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
317

318 319
	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
347
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
348 349 350 351 352 353 354 355 356 357
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
358 359 360 361 362

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
363
		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
364
				      entry->entry_idx);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
380 381 382 383 384
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
				 rt2x00dev->tx[0].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
385 386

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
387 388 389 390 391
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
				 rt2x00dev->tx[1].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
392 393

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
394 395 396 397 398
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
				 rt2x00dev->tx[2].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
399 400

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
401 402 403 404 405
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
				 rt2x00dev->tx[3].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
406

407 408 409 410 411 412 413 414 415 416
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);

	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);

417
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
418 419 420 421 422 423
	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
				 rt2x00dev->rx[0].limit);
	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
				 rt2x00dev->rx[0].limit - 1);
	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
424

425
	rt2800_disable_wpdma(rt2x00dev);
426

427
	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
428 429 430 431 432 433 434 435 436 437 438

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	u32 reg;
439
	unsigned long flags;
440 441 442 443 444 445

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
446 447
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
448
	}
449

450
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
451 452 453 454 455 456 457 458
	reg = 0;
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
	}
459
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
460 461 462 463
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
464
		 * Wait for possibly running tasklets to finish.
465
		 */
466 467 468 469 470
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
471
	}
472 473
}

474 475 476 477 478 479 480
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
481
	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
482 483 484 485 486 487 488
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
489
	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
490

491 492
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
493

494 495
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
J
John Li 已提交
496 497
	     rt2x00_rt(rt2x00dev, RT5390) ||
	     rt2x00_rt(rt2x00dev, RT5392))) {
498
		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
499 500
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
501
		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
502
	}
503

504
	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
505

506
	reg = 0;
507 508
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
509
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
510

511
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
512 513 514 515

	return 0;
}

516 517
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
518 519
	int retval;

520 521 522 523
	/* Wait for DMA, ignore error until we initialize queues. */
	rt2800_wait_wpdma_ready(rt2x00dev);

	if (unlikely(rt2800pci_init_queues(rt2x00dev)))
524 525
		return -EIO;

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	retval = rt2800_enable_radio(rt2x00dev);
	if (retval)
		return retval;

	/* After resume MCU_BOOT_SIGNAL will trash these. */
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);

	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);

	rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);

	return retval;
541 542 543 544
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
545 546
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
547 548
		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
549
	}
550 551 552 553 554 555
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
556 557 558
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
				   0, 0x02);
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
559
	} else if (state == STATE_SLEEP) {
560 561 562 563
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					 0xffffffff);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
					 0xffffffff);
564 565
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
				   0xff, 0x01);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
613
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
614
{
615
	return (__le32 *) entry->skb->data;
616 617
}

618
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
619 620
				    struct txentry_desc *txdesc)
{
621 622
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
623
	__le32 *txd = entry_priv->desc;
624 625
	u32 word;

626 627 628 629 630 631 632 633 634 635 636
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
637
	word = 0;
638 639 640
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

641
	word = 0;
642
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
643 644 645 646
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
647
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
648 649 650 651
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

652
	word = 0;
653
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
654
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
655 656
	rt2x00_desc_write(txd, 2, word);

657
	word = 0;
658 659 660 661
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
662 663 664 665 666 667

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
668 669 670 671 672 673 674 675 676 677
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
678 679 680 681 682
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
683 684
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

685 686 687 688 689
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
690
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
691

692
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
693 694 695 696 697 698 699 700
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

701 702 703 704 705 706
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

707 708 709 710 711 712
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

713
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
714 715
		rxdesc->dev_flags |= RXDONE_MY_BSS;

716
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
717 718 719
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
720
	 * Process the RXWI structure that is at the start of the buffer.
721
	 */
722
	rt2800_process_rxwi(entry, rxdesc);
723 724 725 726 727
}

/*
 * Interrupt functions.
 */
728 729 730 731 732 733 734 735
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

736
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
737 738 739 740 741
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;
742
	int max_tx_done = 16;
743

744
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
745
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
746
		if (unlikely(qid >= QID_RX)) {
747 748 749 750 751
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
752
					   "unexpected pid %u, dropping\n", qid);
753 754 755
			break;
		}

756
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
757 758 759 760 761 762
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
763
					   "queue %u, dropping\n", qid);
764 765 766
			break;
		}

767
		if (unlikely(rt2x00queue_empty(queue))) {
768 769 770 771 772
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
773
					   "queue %u, dropping\n", qid);
774 775 776 777
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
778
		rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
779 780 781

		if (--max_tx_done == 0)
			break;
782
	}
783 784

	return !max_tx_done;
785 786
}

787 788
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
789
{
790
	u32 reg;
791 792

	/*
793 794
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
795
	 */
796
	spin_lock_irq(&rt2x00dev->irqmask_lock);
797
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
798
	rt2x00_set_field32(&reg, irq_field, 1);
799
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
800
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
801
}
802

803 804
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
805 806 807
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
808 809

	/*
810 811 812
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
813
	 */
814
}
815

816 817 818 819
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
820 821
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
822
}
823

824 825 826
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
827 828 829
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u32 reg;

830
	rt2x00lib_beacondone(rt2x00dev);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

	if (rt2x00dev->intf_ap_count) {
		/*
		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
		 * causing beacon skew and as a result causing problems with
		 * some powersaving clients over time. Shorten the beacon
		 * interval every 64 beacons by 64us to mitigate this effect.
		 */
		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16) - 1);
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16));
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		}
		drv_data->tbtt_tick++;
		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
	}

854 855
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
856
}
857

858 859 860
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
861 862
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
863
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
864
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
865 866 867 868 869 870
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
871 872
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
873 874
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
893
	 * can also be read while the tx status tasklet gets executed.
894 895 896 897
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
898
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
899
		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
900 901 902 903

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

904
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
905 906 907 908 909 910 911 912 913 914
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

915 916 917
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
918
	u32 reg, mask;
919 920

	/* Read status and ACK all interrupts */
921 922
	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
923 924 925 926 927 928 929

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

930 931 932 933 934 935
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
936

937 938
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
939
		/*
940
		 * Never disable the TX_FIFO_STATUS interrupt.
941
		 */
942 943
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
944

945 946
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
947

948 949
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
950

951 952
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
953

954 955 956 957 958 959 960
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
961
	spin_lock(&rt2x00dev->irqmask_lock);
962
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
963
	reg &= mask;
964
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
965
	spin_unlock(&rt2x00dev->irqmask_lock);
966 967

	return IRQ_HANDLED;
968 969
}

970 971 972
/*
 * Device probe functions.
 */
973
static void rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
974
{
975
	if (rt2x00_is_soc(rt2x00dev))
976
		rt2800pci_read_eeprom_soc(rt2x00dev);
977 978 979 980
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
981 982
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
997 998
	.sta_add		= rt2x00mac_sta_add,
	.sta_remove		= rt2x00mac_sta_remove,
999 1000 1001 1002 1003
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1004
	.flush			= rt2x00mac_flush,
1005
	.get_survey		= rt2800_get_survey,
1006
	.get_ringparam		= rt2x00mac_get_ringparam,
1007
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1008 1009
};

1010 1011 1012 1013 1014 1015 1016 1017
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
1018 1019
	.read_eeprom		= rt2800pci_read_eeprom,
	.hwcrypt_disabled	= rt2800pci_hwcrypt_disabled,
1020 1021
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1022
	.drv_get_txwi		= rt2800pci_get_txwi,
1023 1024
};

1025 1026
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1027 1028 1029 1030 1031
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1032
	.probe_hw		= rt2800_probe_hw,
1033
	.get_firmware_name	= rt2800pci_get_firmware_name,
1034 1035
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1036 1037 1038 1039 1040
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1041 1042 1043 1044
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1045
	.gain_calibration	= rt2800_gain_calibration,
J
John Li 已提交
1046
	.vco_calibration	= rt2800_vco_calibration,
1047 1048 1049
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1050
	.flush_queue		= rt2x00pci_flush_queue,
1051
	.write_tx_desc		= rt2800pci_write_tx_desc,
1052
	.write_tx_data		= rt2800_write_tx_data,
1053
	.write_beacon		= rt2800_write_beacon,
1054
	.clear_beacon		= rt2800_clear_beacon,
1055
	.fill_rxdone		= rt2800pci_fill_rxdone,
1056 1057 1058 1059 1060 1061 1062
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1063 1064
	.sta_add		= rt2800_sta_add,
	.sta_remove		= rt2800_sta_remove,
1065 1066 1067
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1068
	.entry_num		= 128,
1069 1070 1071 1072 1073 1074
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1075
	.entry_num		= 64,
1076 1077 1078 1079 1080 1081
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1082
	.entry_num		= 8,
1083 1084 1085 1086 1087 1088
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1089
	.name			= KBUILD_MODNAME,
1090
	.drv_data_size		= sizeof(struct rt2800_drv_data),
G
Gertjan van Wingerde 已提交
1091 1092 1093 1094
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1095
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1096 1097 1098 1099
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1100
	.drv			= &rt2800pci_rt2800_ops,
1101
	.hw			= &rt2800pci_mac80211_ops,
1102
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1103
	.debugfs		= &rt2800_rt2x00debug,
1104 1105 1106 1107 1108 1109
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1110
#ifdef CONFIG_PCI
1111
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
W
Woody Hung 已提交
1128 1129 1130
#ifdef CONFIG_RT2800PCI_RT3290
	{ PCI_DEVICE(0x1814, 0x3290) },
#endif
1131
#ifdef CONFIG_RT2800PCI_RT33XX
1132
	{ PCI_DEVICE(0x1814, 0x3390) },
1133
#endif
1134
#ifdef CONFIG_RT2800PCI_RT35XX
1135 1136 1137 1138 1139 1140 1141
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1142 1143
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1144
	{ PCI_DEVICE(0x1814, 0x5360) },
1145
	{ PCI_DEVICE(0x1814, 0x5362) },
1146
	{ PCI_DEVICE(0x1814, 0x5390) },
1147
	{ PCI_DEVICE(0x1814, 0x5392) },
Z
zero.lin 已提交
1148
	{ PCI_DEVICE(0x1814, 0x539a) },
Z
Zero.Lin 已提交
1149
	{ PCI_DEVICE(0x1814, 0x539b) },
1150
	{ PCI_DEVICE(0x1814, 0x539f) },
1151
#endif
1152 1153
	{ 0, }
};
1154
#endif /* CONFIG_PCI */
1155 1156 1157 1158 1159

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1160
#ifdef CONFIG_PCI
1161 1162
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1163
#endif /* CONFIG_PCI */
1164 1165
MODULE_LICENSE("GPL");

1166
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1167 1168
static int rt2800soc_probe(struct platform_device *pdev)
{
1169
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1170
}
1171 1172 1173 1174 1175 1176 1177

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1178
	.probe		= rt2800soc_probe,
B
Bill Pemberton 已提交
1179
	.remove		= rt2x00soc_remove,
1180 1181 1182
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1183
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1184

1185
#ifdef CONFIG_PCI
1186 1187 1188 1189 1190 1191
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1192 1193 1194
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1195
	.probe		= rt2800pci_probe,
B
Bill Pemberton 已提交
1196
	.remove		= rt2x00pci_remove,
1197 1198 1199
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1200
#endif /* CONFIG_PCI */
1201 1202 1203 1204 1205

static int __init rt2800pci_init(void)
{
	int ret = 0;

1206
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1207 1208 1209 1210
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1211
#ifdef CONFIG_PCI
1212 1213
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1214
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1226
#ifdef CONFIG_PCI
1227 1228
	pci_unregister_driver(&rt2800pci_driver);
#endif
1229
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1230 1231 1232 1233 1234 1235
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);