e1000_mac.c 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
  Copyright(c) 2007 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/if_ether.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/netdevice.h>

#include "e1000_mac.h"

#include "igb.h"

static s32 igb_set_default_fc(struct e1000_hw *hw);
static s32 igb_set_fc_watermarks(struct e1000_hw *hw);

/**
41
 *  igb_remove_device - Free device specific structure
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
 *  @hw: pointer to the HW structure
 *
 *  If a device specific structure was allocated, this function will
 *  free it.
 **/
void igb_remove_device(struct e1000_hw *hw)
{
	/* Freeing the dev_spec member of e1000_hw structure */
	kfree(hw->dev_spec);
}

static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

/**
68
 *  igb_get_bus_info_pcie - Get PCIe bus information
69 70 71 72 73 74 75 76 77 78
 *  @hw: pointer to the HW structure
 *
 *  Determines and stores the system bus information for a particular
 *  network interface.  The following bus information is determined and stored:
 *  bus speed, bus width, type (PCIe), and PCIe function.
 **/
s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;
79 80
	u32 reg;
	u16 pcie_link_status;
81 82 83 84 85 86 87 88 89 90 91 92 93 94

	bus->type = e1000_bus_type_pci_express;
	bus->speed = e1000_bus_speed_2500;

	ret_val = igb_read_pcie_cap_reg(hw,
					  PCIE_LINK_STATUS,
					  &pcie_link_status);
	if (ret_val)
		bus->width = e1000_bus_width_unknown;
	else
		bus->width = (enum e1000_bus_width)((pcie_link_status &
						     PCIE_LINK_WIDTH_MASK) >>
						     PCIE_LINK_WIDTH_SHIFT);

95 96
	reg = rd32(E1000_STATUS);
	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
97 98 99 100 101

	return 0;
}

/**
102
 *  igb_clear_vfta - Clear VLAN filter table
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
void igb_clear_vfta(struct e1000_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
		array_wr32(E1000_VFTA, offset, 0);
		wrfl();
	}
}

/**
119
 *  igb_write_vfta - Write value to VLAN filter table
120 121 122 123 124 125 126 127 128 129 130 131 132 133
 *  @hw: pointer to the HW structure
 *  @offset: register offset in VLAN filter table
 *  @value: register value written to VLAN filter table
 *
 *  Writes value at the given offset in the register array which stores
 *  the VLAN filter table.
 **/
void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
{
	array_wr32(E1000_VFTA, offset, value);
	wrfl();
}

/**
134
 *  igb_check_alt_mac_addr - Check for alternate MAC addr
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *  @hw: pointer to the HW structure
 *
 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 *  can be setup by pre-boot software and must be treated like a permanent
 *  address and must override the actual permanent MAC address.  If an
 *  alternate MAC address is fopund it is saved in the hw struct and
 *  prgrammed into RAR0 and the cuntion returns success, otherwise the
 *  fucntion returns an error.
 **/
s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
{
	u32 i;
	s32 ret_val = 0;
	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
	u8 alt_mac_addr[ETH_ALEN];

	ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
				 &nvm_alt_mac_addr_offset);
	if (ret_val) {
154
		hw_dbg("NVM Read Error\n");
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		goto out;
	}

	if (nvm_alt_mac_addr_offset == 0xFFFF) {
		ret_val = -(E1000_NOT_IMPLEMENTED);
		goto out;
	}

	if (hw->bus.func == E1000_FUNC_1)
		nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);

	for (i = 0; i < ETH_ALEN; i += 2) {
		offset = nvm_alt_mac_addr_offset + (i >> 1);
		ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
		if (ret_val) {
170
			hw_dbg("NVM Read Error\n");
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
			goto out;
		}

		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
	}

	/* if multicast bit is set, the alternate address will not be used */
	if (alt_mac_addr[0] & 0x01) {
		ret_val = -(E1000_NOT_IMPLEMENTED);
		goto out;
	}

	for (i = 0; i < ETH_ALEN; i++)
		hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];

	hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);

out:
	return ret_val;
}

/**
194
 *  igb_rar_set - Set receive address register
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.
 **/
void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	/*
	 * HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] |
		   ((u32) addr[1] << 8) |
		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));

	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	if (!hw->mac.disable_av)
		rar_high |= E1000_RAH_AV;

219 220
	wr32(E1000_RAL(index), rar_low);
	wr32(E1000_RAH(index), rar_high);
221 222 223
}

/**
224
 *  igb_mta_set - Set multicast filter table address
225 226 227 228 229 230 231 232
 *  @hw: pointer to the HW structure
 *  @hash_value: determines the MTA register and bit to set
 *
 *  The multicast table address is a register array of 32-bit registers.
 *  The hash_value is used to determine what register the bit is in, the
 *  current value is read, the new bit is OR'd in and the new value is
 *  written back into the register.
 **/
233
void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
{
	u32 hash_bit, hash_reg, mta;

	/*
	 * The MTA is a register array of 32-bit registers. It is
	 * treated like an array of (32*mta_reg_count) bits.  We want to
	 * set bit BitArray[hash_value]. So we figure out what register
	 * the bit is in, read it, OR in the new bit, then write
	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
	 * mask to bits 31:5 of the hash value which gives us the
	 * register we're modifying.  The hash bit within that register
	 * is determined by the lower 5 bits of the hash value.
	 */
	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
	hash_bit = hash_value & 0x1F;

	mta = array_rd32(E1000_MTA, hash_reg);

	mta |= (1 << hash_bit);

	array_wr32(E1000_MTA, hash_reg, mta);
	wrfl();
}

/**
259
 *  igb_hash_mc_addr - Generate a multicast hash value
260 261 262 263 264 265 266
 *  @hw: pointer to the HW structure
 *  @mc_addr: pointer to a multicast address
 *
 *  Generates a multicast address hash value which is used to determine
 *  the multicast filter table array address and new table value.  See
 *  igb_mta_set()
 **/
A
Alexander Duyck 已提交
267
u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
{
	u32 hash_value, hash_mask;
	u8 bit_shift = 0;

	/* Register count multiplied by bits per register */
	hash_mask = (hw->mac.mta_reg_count * 32) - 1;

	/*
	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
	 * where 0xFF would still fall within the hash mask.
	 */
	while (hash_mask >> bit_shift != 0xFF)
		bit_shift++;

	/*
	 * The portion of the address that is used for the hash table
	 * is determined by the mc_filter_type setting.
	 * The algorithm is such that there is a total of 8 bits of shifting.
	 * The bit_shift for a mc_filter_type of 0 represents the number of
	 * left-shifts where the MSB of mc_addr[5] would still fall within
	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
	 * of 8 bits of shifting, then mc_addr[4] will shift right the
	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
	 * cases are a variation of this algorithm...essentially raising the
	 * number of bits to shift mc_addr[5] left, while still keeping the
	 * 8-bit shifting total.
	 *
	 * For example, given the following Destination MAC Address and an
	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
	 * we can see that the bit_shift for case 0 is 4.  These are the hash
	 * values resulting from each mc_filter_type...
	 * [0] [1] [2] [3] [4] [5]
	 * 01  AA  00  12  34  56
	 * LSB                 MSB
	 *
	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
	 */
	switch (hw->mac.mc_filter_type) {
	default:
	case 0:
		break;
	case 1:
		bit_shift += 1;
		break;
	case 2:
		bit_shift += 2;
		break;
	case 3:
		bit_shift += 4;
		break;
	}

	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
				  (((u16) mc_addr[5]) << bit_shift)));

	return hash_value;
}

/**
330
 *  igb_clear_hw_cntrs_base - Clear base hardware counters
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
 *  @hw: pointer to the HW structure
 *
 *  Clears the base hardware counters by reading the counter registers.
 **/
void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
{
	u32 temp;

	temp = rd32(E1000_CRCERRS);
	temp = rd32(E1000_SYMERRS);
	temp = rd32(E1000_MPC);
	temp = rd32(E1000_SCC);
	temp = rd32(E1000_ECOL);
	temp = rd32(E1000_MCC);
	temp = rd32(E1000_LATECOL);
	temp = rd32(E1000_COLC);
	temp = rd32(E1000_DC);
	temp = rd32(E1000_SEC);
	temp = rd32(E1000_RLEC);
	temp = rd32(E1000_XONRXC);
	temp = rd32(E1000_XONTXC);
	temp = rd32(E1000_XOFFRXC);
	temp = rd32(E1000_XOFFTXC);
	temp = rd32(E1000_FCRUC);
	temp = rd32(E1000_GPRC);
	temp = rd32(E1000_BPRC);
	temp = rd32(E1000_MPRC);
	temp = rd32(E1000_GPTC);
	temp = rd32(E1000_GORCL);
	temp = rd32(E1000_GORCH);
	temp = rd32(E1000_GOTCL);
	temp = rd32(E1000_GOTCH);
	temp = rd32(E1000_RNBC);
	temp = rd32(E1000_RUC);
	temp = rd32(E1000_RFC);
	temp = rd32(E1000_ROC);
	temp = rd32(E1000_RJC);
	temp = rd32(E1000_TORL);
	temp = rd32(E1000_TORH);
	temp = rd32(E1000_TOTL);
	temp = rd32(E1000_TOTH);
	temp = rd32(E1000_TPR);
	temp = rd32(E1000_TPT);
	temp = rd32(E1000_MPTC);
	temp = rd32(E1000_BPTC);
}

/**
379
 *  igb_check_for_copper_link - Check for link (Copper)
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
s32 igb_check_for_copper_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status) {
		ret_val = 0;
		goto out;
	}

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = igb_phy_has_link(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link)
		goto out; /* No link detected */

	mac->get_link_status = false;

	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	igb_check_downshift(hw);

	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	igb_config_collision_dist(hw);

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = igb_config_fc_after_link_up(hw);
	if (ret_val)
447
		hw_dbg("Error configuring flow control\n");
448 449 450 451 452 453

out:
	return ret_val;
}

/**
454
 *  igb_setup_link - Setup flow control and link settings
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
s32 igb_setup_link(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	/*
	 * In the case of the phy reset being blocked, we already have a link.
	 * We do not need to set it up again.
	 */
	if (igb_check_reset_block(hw))
		goto out;

	ret_val = igb_set_default_fc(hw);
	if (ret_val)
		goto out;

	/*
	 * We want to save off the original Flow Control configuration just
	 * in case we get disconnected and then reconnected into a different
	 * hub or switch with different Flow Control capabilities.
	 */
	hw->fc.original_type = hw->fc.type;

485
	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
486 487 488 489 490 491 492 493 494 495 496 497

	/* Call the necessary media_type subroutine to configure the link. */
	ret_val = hw->mac.ops.setup_physical_interface(hw);
	if (ret_val)
		goto out;

	/*
	 * Initialize the flow control address, type, and PAUSE timer
	 * registers to their default values.  This is done even if flow
	 * control is disabled, because it does not hurt anything to
	 * initialize these registers.
	 */
498
	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
499 500 501 502 503 504 505 506 507 508 509 510 511
	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);

	wr32(E1000_FCTTV, hw->fc.pause_time);

	ret_val = igb_set_fc_watermarks(hw);

out:
	return ret_val;
}

/**
512
 *  igb_config_collision_dist - Configure collision distance
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 *  @hw: pointer to the HW structure
 *
 *  Configures the collision distance to the default value and is used
 *  during link setup. Currently no func pointer exists and all
 *  implementations are handled in the generic version of this function.
 **/
void igb_config_collision_dist(struct e1000_hw *hw)
{
	u32 tctl;

	tctl = rd32(E1000_TCTL);

	tctl &= ~E1000_TCTL_COLD;
	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;

	wr32(E1000_TCTL, tctl);
	wrfl();
}

/**
533
 *  igb_set_fc_watermarks - Set flow control high/low watermarks
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
 *  @hw: pointer to the HW structure
 *
 *  Sets the flow control high/low threshold (watermark) registers.  If
 *  flow control XON frame transmission is enabled, then set XON frame
 *  tansmission as well.
 **/
static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u32 fcrtl = 0, fcrth = 0;

	/*
	 * Set the flow control receive threshold registers.  Normally,
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames is not enabled, then these
	 * registers will be set to 0.
	 */
	if (hw->fc.type & e1000_fc_tx_pause) {
		/*
		 * We need to set up the Receive Threshold high and low water
		 * marks as well as (optionally) enabling the transmission of
		 * XON frames.
		 */
		fcrtl = hw->fc.low_water;
		if (hw->fc.send_xon)
			fcrtl |= E1000_FCRTL_XONE;

		fcrth = hw->fc.high_water;
	}
	wr32(E1000_FCRTL, fcrtl);
	wr32(E1000_FCRTH, fcrth);

	return ret_val;
}

/**
571
 *  igb_set_default_fc - Set flow control default values
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
 *  @hw: pointer to the HW structure
 *
 *  Read the EEPROM for the default values for flow control and store the
 *  values.
 **/
static s32 igb_set_default_fc(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 nvm_data;

	/*
	 * Read and store word 0x0F of the EEPROM. This word contains bits
	 * that determine the hardware's default PAUSE (flow control) mode,
	 * a bit that determines whether the HW defaults to enabling or
	 * disabling auto-negotiation, and the direction of the
	 * SW defined pins. If there is no SW over-ride of the flow
	 * control setting, then the variable hw->fc will
	 * be initialized based on a value in the EEPROM.
	 */
	ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1,
				       &nvm_data);

	if (ret_val) {
595
		hw_dbg("NVM Read Error\n");
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		goto out;
	}

	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
		hw->fc.type = e1000_fc_none;
	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
		 NVM_WORD0F_ASM_DIR)
		hw->fc.type = e1000_fc_tx_pause;
	else
		hw->fc.type = e1000_fc_full;

out:
	return ret_val;
}

/**
612
 *  igb_force_mac_fc - Force the MAC's flow control settings
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
 *  @hw: pointer to the HW structure
 *
 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 *  device control register to reflect the adapter settings.  TFCE and RFCE
 *  need to be explicitly set by software when a copper PHY is used because
 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 *  also configure these bits when link is forced on a fiber connection.
 **/
s32 igb_force_mac_fc(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val = 0;

	ctrl = rd32(E1000_CTRL);

	/*
	 * Because we didn't get link via the internal auto-negotiation
	 * mechanism (we either forced link or we got link via PHY
	 * auto-neg), we have to manually enable/disable transmit an
	 * receive flow control.
	 *
	 * The "Case" statement below enables/disable flow control
	 * according to the "hw->fc.type" parameter.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause
	 *          frames but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *          frames but we do not receive pause frames).
	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
	 *  other:  No other values should be possible at this point.
	 */
646
	hw_dbg("hw->fc.type = %u\n", hw->fc.type);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	switch (hw->fc.type) {
	case e1000_fc_none:
		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
		break;
	case e1000_fc_rx_pause:
		ctrl &= (~E1000_CTRL_TFCE);
		ctrl |= E1000_CTRL_RFCE;
		break;
	case e1000_fc_tx_pause:
		ctrl &= (~E1000_CTRL_RFCE);
		ctrl |= E1000_CTRL_TFCE;
		break;
	case e1000_fc_full:
		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
		break;
	default:
664
		hw_dbg("Flow control param set incorrectly\n");
665 666 667 668 669 670 671 672 673 674 675
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	wr32(E1000_CTRL, ctrl);

out:
	return ret_val;
}

/**
676
 *  igb_config_fc_after_link_up - Configures flow control after link
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
 *  @hw: pointer to the HW structure
 *
 *  Checks the status of auto-negotiation after link up to ensure that the
 *  speed and duplex were not forced.  If the link needed to be forced, then
 *  flow control needs to be forced also.  If auto-negotiation is enabled
 *  and did not fail, then we configure flow control based on our link
 *  partner.
 **/
s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = 0;
	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
	u16 speed, duplex;

	/*
	 * Check for the case where we have fiber media and auto-neg failed
	 * so we had to force link.  In this case, we need to force the
	 * configuration of the MAC to match the "fc" parameter.
	 */
	if (mac->autoneg_failed) {
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes)
			ret_val = igb_force_mac_fc(hw);
	} else {
		if (hw->phy.media_type == e1000_media_type_copper)
			ret_val = igb_force_mac_fc(hw);
	}

	if (ret_val) {
707
		hw_dbg("Error forcing flow control settings\n");
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		goto out;
	}

	/*
	 * Check for the case where we have copper media and auto-neg is
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
		/*
		 * Read the MII Status Register and check to see if AutoNeg
		 * has completed.  We read this twice because this reg has
		 * some "sticky" (latched) bits.
		 */
		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
						   &mii_status_reg);
		if (ret_val)
			goto out;
		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
						   &mii_status_reg);
		if (ret_val)
			goto out;

		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
733
			hw_dbg("Copper PHY and Auto Neg "
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
				 "has not completed.\n");
			goto out;
		}

		/*
		 * The AutoNeg process has completed, so we now need to
		 * read both the Auto Negotiation Advertisement
		 * Register (Address 4) and the Auto_Negotiation Base
		 * Page Ability Register (Address 5) to determine how
		 * flow control was negotiated.
		 */
		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV,
					    &mii_nway_adv_reg);
		if (ret_val)
			goto out;
		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY,
					    &mii_nway_lp_ability_reg);
		if (ret_val)
			goto out;

		/*
		 * Two bits in the Auto Negotiation Advertisement Register
		 * (Address 4) and two bits in the Auto Negotiation Base
		 * Page Ability Register (Address 5) determine flow control
		 * for both the PHY and the link partner.  The following
		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
		 * 1999, describes these PAUSE resolution bits and how flow
		 * control is determined based upon these settings.
		 * NOTE:  DC = Don't Care
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
		 *-------|---------|-------|---------|--------------------
		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
		 *   0   |    1    |   0   |   DC    | e1000_fc_none
		 *   0   |    1    |   1   |    0    | e1000_fc_none
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *   1   |    0    |   0   |   DC    | e1000_fc_none
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *   1   |    1    |   0   |    0    | e1000_fc_none
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
		 * Are both PAUSE bits set to 1?  If so, this implies
		 * Symmetric Flow Control is enabled at both ends.  The
		 * ASM_DIR bits are irrelevant per the spec.
		 *
		 * For Symmetric Flow Control:
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
		 *
		 */
		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
			/*
			 * Now we need to check if the user selected RX ONLY
			 * of pause frames.  In this case, we had to advertise
			 * FULL flow control because we could not advertise RX
			 * ONLY. Hence, we must now check to see if we need to
			 * turn OFF  the TRANSMISSION of PAUSE frames.
			 */
			if (hw->fc.original_type == e1000_fc_full) {
				hw->fc.type = e1000_fc_full;
799
				hw_dbg("Flow Control = FULL.\r\n");
800 801
			} else {
				hw->fc.type = e1000_fc_rx_pause;
802 803
				hw_dbg("Flow Control = "
				       "RX PAUSE frames only.\r\n");
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
			}
		}
		/*
		 * For receiving PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 */
		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
			hw->fc.type = e1000_fc_tx_pause;
819
			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
820 821 822 823 824 825 826 827 828 829 830 831 832 833
		}
		/*
		 * For transmitting PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 */
		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
			hw->fc.type = e1000_fc_rx_pause;
834
			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		}
		/*
		 * Per the IEEE spec, at this point flow control should be
		 * disabled.  However, we want to consider that we could
		 * be connected to a legacy switch that doesn't advertise
		 * desired flow control, but can be forced on the link
		 * partner.  So if we advertised no flow control, that is
		 * what we will resolve to.  If we advertised some kind of
		 * receive capability (Rx Pause Only or Full Flow Control)
		 * and the link partner advertised none, we will configure
		 * ourselves to enable Rx Flow Control only.  We can do
		 * this safely for two reasons:  If the link partner really
		 * didn't want flow control enabled, and we enable Rx, no
		 * harm done since we won't be receiving any PAUSE frames
		 * anyway.  If the intent on the link partner was to have
		 * flow control enabled, then by us enabling RX only, we
		 * can at least receive pause frames and process them.
		 * This is a good idea because in most cases, since we are
		 * predominantly a server NIC, more times than not we will
		 * be asked to delay transmission of packets than asking
		 * our link partner to pause transmission of frames.
		 */
		else if ((hw->fc.original_type == e1000_fc_none ||
			  hw->fc.original_type == e1000_fc_tx_pause) ||
			 hw->fc.strict_ieee) {
			hw->fc.type = e1000_fc_none;
861
			hw_dbg("Flow Control = NONE.\r\n");
862 863
		} else {
			hw->fc.type = e1000_fc_rx_pause;
864
			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
865 866 867 868 869 870 871 872 873
		}

		/*
		 * Now we need to do one last check...  If we auto-
		 * negotiated to HALF DUPLEX, flow control should not be
		 * enabled per IEEE 802.3 spec.
		 */
		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
		if (ret_val) {
874
			hw_dbg("Error getting link speed and duplex\n");
875 876 877 878 879 880 881 882 883 884 885 886
			goto out;
		}

		if (duplex == HALF_DUPLEX)
			hw->fc.type = e1000_fc_none;

		/*
		 * Now we call a subroutine to actually force the MAC
		 * controller to use the correct flow control settings.
		 */
		ret_val = igb_force_mac_fc(hw);
		if (ret_val) {
887
			hw_dbg("Error forcing flow control settings\n");
888 889 890 891 892 893 894 895 896
			goto out;
		}
	}

out:
	return ret_val;
}

/**
897
 *  igb_get_speed_and_duplex_copper - Retreive current speed/duplex
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Read the status register for the current speed/duplex and store the current
 *  speed and duplex for copper connections.
 **/
s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
				      u16 *duplex)
{
	u32 status;

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_SPEED_1000) {
		*speed = SPEED_1000;
913
		hw_dbg("1000 Mbs, ");
914 915
	} else if (status & E1000_STATUS_SPEED_100) {
		*speed = SPEED_100;
916
		hw_dbg("100 Mbs, ");
917 918
	} else {
		*speed = SPEED_10;
919
		hw_dbg("10 Mbs, ");
920 921 922 923
	}

	if (status & E1000_STATUS_FD) {
		*duplex = FULL_DUPLEX;
924
		hw_dbg("Full Duplex\n");
925 926
	} else {
		*duplex = HALF_DUPLEX;
927
		hw_dbg("Half Duplex\n");
928 929 930 931 932 933
	}

	return 0;
}

/**
934
 *  igb_get_hw_semaphore - Acquire hardware semaphore
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
s32 igb_get_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;
	s32 ret_val = 0;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = rd32(E1000_SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == timeout) {
957
		hw_dbg("Driver can't access device - SMBI bit is set.\n");
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = rd32(E1000_SWSM);
		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		igb_put_hw_semaphore(hw);
977
		hw_dbg("Driver can't access the NVM\n");
978 979 980 981 982 983 984 985 986
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return ret_val;
}

/**
987
 *  igb_put_hw_semaphore - Release hardware semaphore
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
void igb_put_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = rd32(E1000_SWSM);

	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);

	wr32(E1000_SWSM, swsm);
}

/**
1004
 *  igb_get_auto_rd_done - Check for auto read completion
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
 *  @hw: pointer to the HW structure
 *
 *  Check EEPROM for Auto Read done bit.
 **/
s32 igb_get_auto_rd_done(struct e1000_hw *hw)
{
	s32 i = 0;
	s32 ret_val = 0;


	while (i < AUTO_READ_DONE_TIMEOUT) {
		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
			break;
		msleep(1);
		i++;
	}

	if (i == AUTO_READ_DONE_TIMEOUT) {
1023
		hw_dbg("Auto read by HW from NVM has not completed.\n");
1024 1025 1026 1027 1028 1029 1030 1031 1032
		ret_val = -E1000_ERR_RESET;
		goto out;
	}

out:
	return ret_val;
}

/**
1033
 *  igb_valid_led_default - Verify a valid default LED config
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1046
		hw_dbg("NVM Read Error\n");
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		goto out;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT;

out:
	return ret_val;
}

/**
1058
 *  igb_id_led_init -
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
 *  @hw: pointer to the HW structure
 *
 **/
s32 igb_id_led_init(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_mask = 0x000000FF;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
	u16 data, i, temp;
	const u16 led_mask = 0x0F;

	ret_val = igb_valid_led_default(hw, &data);
	if (ret_val)
		goto out;

	mac->ledctl_default = rd32(E1000_LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & led_mask;
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_on << (i << 3);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_on << (i << 3);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

out:
	return ret_val;
}

/**
1123
 *  igb_cleanup_led - Set LED config to default operation
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
 *  @hw: pointer to the HW structure
 *
 *  Remove the current LED configuration and set the LED configuration
 *  to the default value, saved from the EEPROM.
 **/
s32 igb_cleanup_led(struct e1000_hw *hw)
{
	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
1136
 *  igb_blink_led - Blink LED
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
 *  @hw: pointer to the HW structure
 *
 *  Blink the led's which are set to be on.
 **/
s32 igb_blink_led(struct e1000_hw *hw)
{
	u32 ledctl_blink = 0;
	u32 i;

	if (hw->phy.media_type == e1000_media_type_fiber) {
		/* always blink LED0 for PCI-E fiber */
		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
	} else {
		/*
		 * set the blink bit for each LED that's "on" (0x0E)
		 * in ledctl_mode2
		 */
		ledctl_blink = hw->mac.ledctl_mode2;
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
						 (i * 8));
	}

	wr32(E1000_LEDCTL, ledctl_blink);

	return 0;
}

/**
1169
 *  igb_led_off - Turn LED off
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
 *  @hw: pointer to the HW structure
 *
 *  Turn LED off.
 **/
s32 igb_led_off(struct e1000_hw *hw)
{
	u32 ctrl;

	switch (hw->phy.media_type) {
	case e1000_media_type_fiber:
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		wr32(E1000_CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
		break;
	default:
		break;
	}

	return 0;
}

/**
1196
 *  igb_disable_pcie_master - Disables PCI-express master access
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
 *  @hw: pointer to the HW structure
 *
 *  Returns 0 (0) if successful, else returns -10
 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
 *  the master requests to be disabled.
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests.
 **/
s32 igb_disable_pcie_master(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 timeout = MASTER_DISABLE_TIMEOUT;
	s32 ret_val = 0;

	if (hw->bus.type != e1000_bus_type_pci_express)
		goto out;

	ctrl = rd32(E1000_CTRL);
	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
	wr32(E1000_CTRL, ctrl);

	while (timeout) {
		if (!(rd32(E1000_STATUS) &
		      E1000_STATUS_GIO_MASTER_ENABLE))
			break;
		udelay(100);
		timeout--;
	}

	if (!timeout) {
1228
		hw_dbg("Master requests are pending.\n");
1229 1230 1231 1232 1233 1234 1235 1236 1237
		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
		goto out;
	}

out:
	return ret_val;
}

/**
1238
 *  igb_reset_adaptive - Reset Adaptive Interframe Spacing
1239 1240 1241 1242 1243 1244 1245 1246 1247
 *  @hw: pointer to the HW structure
 *
 *  Reset the Adaptive Interframe Spacing throttle to default values.
 **/
void igb_reset_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	if (!mac->adaptive_ifs) {
1248
		hw_dbg("Not in Adaptive IFS mode!\n");
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		goto out;
	}

	if (!mac->ifs_params_forced) {
		mac->current_ifs_val = 0;
		mac->ifs_min_val = IFS_MIN;
		mac->ifs_max_val = IFS_MAX;
		mac->ifs_step_size = IFS_STEP;
		mac->ifs_ratio = IFS_RATIO;
	}

	mac->in_ifs_mode = false;
	wr32(E1000_AIT, 0);
out:
	return;
}

/**
1267
 *  igb_update_adaptive - Update Adaptive Interframe Spacing
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
 *  @hw: pointer to the HW structure
 *
 *  Update the Adaptive Interframe Spacing Throttle value based on the
 *  time between transmitted packets and time between collisions.
 **/
void igb_update_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	if (!mac->adaptive_ifs) {
1278
		hw_dbg("Not in Adaptive IFS mode!\n");
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		goto out;
	}

	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
			mac->in_ifs_mode = true;
			if (mac->current_ifs_val < mac->ifs_max_val) {
				if (!mac->current_ifs_val)
					mac->current_ifs_val = mac->ifs_min_val;
				else
					mac->current_ifs_val +=
						mac->ifs_step_size;
				wr32(E1000_AIT,
						mac->current_ifs_val);
			}
		}
	} else {
		if (mac->in_ifs_mode &&
		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
			mac->current_ifs_val = 0;
			mac->in_ifs_mode = false;
			wr32(E1000_AIT, 0);
		}
	}
out:
	return;
}

/**
1308
 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
 *  @hw: pointer to the HW structure
 *
 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
 *  set, which is forced to MDI mode only.
 **/
s32 igb_validate_mdi_setting(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1319
		hw_dbg("Invalid MDI setting detected\n");
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		hw->phy.mdix = 1;
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

out:
	return ret_val;
}

/**
1330
 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
 *  @hw: pointer to the HW structure
 *  @reg: 32bit register offset such as E1000_SCTL
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes an address/data control type register.  There are several of these
 *  and they all have the format address << 8 | data and bit 31 is polled for
 *  completion.
 **/
s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
			      u32 offset, u8 data)
{
	u32 i, regvalue = 0;
	s32 ret_val = 0;

	/* Set up the address and data */
	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
	wr32(reg, regvalue);

	/* Poll the ready bit to see if the MDI read completed */
	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
		udelay(5);
		regvalue = rd32(reg);
		if (regvalue & E1000_GEN_CTL_READY)
			break;
	}
	if (!(regvalue & E1000_GEN_CTL_READY)) {
1358
		hw_dbg("Reg %08x did not indicate ready\n", reg);
1359 1360 1361 1362 1363 1364 1365 1366 1367
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

/**
1368
 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
 *  @hw: pointer to the HW structure
 *
 *  Verifies the hardware needs to allow ARPs to be processed by the host.
 **/
bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
{
	u32 manc;
	u32 fwsm, factps;
	bool ret_val = false;

	if (!hw->mac.asf_firmware_present)
		goto out;

	manc = rd32(E1000_MANC);

	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
		goto out;

	if (hw->mac.arc_subsystem_valid) {
		fwsm = rd32(E1000_FWSM);
		factps = rd32(E1000_FACTPS);

		if (!(factps & E1000_FACTPS_MNGCG) &&
		    ((fwsm & E1000_FWSM_MODE_MASK) ==
		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
			ret_val = true;
			goto out;
		}
	} else {
		if ((manc & E1000_MANC_SMBUS_EN) &&
		    !(manc & E1000_MANC_ASF_EN)) {
			ret_val = true;
			goto out;
		}
	}

out:
	return ret_val;
}