m8260_pci_erratum9.c 12.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Workaround for device erratum PCI 9.
 * See Motorola's "XPC826xA Family Device Errata Reference."
 * The erratum applies to all 8260 family Hip4 processors.  It is scheduled 
 * to be fixed in HiP4 Rev C.  Erratum PCI 9 states that a simultaneous PCI 
 * inbound write transaction and PCI outbound read transaction can result in a 
 * bus deadlock.  The suggested workaround is to use the IDMA controller to 
 * perform all reads from PCI configuration, memory, and I/O space.
 *
 * Author:  andy_lowe@mvista.com
 *
 * 2003 (c) MontaVista Software, Inc. This file is licensed under
 * the terms of the GNU General Public License version 2. This program
 * is licensed "as is" without any warranty of any kind, whether express
 * or implied.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/string.h>

#include <asm/io.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/byteorder.h>
#include <asm/mpc8260.h>
#include <asm/immap_cpm2.h>
#include <asm/cpm2.h>

31
#include "m82xx_pci.h"
L
Linus Torvalds 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

#ifdef CONFIG_8260_PCI9
/*#include <asm/mpc8260_pci9.h>*/ /* included in asm/io.h */

#define IDMA_XFER_BUF_SIZE 64	/* size of the IDMA transfer buffer */

/* define a structure for the IDMA dpram usage */
typedef struct idma_dpram_s {
	idma_t pram;				/* IDMA parameter RAM */
	u_char xfer_buf[IDMA_XFER_BUF_SIZE];	/* IDMA transfer buffer */
	idma_bd_t bd;				/* buffer descriptor */
} idma_dpram_t;

/* define offsets relative to start of IDMA dpram */
#define IDMA_XFER_BUF_OFFSET (sizeof(idma_t))
#define IDMA_BD_OFFSET (sizeof(idma_t) + IDMA_XFER_BUF_SIZE)

/* define globals */
static volatile idma_dpram_t *idma_dpram;

/* Exactly one of CONFIG_8260_PCI9_IDMAn must be defined, 
 * where n is 1, 2, 3, or 4.  This selects the IDMA channel used for 
 * the PCI9 workaround.
 */
#ifdef CONFIG_8260_PCI9_IDMA1
#define IDMA_CHAN 0
#define PROFF_IDMA PROFF_IDMA1_BASE
#define IDMA_PAGE CPM_CR_IDMA1_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA1_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA2
#define IDMA_CHAN 1
#define PROFF_IDMA PROFF_IDMA2_BASE
#define IDMA_PAGE CPM_CR_IDMA2_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA2_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA3
#define IDMA_CHAN 2
#define PROFF_IDMA PROFF_IDMA3_BASE
#define IDMA_PAGE CPM_CR_IDMA3_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA3_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA4
#define IDMA_CHAN 3
#define PROFF_IDMA PROFF_IDMA4_BASE
#define IDMA_PAGE CPM_CR_IDMA4_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA4_SBLOCK
#endif

void idma_pci9_init(void)
{
	uint dpram_offset;
	volatile idma_t *pram;
	volatile im_idma_t *idma_reg;
	volatile cpm2_map_t *immap = cpm2_immr;

	/* allocate IDMA dpram */
	dpram_offset = cpm_dpalloc(sizeof(idma_dpram_t), 64);
	idma_dpram = cpm_dpram_addr(dpram_offset); 

	/* initialize the IDMA parameter RAM */
	memset((void *)idma_dpram, 0, sizeof(idma_dpram_t));
	pram = &idma_dpram->pram;
	pram->ibase = dpram_offset + IDMA_BD_OFFSET;
	pram->dpr_buf = dpram_offset + IDMA_XFER_BUF_OFFSET;
	pram->ss_max = 32;
	pram->dts = 32;

	/* initialize the IDMA_BASE pointer to the IDMA parameter RAM */
	*((ushort *) &immap->im_dprambase[PROFF_IDMA]) = dpram_offset;

	/* initialize the IDMA registers */
	idma_reg = (volatile im_idma_t *) &immap->im_sdma.sdma_idsr1;
	idma_reg[IDMA_CHAN].idmr = 0;		/* mask all IDMA interrupts */
	idma_reg[IDMA_CHAN].idsr = 0xff;	/* clear all event flags */

	printk("<4>Using IDMA%d for MPC8260 device erratum PCI 9 workaround\n",
		IDMA_CHAN + 1);

	return;
}

/* Use the IDMA controller to transfer data from I/O memory to local RAM.
 * The src address must be a physical address suitable for use by the DMA 
 * controller with no translation.  The dst address must be a kernel virtual 
 * address.  The dst address is translated to a physical address via 
 * virt_to_phys().
 * The sinc argument specifies whether or not the source address is incremented
 * by the DMA controller.  The source address is incremented if and only if sinc
 * is non-zero.  The destination address is always incremented since the 
 * destination is always host RAM.
 */
static void 
idma_pci9_read(u8 *dst, u8 *src, int bytes, int unit_size, int sinc)
{
	unsigned long flags;
	volatile idma_t *pram = &idma_dpram->pram;
	volatile idma_bd_t *bd = &idma_dpram->bd;
	volatile cpm2_map_t *immap = cpm2_immr;

	local_irq_save(flags);

	/* initialize IDMA parameter RAM for this transfer */
	if (sinc)
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC
			  | IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM;
	else
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_DINC 
			  | IDMA_DCM_SD_MEM2MEM;
	pram->ibdptr = pram->ibase;
	pram->sts = unit_size;
	pram->istate = 0;

	/* initialize the buffer descriptor */
	bd->dst = virt_to_phys(dst);
	bd->src = (uint) src;
	bd->len = bytes;
	bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL
		  | IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB;

	/* issue the START_IDMA command to the CP */
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
	immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0,
					 CPM_CR_START_IDMA) | CPM_CR_FLG;
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);

	/* wait for transfer to complete */
	while(bd->flags & IDMA_BD_V);

	local_irq_restore(flags);

	return;
}

/* Use the IDMA controller to transfer data from I/O memory to local RAM.
 * The dst address must be a physical address suitable for use by the DMA 
 * controller with no translation.  The src address must be a kernel virtual 
 * address.  The src address is translated to a physical address via 
 * virt_to_phys().
 * The dinc argument specifies whether or not the dest address is incremented
 * by the DMA controller.  The source address is incremented if and only if sinc
 * is non-zero.  The source address is always incremented since the 
 * source is always host RAM.
 */
static void 
idma_pci9_write(u8 *dst, u8 *src, int bytes, int unit_size, int dinc)
{
	unsigned long flags;
	volatile idma_t *pram = &idma_dpram->pram;
	volatile idma_bd_t *bd = &idma_dpram->bd;
	volatile cpm2_map_t *immap = cpm2_immr;

	local_irq_save(flags);

	/* initialize IDMA parameter RAM for this transfer */
	if (dinc)
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC
			  | IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM;
	else
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC 
			  | IDMA_DCM_SD_MEM2MEM;
	pram->ibdptr = pram->ibase;
	pram->sts = unit_size;
	pram->istate = 0;

	/* initialize the buffer descriptor */
	bd->dst = (uint) dst;
	bd->src = virt_to_phys(src);
	bd->len = bytes;
	bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL
		  | IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB;

	/* issue the START_IDMA command to the CP */
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
	immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0,
					 CPM_CR_START_IDMA) | CPM_CR_FLG;
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);

	/* wait for transfer to complete */
	while(bd->flags & IDMA_BD_V);

	local_irq_restore(flags);

	return;
}

/* Same as idma_pci9_read, but 16-bit little-endian byte swapping is performed
 * if the unit_size is 2, and 32-bit little-endian byte swapping is performed if
 * the unit_size is 4.
 */
static void 
idma_pci9_read_le(u8 *dst, u8 *src, int bytes, int unit_size, int sinc)
{
	int i;
	u8 *p;

	idma_pci9_read(dst, src, bytes, unit_size, sinc);
	switch(unit_size) {
		case 2:
			for (i = 0, p = dst; i < bytes; i += 2, p += 2)
				swab16s((u16 *) p);
			break;
		case 4:
			for (i = 0, p = dst; i < bytes; i += 4, p += 4)
				swab32s((u32 *) p);
			break;
		default:
			break;
	}
}
EXPORT_SYMBOL(idma_pci9_init);
EXPORT_SYMBOL(idma_pci9_read);
EXPORT_SYMBOL(idma_pci9_read_le);

static inline int is_pci_mem(unsigned long addr)
{
248 249
	if (addr >= M82xx_PCI_LOWER_MMIO &&
		addr <= M82xx_PCI_UPPER_MMIO)
L
Linus Torvalds 已提交
250
		return 1;
251 252
	if (addr >= M82xx_PCI_LOWER_MEM &&
		addr <= M82xx_PCI_UPPER_MEM)
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		return 1;
	return 0;
}

#define is_pci_mem(pa) ( (pa > 0x80000000) && (pa < 0xc0000000))
int readb(volatile unsigned char *addr)
{
	u8 val;
	unsigned long pa = iopa((unsigned long) addr);

	if (!is_pci_mem(pa))
		return in_8(addr);

	idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
	return val;
}

int readw(volatile unsigned short *addr)
{
	u16 val;
	unsigned long pa = iopa((unsigned long) addr);

	if (!is_pci_mem(pa))
		return in_le16(addr);

	idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
	return swab16(val);
}

unsigned readl(volatile unsigned *addr)
{
	u32 val;
	unsigned long pa = iopa((unsigned long) addr);

	if (!is_pci_mem(pa))
		return in_le32(addr);

	idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
	return swab32(val);
}

int inb(unsigned port)
{
	u8 val;
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
	return val;
}

int inw(unsigned port)
{
	u16 val;
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
	return swab16(val);
}

unsigned inl(unsigned port)
{
	u32 val;
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
	return swab32(val);
}

void insb(unsigned port, void *buf, int ns)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u8), sizeof(u8), 0);
}

void insw(unsigned port, void *buf, int ns)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u16), sizeof(u16), 0);
}

void insl(unsigned port, void *buf, int nl)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, nl*sizeof(u32), sizeof(u32), 0);
}

void *memcpy_fromio(void *dest, unsigned long src, size_t count)
{
	unsigned long pa = iopa((unsigned long) src);

	if (is_pci_mem(pa))
		idma_pci9_read((u8 *)dest, (u8 *)pa, count, 32, 1);
	else
		memcpy(dest, (void *)src, count);
	return dest;
}

EXPORT_SYMBOL(readb);
EXPORT_SYMBOL(readw);
EXPORT_SYMBOL(readl);
EXPORT_SYMBOL(inb);
EXPORT_SYMBOL(inw);
EXPORT_SYMBOL(inl);
EXPORT_SYMBOL(insb);
EXPORT_SYMBOL(insw);
EXPORT_SYMBOL(insl);
EXPORT_SYMBOL(memcpy_fromio);

#endif	/* ifdef CONFIG_8260_PCI9 */

/* Indirect PCI routines adapted from arch/ppc/kernel/indirect_pci.c.
 * Copyright (C) 1998 Gabriel Paubert.
 */
#ifndef CONFIG_8260_PCI9
#define cfg_read(val, addr, type, op)	*val = op((type)(addr))
#else
#define cfg_read(val, addr, type, op) \
	idma_pci9_read_le((u8*)(val),(u8*)(addr),sizeof(*(val)),sizeof(*(val)),0)
#endif

#define cfg_write(val, addr, type, op)	op((type *)(addr), (val))

static int indirect_write_config(struct pci_bus *pbus, unsigned int devfn, int where,
			 int size, u32 value)
{
	struct pci_controller *hose = pbus->sysdata;
	u8 cfg_type = 0;
	if (ppc_md.pci_exclude_device)
		if (ppc_md.pci_exclude_device(pbus->number, devfn))
			return PCIBIOS_DEVICE_NOT_FOUND;

	if (hose->set_cfg_type)
		if (pbus->number != hose->first_busno)
			cfg_type = 1;

	out_be32(hose->cfg_addr,
		 (((where & 0xfc) | cfg_type) << 24) | (devfn << 16)
		 | ((pbus->number - hose->bus_offset) << 8) | 0x80);

	switch (size)
	{
		case 1:
			cfg_write(value, hose->cfg_data + (where & 3), u8, out_8);
			break;
		case 2:
			cfg_write(value, hose->cfg_data + (where & 2), u16, out_le16);
			break;
		case 4:
			cfg_write(value, hose->cfg_data + (where & 0), u32, out_le32);
			break;
	}		
	return PCIBIOS_SUCCESSFUL;
}

static int indirect_read_config(struct pci_bus *pbus, unsigned int devfn, int where,
			 int size, u32 *value)
{
	struct pci_controller *hose = pbus->sysdata;
	u8 cfg_type = 0;
	if (ppc_md.pci_exclude_device)
		if (ppc_md.pci_exclude_device(pbus->number, devfn))
			return PCIBIOS_DEVICE_NOT_FOUND;

	if (hose->set_cfg_type)
		if (pbus->number != hose->first_busno)
			cfg_type = 1;

	out_be32(hose->cfg_addr,
		 (((where & 0xfc) | cfg_type) << 24) | (devfn << 16)
		 | ((pbus->number - hose->bus_offset) << 8) | 0x80);

	switch (size)
	{
		case 1:
			cfg_read(value, hose->cfg_data + (where & 3), u8 *, in_8);
			break;
		case 2:
			cfg_read(value, hose->cfg_data + (where & 2), u16 *, in_le16);
			break;
		case 4:
			cfg_read(value, hose->cfg_data + (where & 0), u32 *, in_le32);
			break;
	}		
	return PCIBIOS_SUCCESSFUL;
}

static struct pci_ops indirect_pci_ops =
{
	.read = indirect_read_config,
	.write = indirect_write_config,
};

void
setup_m8260_indirect_pci(struct pci_controller* hose, u32 cfg_addr, u32 cfg_data)
{
	hose->ops = &indirect_pci_ops;
	hose->cfg_addr = (unsigned int *) ioremap(cfg_addr, 4);
	hose->cfg_data = (unsigned char *) ioremap(cfg_data, 4);
}