ppatomctrl.c 46.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>

#include "ppatomctrl.h"
#include "atombios.h"
#include "cgs_common.h"
#include "pp_debug.h"
31 32
#include "ppevvmath.h"

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#define MEM_ID_MASK           0xff000000
#define MEM_ID_SHIFT          24
#define CLOCK_RANGE_MASK      0x00ffffff
#define CLOCK_RANGE_SHIFT     0
#define LOW_NIBBLE_MASK       0xf
#define DATA_EQU_PREV         0
#define DATA_FROM_TABLE       4

union voltage_object_info {
	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
};

static int atomctrl_retrieve_ac_timing(
		uint8_t index,
		ATOM_INIT_REG_BLOCK *reg_block,
		pp_atomctrl_mc_reg_table *table)
{
	uint32_t i, j;
	uint8_t tmem_id;
	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));

	uint8_t num_ranges = 0;

	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);

		if (index == tmem_id) {
			table->mc_reg_table_entry[num_ranges].mclk_max =
				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
						CLOCK_RANGE_SHIFT);

			for (i = 0, j = 1; i < table->last; i++) {
				if ((table->mc_reg_address[i].uc_pre_reg_data &
							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
					table->mc_reg_table_entry[num_ranges].mc_data[i] =
						(uint32_t)*((uint32_t *)reg_data + j);
					j++;
				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
					table->mc_reg_table_entry[num_ranges].mc_data[i] =
						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
				}
			}
			num_ranges++;
		}

		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
	}

	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
			"Invalid VramInfo table.", return -1);
	table->num_entries = num_ranges;

	return 0;
}

/**
 * Get memory clock AC timing registers index from VBIOS table
 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
 * @param    reg_block the address ATOM_INIT_REG_BLOCK
 * @param    table the address of MCRegTable
99
 * @return   0
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
 */
static int atomctrl_set_mc_reg_address_table(
		ATOM_INIT_REG_BLOCK *reg_block,
		pp_atomctrl_mc_reg_table *table)
{
	uint8_t i = 0;
	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];

	num_entries--;        /* subtract 1 data end mark entry */

	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
			"Invalid VramInfo table.", return -1);

	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
			(i < num_entries)) {
		table->mc_reg_address[i].s1 =
			(uint16_t)(le16_to_cpu(format->usRegIndex));
		table->mc_reg_address[i].uc_pre_reg_data =
			format->ucPreRegDataLength;

		i++;
		format = (ATOM_INIT_REG_INDEX_FORMAT *)
			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
	}

	table->last = i;
	return 0;
}


int atomctrl_initialize_mc_reg_table(
		struct pp_hwmgr *hwmgr,
		uint8_t module_index,
		pp_atomctrl_mc_reg_table *table)
{
	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
	ATOM_INIT_REG_BLOCK *reg_block;
	int result = 0;
	u8 frev, crev;
	u16 size;

	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
		cgs_atom_get_data_table(hwmgr->device,
				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);

	if (module_index >= vram_info->ucNumOfVRAMModule) {
		printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
		result = -1;
	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
		printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
		result = -1;
	}

	if (0 == result) {
		reg_block = (ATOM_INIT_REG_BLOCK *)
			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
		result = atomctrl_set_mc_reg_address_table(reg_block, table);
	}

	if (0 == result) {
		result = atomctrl_retrieve_ac_timing(module_index,
					reg_block, table);
	}

	return result;
}

/**
 * Set DRAM timings based on engine clock and memory clock.
 */
int atomctrl_set_engine_dram_timings_rv770(
		struct pp_hwmgr *hwmgr,
		uint32_t engine_clock,
		uint32_t memory_clock)
{
	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;

	/* They are both in 10KHz Units. */
	engine_clock_parameters.ulTargetEngineClock =
182 183
		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
184 185 186

	/* in 10 khz units.*/
	engine_clock_parameters.sReserved.ulClock =
187
		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	return cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
			&engine_clock_parameters);
}

/**
 * Private Function to get the PowerPlay Table Address.
 * WARNING: The tabled returned by this function is in
 * dynamically allocated memory.
 * The caller has to release if by calling kfree.
 */
static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
{
	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
	u8 frev, crev;
	u16 size;
	union voltage_object_info *voltage_info;

	voltage_info = (union voltage_object_info *)
		cgs_atom_get_data_table(device, index,
			&size, &frev, &crev);

	if (voltage_info != NULL)
		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
	else
		return NULL;
}

static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
		uint8_t voltage_type, uint8_t voltage_mode)
{
	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
	uint8_t *start = (uint8_t *)voltage_object_info_table;

	while (offset < size) {
		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);

		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
			return voltage_object;

		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
	}

	return NULL;
}

/** atomctrl_get_memory_pll_dividers_si().
 *
 * @param hwmgr                 input parameter: pointer to HwMgr
 * @param clock_value             input parameter: memory clock
 * @param dividers                 output parameter: memory PLL dividers
 * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
 */
int atomctrl_get_memory_pll_dividers_si(
		struct pp_hwmgr *hwmgr,
		uint32_t clock_value,
		pp_atomctrl_memory_clock_param *mpll_param,
		bool strobe_mode)
{
	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
	int result;

254
	mpll_parameters.ulClock = cpu_to_le32(clock_value);
255 256 257 258 259 260 261 262 263
	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);

	result = cgs_atom_exec_cmd_table
		(hwmgr->device,
		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
		 &mpll_parameters);

	if (0 == result) {
		mpll_param->mpll_fb_divider.clk_frac =
264
			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
265
		mpll_param->mpll_fb_divider.cl_kf =
266
			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
		mpll_param->mpll_post_divider =
			(uint32_t)mpll_parameters.ucPostDiv;
		mpll_param->vco_mode =
			(uint32_t)(mpll_parameters.ucPllCntlFlag &
					MPLL_CNTL_FLAG_VCO_MODE_MASK);
		mpll_param->yclk_sel =
			(uint32_t)((mpll_parameters.ucPllCntlFlag &
						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
		mpll_param->qdr =
			(uint32_t)((mpll_parameters.ucPllCntlFlag &
						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
		mpll_param->half_rate =
			(uint32_t)((mpll_parameters.ucPllCntlFlag &
						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
		mpll_param->dll_speed =
			(uint32_t)(mpll_parameters.ucDllSpeed);
		mpll_param->bw_ctrl =
			(uint32_t)(mpll_parameters.ucBWCntl);
	}

	return result;
}

290 291 292 293 294 295 296 297 298 299 300 301
/** atomctrl_get_memory_pll_dividers_vi().
 *
 * @param hwmgr                 input parameter: pointer to HwMgr
 * @param clock_value             input parameter: memory clock
 * @param dividers               output parameter: memory PLL dividers
 */
int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
{
	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
	int result;

302
	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
303 304 305 306 307 308 309 310 311 312 313 314

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
			&mpll_parameters);

	if (!result)
		mpll_param->mpll_post_divider =
				(uint32_t)mpll_parameters.ulClock.ucPostDiv;

	return result;
}

315 316 317 318 319 320 321
int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
					  uint32_t clock_value,
					  pp_atomctrl_clock_dividers_kong *dividers)
{
	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
	int result;

322
	pll_parameters.ulClock = cpu_to_le32(clock_value);
323 324 325 326 327 328 329 330

	result = cgs_atom_exec_cmd_table
		(hwmgr->device,
		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
		 &pll_parameters);

	if (0 == result) {
		dividers->pll_post_divider = pll_parameters.ucPostDiv;
331
		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
332 333 334 335 336
	}

	return result;
}

337 338 339 340 341 342 343 344
int atomctrl_get_engine_pll_dividers_vi(
		struct pp_hwmgr *hwmgr,
		uint32_t clock_value,
		pp_atomctrl_clock_dividers_vi *dividers)
{
	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
	int result;

345
	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
346 347 348 349 350 351 352 353 354 355 356
	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;

	result = cgs_atom_exec_cmd_table
		(hwmgr->device,
		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
		 &pll_patameters);

	if (0 == result) {
		dividers->pll_post_divider =
			pll_patameters.ulClock.ucPostDiv;
		dividers->real_clock =
357
			le32_to_cpu(pll_patameters.ulClock.ulClock);
358 359

		dividers->ul_fb_div.ul_fb_div_frac =
360
			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
361
		dividers->ul_fb_div.ul_fb_div =
362
			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
363 364 365 366 367 368 369 370 371 372 373 374

		dividers->uc_pll_ref_div =
			pll_patameters.ucPllRefDiv;
		dividers->uc_pll_post_div =
			pll_patameters.ucPllPostDiv;
		dividers->uc_pll_cntl_flag =
			pll_patameters.ucPllCntlFlag;
	}

	return result;
}

375 376 377 378 379 380 381
int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
		uint32_t clock_value,
		pp_atomctrl_clock_dividers_ai *dividers)
{
	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
	int result;

382
	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;

	result = cgs_atom_exec_cmd_table
		(hwmgr->device,
		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
		 &pll_patameters);

	if (0 == result) {
		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
	}
	return result;
}

406 407 408 409 410 411 412 413
int atomctrl_get_dfs_pll_dividers_vi(
		struct pp_hwmgr *hwmgr,
		uint32_t clock_value,
		pp_atomctrl_clock_dividers_vi *dividers)
{
	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
	int result;

414
	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
415 416 417 418 419 420 421 422 423 424 425 426
	pll_patameters.ulClock.ucPostDiv =
		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;

	result = cgs_atom_exec_cmd_table
		(hwmgr->device,
		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
		 &pll_patameters);

	if (0 == result) {
		dividers->pll_post_divider =
			pll_patameters.ulClock.ucPostDiv;
		dividers->real_clock =
427
			le32_to_cpu(pll_patameters.ulClock.ulClock);
428 429

		dividers->ul_fb_div.ul_fb_div_frac =
430
			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
431
		dividers->ul_fb_div.ul_fb_div =
432
			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

		dividers->uc_pll_ref_div =
			pll_patameters.ucPllRefDiv;
		dividers->uc_pll_post_div =
			pll_patameters.ucPllPostDiv;
		dividers->uc_pll_cntl_flag =
			pll_patameters.ucPllCntlFlag;
	}

	return result;
}

/**
 * Get the reference clock in 10KHz
 */
uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
{
	ATOM_FIRMWARE_INFO *fw_info;
	u8 frev, crev;
	u16 size;
	uint32_t clock;

	fw_info = (ATOM_FIRMWARE_INFO *)
		cgs_atom_get_data_table(hwmgr->device,
			GetIndexIntoMasterTable(DATA, FirmwareInfo),
			&size, &frev, &crev);

	if (fw_info == NULL)
		clock = 2700;
	else
		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));

	return clock;
}

/**
469
 * Returns true if the given voltage type is controlled by GPIO pins.
470 471 472 473 474 475 476 477 478 479 480 481 482 483
 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
 */
bool atomctrl_is_voltage_controled_by_gpio_v3(
		struct pp_hwmgr *hwmgr,
		uint8_t voltage_type,
		uint8_t voltage_mode)
{
	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
	bool ret;

	PP_ASSERT_WITH_CODE((NULL != voltage_info),
484
			"Could not find Voltage Table in BIOS.", return false;);
485 486

	ret = (NULL != atomctrl_lookup_voltage_type_v3
487
			(voltage_info, voltage_type, voltage_mode)) ? true : false;
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	return ret;
}

int atomctrl_get_voltage_table_v3(
		struct pp_hwmgr *hwmgr,
		uint8_t voltage_type,
		uint8_t voltage_mode,
		pp_atomctrl_voltage_table *voltage_table)
{
	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
	unsigned int i;

	PP_ASSERT_WITH_CODE((NULL != voltage_info),
			"Could not find Voltage Table in BIOS.", return -1;);

	voltage_object = atomctrl_lookup_voltage_type_v3
		(voltage_info, voltage_type, voltage_mode);

	if (voltage_object == NULL)
		return -1;

	PP_ASSERT_WITH_CODE(
			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
			"Too many voltage entries!",
			return -1;
			);

	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
		voltage_table->entries[i].value =
521
			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
522
		voltage_table->entries[i].smio_low =
523
			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
524 525 526
	}

	voltage_table->mask_low    =
527
		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	voltage_table->count      =
		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
	voltage_table->phase_delay =
		voltage_object->asGpioVoltageObj.ucPhaseDelay;

	return 0;
}

static bool atomctrl_lookup_gpio_pin(
		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
		const uint32_t pinId,
		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
{
	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
	uint8_t *start = (uint8_t *)gpio_lookup_table;

	while (offset < size) {
		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);

		if (pinId == pin_assignment->ucGPIO_ID) {
			gpio_pin_assignment->uc_gpio_pin_bit_shift =
				pin_assignment->ucGpioPinBitShift;
			gpio_pin_assignment->us_gpio_pin_aindex =
				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
554
			return true;
555 556 557 558 559
		}

		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
	}

560
	return false;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
}

/**
 * Private Function to get the PowerPlay Table Address.
 * WARNING: The tabled returned by this function is in
 * dynamically allocated memory.
 * The caller has to release if by calling kfree.
 */
static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
{
	u8 frev, crev;
	u16 size;
	void *table_address;

	table_address = (ATOM_GPIO_PIN_LUT *)
		cgs_atom_get_data_table(device,
				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
				&size, &frev, &crev);

	PP_ASSERT_WITH_CODE((NULL != table_address),
			"Error retrieving BIOS Table Address!", return NULL;);

	return (ATOM_GPIO_PIN_LUT *)table_address;
}

/**
 * Returns 1 if the given pin id find in lookup table.
 */
bool atomctrl_get_pp_assign_pin(
		struct pp_hwmgr *hwmgr,
		const uint32_t pinId,
		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
{
594
	bool bRet = false;
595 596 597 598
	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
		get_gpio_lookup_table(hwmgr->device);

	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
599
			"Could not find GPIO lookup Table in BIOS.", return false);
600 601 602 603 604 605 606

	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
		gpio_pin_assignment);

	return bRet;
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
int atomctrl_calculate_voltage_evv_on_sclk(
		struct pp_hwmgr *hwmgr,
		uint8_t voltage_type,
		uint32_t sclk,
		uint16_t virtual_voltage_Id,
		uint16_t *voltage,
		uint16_t dpm_level,
		bool debug)
{
	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;

	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
	EFUSE_INPUT_PARAMETER sInput_FuseValues;
	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;

	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
	fInt fLkg_FT, repeat;
	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
	fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
	fInt fSclk_margin, fSclk, fEVV_V;
	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
	uint32_t ul_FT_Lkg_V0NORM;
	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
	fInt fRoots[2];
	fInt fStepSize = GetScaledFraction(625, 100000);

	int result;

	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
			cgs_atom_get_data_table(hwmgr->device,
					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
					NULL, NULL, NULL);

	if (!getASICProfilingInfo)
		return -1;

651
	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
652 653
	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
654 655 656 657 658 659 660 661 662 663
		return -1;

	/*-----------------------------------------------------------
	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
	 *-----------------------------------------------------------
	 */
	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);

	switch (dpm_level) {
	case 1:
664 665
		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
666 667
		break;
	case 2:
668 669
		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
670 671
		break;
	case 3:
672 673
		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
674 675
		break;
	case 4:
676 677
		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
678 679
		break;
	case 5:
680 681
		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
682 683
		break;
	case 6:
684 685
		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
686 687
		break;
	case 7:
688 689
		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
690 691 692 693
		break;
	default:
		printk(KERN_ERR "DPM Level not supported\n");
		fPowerDPMx = Convert_ULONG_ToFraction(1);
694
		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	}

	/*-------------------------
	 * DECODING FUSE VALUES
	 * ------------------------
	 */
	/*Decode RO_Fused*/
	sRO_fuse = getASICProfilingInfo->sRoFuse;

	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;

	sOutput_FuseValues.sEfuse = sInput_FuseValues;

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&sOutput_FuseValues);

	if (result)
		return result;

	/* Finally, the actual fuse value */
718 719 720
	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);

	sCACm_fuse = getASICProfilingInfo->sCACm;

	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;

	sOutput_FuseValues.sEfuse = sInput_FuseValues;

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&sOutput_FuseValues);

	if (result)
		return result;

738 739 740
	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);

	sCACb_fuse = getASICProfilingInfo->sCACb;

	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
	sOutput_FuseValues.sEfuse = sInput_FuseValues;

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&sOutput_FuseValues);

	if (result)
		return result;

758 759 760
	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);

	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;

	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;

	sOutput_FuseValues.sEfuse = sInput_FuseValues;

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&sOutput_FuseValues);

	if (result)
		return result;

779 780 781
	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);

	sKv_m_fuse = getASICProfilingInfo->sKv_m;

	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;

	sOutput_FuseValues.sEfuse = sInput_FuseValues;

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&sOutput_FuseValues);
	if (result)
		return result;

800 801 802
	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	fRange = fMultiply(fRange, ConvertToFraction(-1));

	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
			fAverage, fRange, sKv_m_fuse.ucEfuseLength);

	sKv_b_fuse = getASICProfilingInfo->sKv_b;

	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
	sOutput_FuseValues.sEfuse = sInput_FuseValues;

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&sOutput_FuseValues);

	if (result)
		return result;

822 823 824
	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
			fAverage, fRange, sKv_b_fuse.ucEfuseLength);

	/* Decoding the Leakage - No special struct container */
	/*
	 * usLkgEuseIndex=56
	 * ucLkgEfuseBitLSB=6
	 * ucLkgEfuseLength=10
	 * ulLkgEncodeLn_MaxDivMin=69077
	 * ulLkgEncodeMax=1000000
	 * ulLkgEncodeMin=1000
	 * ulEfuseLogisticAlpha=13
	 */

	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;

	sOutput_FuseValues.sEfuse = sInput_FuseValues;

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&sOutput_FuseValues);

	if (result)
		return result;

853 854 855
	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
856 857 858 859 860 861 862 863 864

	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
	fLkg_FT = fFT_Lkg_V0NORM;

	/*-------------------------------------------
	 * PART 2 - Grabbing all required values
	 *-------------------------------------------
	 */
865
	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
866
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
867
	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
868
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
869
	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
870
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
871
	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
872
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
873
	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
874
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
875
	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
876
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
877
	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
878
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
879
	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
880 881
			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));

882 883 884
	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
885

886
	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
887 888

	fMargin_FMAX_mean = GetScaledFraction(
889
		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
890
	fMargin_Plat_mean = GetScaledFraction(
891
		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
892
	fMargin_FMAX_sigma = GetScaledFraction(
893
		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
894
	fMargin_Plat_sigma = GetScaledFraction(
895
		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
896 897

	fMargin_DC_sigma = GetScaledFraction(
898
		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
899 900 901 902 903 904 905 906 907 908 909
	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));

	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));

	fSclk = GetScaledFraction(sclk, 100);

	fV_max = fDivide(GetScaledFraction(
910 911 912 913
				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
914
	fV_FT = fDivide(GetScaledFraction(
915
				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
916
	fV_min = fDivide(GetScaledFraction(
917
				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
918 919 920 921 922 923

	/*-----------------------
	 * PART 3
	 *-----------------------
	 */

924
	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
925 926
	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
	fC_Term = fAdd(fMargin_RO_c,
927
			fAdd(fMultiply(fSM_A0, fLkg_FT),
928
			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
929
			fAdd(fMultiply(fSM_A3, fSclk),
930
			fSubtract(fSM_A7, fRO_fused)))));
931 932 933 934

	fVDDC_base = fSubtract(fRO_fused,
			fSubtract(fMargin_RO_c,
					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
935
	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
936 937 938 939 940 941 942 943 944 945 946 947 948

	repeat = fSubtract(fVDDC_base,
			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));

	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
			fGetSquare(repeat)),
			fAdd(fMultiply(fMargin_RO_b, repeat),
			fMargin_RO_c));

	fDC_SCLK = fSubtract(fRO_fused,
			fSubtract(fRO_DC_margin,
			fSubtract(fSM_A3,
			fMultiply(fSM_A2, repeat))));
949
	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

	fSigma_DC = fSubtract(fSclk, fDC_SCLK);

	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);

	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);

	fSclk_margin = fAdd(fMicro_FMAX,
			fAdd(fMicro_CR,
			fAdd(fMargin_fixed,
			fSqrt(fAdd(fSquared_Sigma_FMAX,
			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
	/*
	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
	 */

	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
	fC_Term = fAdd(fRO_DC_margin,
			fAdd(fMultiply(fSM_A0, fLkg_FT),
			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
			fAdd(fSclk, fSclk_margin)),
			fAdd(fMultiply(fSM_A3,
			fAdd(fSclk, fSclk_margin)),
			fSubtract(fSM_A7, fRO_fused)))));

	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);

	if (GreaterThan(fRoots[0], fRoots[1]))
		fEVV_V = fRoots[1];
	else
		fEVV_V = fRoots[0];

	if (GreaterThan(fV_min, fEVV_V))
		fEVV_V = fV_min;
	else if (GreaterThan(fEVV_V, fV_max))
		fEVV_V = fSubtract(fV_max, fStepSize);

	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);

	/*-----------------
	 * PART 4
	 *-----------------
	 */

	fV_x = fV_min;

	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
				fGetSquare(fV_x)), fDerateTDP);

		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
				fT_prod), fKv_b_fused), fV_x)), fV_x)));
		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
				fKt_Beta_fused, fT_prod)));
		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
				fKt_Beta_fused, fT_FT)));

		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);

		fTDP_Current = fDivide(fTDP_Power, fV_x);

		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
				ConvertToFraction(10)));

		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);

		if (GreaterThan(fV_max, fV_NL) &&
1029
			(GreaterThan(fV_NL, fEVV_V) ||
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
			Equal(fV_NL, fEVV_V))) {
			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));

			*voltage = (uint16_t)fV_NL.partial.real;
			break;
		} else
			fV_x = fAdd(fV_x, fStepSize);
	}

	return result;
}

1042
/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1043
 * @param hwmgr	input: pointer to hwManager
1044 1045
 * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
 * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1046
 *		which is define in PPTable SCLK/VDDC dependence
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
 *				table associated with this virtual_voltage_Id
 * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
 * @param voltage		       output: real voltage level in unit of mv
 */
int atomctrl_get_voltage_evv_on_sclk(
		struct pp_hwmgr *hwmgr,
		uint8_t voltage_type,
		uint32_t sclk, uint16_t virtual_voltage_Id,
		uint16_t *voltage)
{
	int result;
	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;

	get_voltage_info_param_space.ucVoltageType   =
		voltage_type;
	get_voltage_info_param_space.ucVoltageMode   =
		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
	get_voltage_info_param_space.usVoltageLevel  =
1065
		cpu_to_le16(virtual_voltage_Id);
1066
	get_voltage_info_param_space.ulSCLKFreq      =
1067
		cpu_to_le32(sclk);
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
			&get_voltage_info_param_space);

	if (0 != result)
		return result;

	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
				(&get_voltage_info_param_space))->usVoltageLevel);

	return result;
}

/**
 * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
 * @param hwmgr	input: pointer to hwManager
 * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
 * @param voltage		       output: real voltage level in unit of mv
 */
int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
			     uint16_t virtual_voltage_id,
			     uint16_t *voltage)
{
	int result;
	int entry_id;
	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
			/* found */
			break;
		}
	}

	PP_ASSERT_WITH_CODE(entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count,
	        "Can't find requested voltage id in vddc_dependency_on_sclk table!",
	        return -EINVAL;
	);

	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
	get_voltage_info_param_space.ulSCLKFreq =
		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1114 1115 1116 1117 1118 1119 1120 1121

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
			&get_voltage_info_param_space);

	if (0 != result)
		return result;

1122 1123
	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
				(&get_voltage_info_param_space))->usVoltageLevel);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	return result;
}

/**
 * Get the mpll reference clock in 10KHz
 */
uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
{
	ATOM_COMMON_TABLE_HEADER *fw_info;
	uint32_t clock;
	u8 frev, crev;
	u16 size;

	fw_info = (ATOM_COMMON_TABLE_HEADER *)
		cgs_atom_get_data_table(hwmgr->device,
				GetIndexIntoMasterTable(DATA, FirmwareInfo),
				&size, &frev, &crev);

	if (fw_info == NULL)
		clock = 2700;
	else {
		if ((fw_info->ucTableFormatRevision == 2) &&
			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
		} else {
			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
				(ATOM_FIRMWARE_INFO *)fw_info;
			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
		}
	}

	return clock;
}

/**
 * Get the asic internal spread spectrum table
 */
static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
{
	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
	u8 frev, crev;
	u16 size;

	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
		cgs_atom_get_data_table(device,
			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
			&size, &frev, &crev);

	return table;
}

/**
 * Get the asic internal spread spectrum assignment
 */
static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
		const uint8_t clockSource,
		const uint32_t clockSpeed,
		pp_atomctrl_internal_ss_info *ssEntry)
{
	ATOM_ASIC_INTERNAL_SS_INFO *table;
	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
	int entry_found = 0;

	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));

	table = asic_internal_ss_get_ss_table(hwmgr->device);

	if (NULL == table)
		return -1;

	ssInfo = &table->asSpreadSpectrum[0];

	while (((uint8_t *)ssInfo - (uint8_t *)table) <
		le16_to_cpu(table->sHeader.usStructureSize)) {
		if ((clockSource == ssInfo->ucClockIndication) &&
			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
			entry_found = 1;
			break;
		}

		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
	}

	if (entry_found) {
		ssEntry->speed_spectrum_percentage =
1213 1214
			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
			ssEntry->speed_spectrum_rate /= 100;
		}

		switch (ssInfo->ucSpreadSpectrumMode) {
		case 0:
			ssEntry->speed_spectrum_mode =
				pp_atomctrl_spread_spectrum_mode_down;
			break;
		case 1:
			ssEntry->speed_spectrum_mode =
				pp_atomctrl_spread_spectrum_mode_center;
			break;
		default:
			ssEntry->speed_spectrum_mode =
				pp_atomctrl_spread_spectrum_mode_down;
			break;
		}
	}

	return entry_found ? 0 : 1;
}

/**
 * Get the memory clock spread spectrum info
 */
int atomctrl_get_memory_clock_spread_spectrum(
		struct pp_hwmgr *hwmgr,
		const uint32_t memory_clock,
		pp_atomctrl_internal_ss_info *ssInfo)
{
	return asic_internal_ss_get_ss_asignment(hwmgr,
			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
}
/**
 * Get the engine clock spread spectrum info
 */
int atomctrl_get_engine_clock_spread_spectrum(
		struct pp_hwmgr *hwmgr,
		const uint32_t engine_clock,
		pp_atomctrl_internal_ss_info *ssInfo)
{
	return asic_internal_ss_get_ss_asignment(hwmgr,
			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
}

1264 1265 1266 1267 1268 1269
int atomctrl_read_efuse(void *device, uint16_t start_index,
		uint16_t end_index, uint32_t mask, uint32_t *efuse)
{
	int result;
	READ_EFUSE_VALUE_PARAMETER efuse_param;

1270
	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1271 1272 1273 1274
	efuse_param.sEfuse.ucBitShift = (uint8_t)
			(start_index - ((start_index / 32) * 32));
	efuse_param.sEfuse.ucBitLength  = (uint8_t)
			((end_index - start_index) + 1);
1275

1276 1277 1278 1279
	result = cgs_atom_exec_cmd_table(device,
			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
			&efuse_param);
	if (!result)
1280
		*efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1281 1282 1283

	return result;
}
1284 1285

int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1286
			      uint8_t level)
1287 1288 1289 1290
{
	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
	int result;

1291
	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1292
		memory_clock & SET_CLOCK_FREQ_MASK;
1293
	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1294
		ADJUST_MC_SETTING_PARAM;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;

	result = cgs_atom_exec_cmd_table
		(hwmgr->device,
		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
		 &memory_clock_parameters);

	return result;
}

int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1306
				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1307 1308 1309 1310 1311 1312 1313
{

	int result;
	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;

	get_voltage_info_param_space.ucVoltageType = voltage_type;
	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1314 1315
	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1316 1317 1318 1319 1320 1321 1322 1323

	result = cgs_atom_exec_cmd_table(hwmgr->device,
			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
			&get_voltage_info_param_space);

	if (0 != result)
		return result;

1324
	*voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	return result;
}

int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
{

	int i;
	u8 frev, crev;
	u16 size;

	ATOM_SMU_INFO_V2_1 *psmu_info =
		(ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
			GetIndexIntoMasterTable(DATA, SMU_Info),
			&size, &frev, &crev);


	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1345 1346 1347 1348 1349 1350
		table->entry[i].usFcw_pcc =
			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
		table->entry[i].usFcw_trans_upper =
			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
		table->entry[i].usRcw_trans_lower =
			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1351 1352 1353 1354
	}

	return 0;
}
1355

1356 1357
int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
				  struct pp_atom_ctrl__avfs_parameters *param)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;

	if (param == NULL)
		return -EINVAL;

	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
			cgs_atom_get_data_table(hwmgr->device,
					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
					NULL, NULL, NULL);
	if (!profile)
		return -1;

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1390 1391 1392 1393
	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1394
	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1395 1396 1397 1398
	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;

	return 0;
}