tree.c 106.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61 62 63
#include <trace/events/rcu.h>

#include "rcu.h"
64

65 66 67 68 69 70
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

71 72
/* Data structures. */

73
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
74
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
75

76 77 78 79 80 81 82 83
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
84
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85 86
static char sname##_varname[] = #sname; \
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87
struct rcu_state sname##_state = { \
88
	.level = { &sname##_state.node[0] }, \
89
	.call = cr, \
90
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
91 92
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
93
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 95
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
96
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98
	.name = sname##_varname, \
99
	.abbr = sabbr, \
100 101
}; \
DEFINE_PER_CPU(struct rcu_data, sname##_data)
102

103 104
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
105

106
static struct rcu_state *rcu_state;
107
LIST_HEAD(rcu_struct_flavors);
108

109 110
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
111
module_param(rcu_fanout_leaf, int, 0444);
112 113 114 115 116 117 118 119 120 121
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

122 123 124 125
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
126
 * optimize synchronize_sched() to a simple barrier().  When this variable
127 128 129 130
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
131 132 133
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

148 149
#ifdef CONFIG_RCU_BOOST

150 151 152 153 154
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
155
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
156
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
157
DEFINE_PER_CPU(char, rcu_cpu_has_work);
158

159 160
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
161
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 163
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164

165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

177 178 179 180 181 182 183 184 185 186
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

187
/*
188
 * Note a quiescent state.  Because we do not need to know
189
 * how many quiescent states passed, just if there was at least
190
 * one since the start of the grace period, this just sets a flag.
191
 * The caller must have disabled preemption.
192
 */
193
void rcu_sched_qs(int cpu)
194
{
195
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
196

197
	if (rdp->passed_quiesce == 0)
198
		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
199
	rdp->passed_quiesce = 1;
200 201
}

202
void rcu_bh_qs(int cpu)
203
{
204
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
205

206
	if (rdp->passed_quiesce == 0)
207
		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
208
	rdp->passed_quiesce = 1;
209
}
210

211 212 213
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
214
 * The caller must have disabled preemption.
215 216 217
 */
void rcu_note_context_switch(int cpu)
{
218
	trace_rcu_utilization(TPS("Start context switch"));
219
	rcu_sched_qs(cpu);
220
	rcu_preempt_note_context_switch(cpu);
221
	trace_rcu_utilization(TPS("End context switch"));
222
}
223
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
224

225
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
226
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
227
	.dynticks = ATOMIC_INIT(1),
228 229 230 231
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
232
};
233

E
Eric Dumazet 已提交
234 235 236
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
237

E
Eric Dumazet 已提交
238 239 240
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
241

242 243
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
244 245 246 247

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

248 249
static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
				  struct rcu_data *rdp);
250 251 252 253
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
254
static void force_quiescent_state(struct rcu_state *rsp);
255
static int rcu_pending(int cpu);
256 257

/*
258
 * Return the number of RCU-sched batches processed thus far for debug & stats.
259
 */
260
long rcu_batches_completed_sched(void)
261
{
262
	return rcu_sched_state.completed;
263
}
264
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
265 266 267 268 269 270 271 272 273 274

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

275 276 277 278 279
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
280
	force_quiescent_state(&rcu_bh_state);
281 282 283
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

309 310 311 312 313
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
314
	force_quiescent_state(&rcu_sched_state);
315 316 317
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

318 319 320 321 322 323
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
324 325
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
326 327 328
}

/*
329 330 331
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
332 333 334 335
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
336
	int i;
P
Paul E. McKenney 已提交
337

338 339
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
340
	if (rcu_nocb_needs_gp(rsp))
341
		return 1;  /* Yes, a no-CBs CPU needs one. */
342 343 344 345 346 347 348 349 350 351
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
352 353 354 355 356 357 358 359 360 361
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

362
/*
363
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
364 365 366 367 368
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
369 370
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
371
{
372
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
373
	if (!user && !is_idle_task(current)) {
374 375
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
376

377
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
378
		ftrace_dump(DUMP_ORIG);
379 380 381
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
382
	}
383
	rcu_prepare_for_idle(smp_processor_id());
384 385 386 387 388
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
389 390

	/*
391
	 * It is illegal to enter an extended quiescent state while
392 393 394 395 396 397 398 399
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
400
}
401

402 403 404
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
405
 */
406
static void rcu_eqs_enter(bool user)
407
{
408
	long long oldval;
409 410
	struct rcu_dynticks *rdtp;

411
	rdtp = this_cpu_ptr(&rcu_dynticks);
412
	oldval = rdtp->dynticks_nesting;
413 414 415 416 417
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
418
	rcu_eqs_enter_common(rdtp, oldval, user);
419
}
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
435 436 437
	unsigned long flags;

	local_irq_save(flags);
438
	rcu_eqs_enter(false);
439
	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
440
	local_irq_restore(flags);
441
}
442
EXPORT_SYMBOL_GPL(rcu_idle_enter);
443

444
#ifdef CONFIG_RCU_USER_QS
445 446 447 448 449 450 451 452 453 454
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
455
	rcu_eqs_enter(1);
456
}
457
#endif /* CONFIG_RCU_USER_QS */
458

459 460 461 462 463 464
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
465
 *
466 467 468 469 470 471 472 473
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
474
 */
475
void rcu_irq_exit(void)
476 477
{
	unsigned long flags;
478
	long long oldval;
479 480 481
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
482
	rdtp = this_cpu_ptr(&rcu_dynticks);
483
	oldval = rdtp->dynticks_nesting;
484 485
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
486
	if (rdtp->dynticks_nesting)
487
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
488
	else
489
		rcu_eqs_enter_common(rdtp, oldval, true);
490
	rcu_sysidle_enter(rdtp, 1);
491 492 493 494
	local_irq_restore(flags);
}

/*
495
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
496 497 498 499 500
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
501 502
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
503
{
504 505 506 507 508
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
509
	rcu_cleanup_after_idle(smp_processor_id());
510
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
511
	if (!user && !is_idle_task(current)) {
512 513
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
514

515
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
516
				  oldval, rdtp->dynticks_nesting);
517
		ftrace_dump(DUMP_ORIG);
518 519 520
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
521 522 523
	}
}

524 525 526
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
527
 */
528
static void rcu_eqs_exit(bool user)
529 530 531 532
{
	struct rcu_dynticks *rdtp;
	long long oldval;

533
	rdtp = this_cpu_ptr(&rcu_dynticks);
534
	oldval = rdtp->dynticks_nesting;
535 536 537 538 539
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
540
	rcu_eqs_exit_common(rdtp, oldval, user);
541
}
542 543 544 545 546 547 548 549 550 551 552 553 554 555

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
556 557 558
	unsigned long flags;

	local_irq_save(flags);
559
	rcu_eqs_exit(false);
560
	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
561
	local_irq_restore(flags);
562
}
563
EXPORT_SYMBOL_GPL(rcu_idle_exit);
564

565
#ifdef CONFIG_RCU_USER_QS
566 567 568 569 570 571 572 573
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
574
	rcu_eqs_exit(1);
575
}
576
#endif /* CONFIG_RCU_USER_QS */
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
604
	rdtp = this_cpu_ptr(&rcu_dynticks);
605 606 607
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
608
	if (oldval)
609
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
610
	else
611
		rcu_eqs_exit_common(rdtp, oldval, true);
612
	rcu_sysidle_exit(rdtp, 1);
613 614 615 616 617 618 619 620 621 622 623 624
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
625
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
626

627 628
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
629
		return;
630 631 632 633 634 635
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
636 637 638 639 640 641 642 643 644 645 646
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
647
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
648

649 650
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
651
		return;
652 653 654 655 656
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
657 658 659
}

/**
660 661 662 663 664 665 666
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
667
bool notrace __rcu_is_watching(void)
668 669 670 671 672 673
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
674
 *
675
 * If the current CPU is in its idle loop and is neither in an interrupt
676
 * or NMI handler, return true.
677
 */
678
bool notrace rcu_is_watching(void)
679
{
680 681 682
	int ret;

	preempt_disable();
683
	ret = __rcu_is_watching();
684 685
	preempt_enable();
	return ret;
686
}
687
EXPORT_SYMBOL_GPL(rcu_is_watching);
688

689
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690 691 692 693 694 695 696

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
697 698 699 700 701 702 703 704 705 706 707
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708 709 710 711 712 713
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
714 715
	struct rcu_data *rdp;
	struct rcu_node *rnp;
716 717 718 719 720
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
721
	rdp = this_cpu_ptr(&rcu_sched_data);
722 723
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 725 726 727 728 729
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

730
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731

732
/**
733
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734
 *
735 736 737
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
738
 */
739
static int rcu_is_cpu_rrupt_from_idle(void)
740
{
741
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
742 743 744 745 746
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
747
 * is in dynticks idle mode, which is an extended quiescent state.
748
 */
749 750
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
751
{
752
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
753
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
754
	return (rdp->dynticks_snap & 0x1) == 0;
755 756 757 758 759 760
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
761
 * for this same CPU, or by virtue of having been offline.
762
 */
763 764
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
765
{
766 767
	unsigned int curr;
	unsigned int snap;
768

769 770
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
771 772 773 774 775 776 777 778 779

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
780
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
781
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
782 783 784 785
		rdp->dynticks_fqs++;
		return 1;
	}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
801
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
802 803 804
		rdp->offline_fqs++;
		return 1;
	}
805 806 807 808 809 810 811 812 813 814

	/*
	 * There is a possibility that a CPU in adaptive-ticks state
	 * might run in the kernel with the scheduling-clock tick disabled
	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
	 * force the CPU to restart the scheduling-clock tick in this
	 * CPU is in this state.
	 */
	rcu_kick_nohz_cpu(rdp->cpu);

815
	return 0;
816 817 818 819
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
820 821 822 823 824
	unsigned long j = ACCESS_ONCE(jiffies);

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
	rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
825 826
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

850 851 852 853 854
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
855
	int ndetected = 0;
856
	struct rcu_node *rnp = rcu_get_root(rsp);
857
	long totqlen = 0;
858 859 860

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
861
	raw_spin_lock_irqsave(&rnp->lock, flags);
862
	delta = jiffies - rsp->jiffies_stall;
863
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
864
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
865 866
		return;
	}
867
	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
868
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
869

870 871 872 873 874
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
875
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
876
	       rsp->name);
877
	print_cpu_stall_info_begin();
878
	rcu_for_each_leaf_node(rsp, rnp) {
879
		raw_spin_lock_irqsave(&rnp->lock, flags);
880
		ndetected += rcu_print_task_stall(rnp);
881 882 883 884 885 886 887 888
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
889
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
890
	}
891 892 893 894 895 896 897

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
898
	ndetected += rcu_print_task_stall(rnp);
899 900 901
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
902 903 904
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
905
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
906
	       rsp->gpnum, rsp->completed, totqlen);
907
	if (ndetected == 0)
908
		pr_err("INFO: Stall ended before state dump start\n");
909
	else if (!trigger_all_cpu_backtrace())
910
		rcu_dump_cpu_stacks(rsp);
911

912
	/* Complain about tasks blocking the grace period. */
913 914 915

	rcu_print_detail_task_stall(rsp);

916
	force_quiescent_state(rsp);  /* Kick them all. */
917 918
}

919 920 921 922 923 924
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

925 926
static void print_cpu_stall(struct rcu_state *rsp)
{
927
	int cpu;
928 929
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
930
	long totqlen = 0;
931

932 933 934 935 936
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
937
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
938 939 940
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
941 942 943 944
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
945 946
	if (!trigger_all_cpu_backtrace())
		dump_stack();
947

P
Paul E. McKenney 已提交
948
	raw_spin_lock_irqsave(&rnp->lock, flags);
949
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
950
		rsp->jiffies_stall = jiffies +
951
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
952
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
953

954 955 956 957 958 959 960 961
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
962 963 964 965
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
966 967 968
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
969 970
	unsigned long j;
	unsigned long js;
971 972
	struct rcu_node *rnp;

973
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
974
		return;
975
	j = ACCESS_ONCE(jiffies);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
996
	js = ACCESS_ONCE(rsp->jiffies_stall);
997 998 999 1000 1001 1002 1003 1004
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1005
	rnp = rdp->mynode;
1006
	if (rcu_gp_in_progress(rsp) &&
1007
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1008 1009 1010 1011

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1012 1013
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1014

1015
		/* They had a few time units to dump stack, so complain. */
1016 1017 1018 1019
		print_other_cpu_stall(rsp);
	}
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1031 1032 1033 1034
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1035 1036
}

1037 1038 1039 1040 1041 1042 1043
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1044 1045
	if (init_nocb_callback_list(rdp))
		return;
1046 1047 1048 1049 1050
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1080 1081 1082 1083 1084
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1085
				unsigned long c, const char *s)
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
 * rcu_node structure's ->need_future_gp field.
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
static unsigned long __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
{
	unsigned long c;
	int i;
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1111
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1112
	if (rnp->need_future_gp[c & 0x1]) {
1113
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		return c;
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
	 * need to explicitly start one.
	 */
	if (rnp->gpnum != rnp->completed ||
	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
		rnp->need_future_gp[c & 0x1]++;
1127
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1128 1129 1130 1131 1132 1133 1134 1135
		return c;
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1136
	if (rnp != rnp_root) {
1137
		raw_spin_lock(&rnp_root->lock);
1138 1139
		smp_mb__after_unlock_lock();
	}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1157
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1158 1159 1160 1161 1162 1163 1164 1165
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1166
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1167
	} else {
1168
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1169
		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
	return c;
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1192 1193
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1194 1195 1196
	return needmore;
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
 * not hurt to call it repeatedly.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
		return;

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1256 1257
	/* Record any needed additional grace periods. */
	rcu_start_future_gp(rnp, rdp);
1258 1259 1260

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1261
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1262
	else
1263
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
	rcu_accelerate_cbs(rsp, rnp, rdp);
}

1309
/*
1310 1311 1312
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1313
 */
1314
static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1315
{
1316
	/* Handle the ends of any preceding grace periods first. */
1317
	if (rdp->completed == rnp->completed) {
1318

1319
		/* No grace period end, so just accelerate recent callbacks. */
1320
		rcu_accelerate_cbs(rsp, rnp, rdp);
1321

1322 1323 1324 1325
	} else {

		/* Advance callbacks. */
		rcu_advance_cbs(rsp, rnp, rdp);
1326 1327 1328

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1329
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1330
	}
1331

1332 1333 1334 1335 1336 1337 1338
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1339
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1340 1341 1342 1343 1344 1345
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
}

1346
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1347 1348 1349 1350 1351 1352
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1353 1354
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1355 1356 1357 1358
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1359
	smp_mb__after_unlock_lock();
1360
	__note_gp_changes(rsp, rnp, rdp);
1361 1362 1363
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

1364
/*
1365
 * Initialize a new grace period.  Return 0 if no grace period required.
1366
 */
1367
static int rcu_gp_init(struct rcu_state *rsp)
1368 1369
{
	struct rcu_data *rdp;
1370
	struct rcu_node *rnp = rcu_get_root(rsp);
1371

1372
	rcu_bind_gp_kthread();
1373
	raw_spin_lock_irq(&rnp->lock);
1374
	smp_mb__after_unlock_lock();
1375 1376 1377 1378 1379
	if (rsp->gp_flags == 0) {
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1380
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1381

1382 1383 1384 1385 1386
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1387 1388 1389 1390 1391
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1392 1393
	record_gp_stall_check_time(rsp);
	smp_wmb(); /* Record GP times before starting GP. */
1394
	rsp->gpnum++;
1395
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1396 1397 1398
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1399
	mutex_lock(&rsp->onoff_mutex);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1415
		raw_spin_lock_irq(&rnp->lock);
1416
		smp_mb__after_unlock_lock();
1417
		rdp = this_cpu_ptr(rsp->rda);
1418 1419
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1420
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1421
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1422
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1423
		if (rnp == rdp->mynode)
1424
			__note_gp_changes(rsp, rnp, rdp);
1425 1426 1427 1428 1429
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1430
#ifdef CONFIG_PROVE_RCU_DELAY
1431
		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1432
		    system_state == SYSTEM_RUNNING)
1433
			udelay(200);
1434
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1435 1436
		cond_resched();
	}
1437

1438
	mutex_unlock(&rsp->onoff_mutex);
1439 1440
	return 1;
}
1441

1442 1443 1444
/*
 * Do one round of quiescent-state forcing.
 */
1445
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1446 1447
{
	int fqs_state = fqs_state_in;
1448 1449
	bool isidle = false;
	unsigned long maxj;
1450 1451 1452 1453 1454
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1455 1456 1457 1458
		if (is_sysidle_rcu_state(rsp)) {
			isidle = 1;
			maxj = jiffies - ULONG_MAX / 4;
		}
1459 1460
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1461
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1462 1463 1464
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1465
		isidle = 0;
1466
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1467 1468 1469 1470
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1471
		smp_mb__after_unlock_lock();
1472 1473 1474 1475 1476 1477
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1478 1479 1480
/*
 * Clean up after the old grace period.
 */
1481
static void rcu_gp_cleanup(struct rcu_state *rsp)
1482 1483
{
	unsigned long gp_duration;
1484
	int nocb = 0;
1485 1486
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1487

1488
	raw_spin_lock_irq(&rnp->lock);
1489
	smp_mb__after_unlock_lock();
1490 1491 1492
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1493

1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1502
	raw_spin_unlock_irq(&rnp->lock);
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1514
		raw_spin_lock_irq(&rnp->lock);
1515
		smp_mb__after_unlock_lock();
1516
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1517 1518
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1519
			__note_gp_changes(rsp, rnp, rdp);
1520
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1521 1522
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1523
	}
1524 1525
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1526
	smp_mb__after_unlock_lock();
1527
	rcu_nocb_gp_set(rnp, nocb);
1528 1529

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
1530
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1531
	rsp->fqs_state = RCU_GP_IDLE;
1532
	rdp = this_cpu_ptr(rsp->rda);
1533
	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1534
	if (cpu_needs_another_gp(rsp, rdp)) {
1535
		rsp->gp_flags = RCU_GP_FLAG_INIT;
1536 1537 1538 1539
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1540 1541 1542 1543 1544 1545 1546 1547
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1548
	int fqs_state;
1549
	int gf;
1550
	unsigned long j;
1551
	int ret;
1552 1553 1554 1555 1556 1557 1558
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1559 1560 1561
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1562
			wait_event_interruptible(rsp->gp_wq,
1563
						 ACCESS_ONCE(rsp->gp_flags) &
1564
						 RCU_GP_FLAG_INIT);
1565
			if (rcu_gp_init(rsp))
1566 1567 1568
				break;
			cond_resched();
			flush_signals(current);
1569 1570 1571
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1572
		}
1573

1574 1575
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1576 1577 1578 1579 1580
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1581
		ret = 0;
1582
		for (;;) {
1583 1584
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1585 1586 1587
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1588
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1589 1590
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1591 1592
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1593
					j);
1594
			/* If grace period done, leave loop. */
1595
			if (!ACCESS_ONCE(rnp->qsmask) &&
1596
			    !rcu_preempt_blocked_readers_cgp(rnp))
1597
				break;
1598
			/* If time for quiescent-state forcing, do it. */
1599 1600
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1601 1602 1603
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1604
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1605 1606 1607
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1608 1609 1610 1611 1612
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
1613 1614 1615
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1616
			}
1617 1618 1619 1620 1621 1622 1623 1624
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1625
		}
1626 1627 1628

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1629 1630 1631
	}
}

1632 1633 1634 1635 1636 1637 1638 1639
static void rsp_wakeup(struct irq_work *work)
{
	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);

	/* Wake up rcu_gp_kthread() to start the grace period. */
	wake_up(&rsp->gp_wq);
}

1640 1641 1642
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1643
 * the root node's ->lock and hard irqs must be disabled.
1644 1645 1646 1647
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1648 1649
 */
static void
1650 1651
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1652
{
1653
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1654
		/*
1655
		 * Either we have not yet spawned the grace-period
1656 1657
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1658
		 * Either way, don't start a new grace period.
1659 1660 1661
		 */
		return;
	}
1662
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1663 1664
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1665

1666 1667
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1668 1669 1670
	 * could cause possible deadlocks with the rq->lock. Defer
	 * the wakeup to interrupt context.  And don't bother waking
	 * up the running kthread.
1671
	 */
1672 1673
	if (current != rsp->gp_kthread)
		irq_work_queue(&rsp->wakeup_work);
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
 */
static void
rcu_start_gp(struct rcu_state *rsp)
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
	rcu_advance_cbs(rsp, rnp, rdp);
	rcu_start_gp_advanced(rsp, rnp, rdp);
}

1701
/*
P
Paul E. McKenney 已提交
1702 1703 1704
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1705 1706
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1707
 */
P
Paul E. McKenney 已提交
1708
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1709
	__releases(rcu_get_root(rsp)->lock)
1710
{
1711
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1712 1713
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1714 1715
}

1716
/*
P
Paul E. McKenney 已提交
1717 1718 1719 1720 1721 1722
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1723 1724
 */
static void
P
Paul E. McKenney 已提交
1725 1726
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1727 1728
	__releases(rnp->lock)
{
1729 1730
	struct rcu_node *rnp_c;

1731 1732 1733 1734 1735
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1736
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1737 1738 1739
			return;
		}
		rnp->qsmask &= ~mask;
1740 1741 1742 1743
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1744
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1745 1746

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1747
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1748 1749 1750 1751 1752 1753 1754 1755 1756
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1757
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1758
		rnp_c = rnp;
1759
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1760
		raw_spin_lock_irqsave(&rnp->lock, flags);
1761
		smp_mb__after_unlock_lock();
1762
		WARN_ON_ONCE(rnp_c->qsmask);
1763 1764 1765 1766
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1767
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1768
	 * to clean up and start the next grace period if one is needed.
1769
	 */
P
Paul E. McKenney 已提交
1770
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1771 1772 1773
}

/*
P
Paul E. McKenney 已提交
1774 1775 1776 1777 1778 1779 1780
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1781 1782
 */
static void
1783
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1784 1785 1786 1787 1788 1789
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1790
	raw_spin_lock_irqsave(&rnp->lock, flags);
1791
	smp_mb__after_unlock_lock();
1792 1793
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1794 1795

		/*
1796 1797 1798 1799
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1800
		 */
1801
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1802
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1803 1804 1805 1806
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1807
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1808 1809 1810 1811 1812 1813 1814
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
1815
		rcu_accelerate_cbs(rsp, rnp, rdp);
1816

P
Paul E. McKenney 已提交
1817
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
1830 1831
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1844
	if (!rdp->passed_quiesce)
1845 1846
		return;

P
Paul E. McKenney 已提交
1847 1848 1849 1850
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1851
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1852 1853 1854 1855
}

#ifdef CONFIG_HOTPLUG_CPU

1856
/*
1857 1858
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1859
 * ->orphan_lock.
1860
 */
1861 1862 1863
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1864
{
P
Paul E. McKenney 已提交
1865
	/* No-CBs CPUs do not have orphanable callbacks. */
1866
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
1867 1868
		return;

1869 1870
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1871 1872
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1873
	 */
1874
	if (rdp->nxtlist != NULL) {
1875 1876 1877
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1878
		rdp->qlen_lazy = 0;
1879
		ACCESS_ONCE(rdp->qlen) = 0;
1880 1881 1882
	}

	/*
1883 1884 1885 1886 1887 1888 1889
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1890
	 */
1891 1892 1893 1894
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1895 1896 1897
	}

	/*
1898 1899 1900
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1901
	 */
1902
	if (rdp->nxtlist != NULL) {
1903 1904
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1905
	}
1906

1907
	/* Finally, initialize the rcu_data structure's list to empty.  */
1908
	init_callback_list(rdp);
1909 1910 1911 1912
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
1913
 * orphanage.  The caller must hold the ->orphan_lock.
1914 1915 1916 1917 1918 1919
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
1920 1921 1922 1923
	/* No-CBs CPUs are handled specially. */
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
		return;

1924 1925 1926 1927
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1928 1929
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1969 1970
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1971
			       TPS("cpuofl"));
1972 1973 1974
}

/*
1975
 * The CPU has been completely removed, and some other CPU is reporting
1976 1977
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
1978 1979
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1980
 */
1981
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1982
{
1983 1984 1985
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1986
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1987
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1988

1989
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
1990
	rcu_boost_kthread_setaffinity(rnp, -1);
1991

1992
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1993 1994

	/* Exclude any attempts to start a new grace period. */
1995
	mutex_lock(&rsp->onoff_mutex);
1996
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1997

1998 1999 2000 2001
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

2002 2003 2004 2005
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2006
		smp_mb__after_unlock_lock();
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2024
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2025 2026
	 * held leads to deadlock.
	 */
2027
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2028 2029 2030 2031 2032 2033 2034
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2035 2036 2037
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2038 2039 2040
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2041
	mutex_unlock(&rsp->onoff_mutex);
2042 2043 2044 2045
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2046
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2047 2048 2049
{
}

2050
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2051 2052 2053 2054 2055 2056 2057 2058 2059
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2060
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2061 2062 2063
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2064 2065
	long bl, count, count_lazy;
	int i;
2066

2067
	/* If no callbacks are ready, just return. */
2068
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2069
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2070 2071 2072
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2073
		return;
2074
	}
2075 2076 2077 2078 2079 2080

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2081
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2082
	bl = rdp->blimit;
2083
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2084 2085 2086 2087
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2088 2089 2090
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2091 2092 2093
	local_irq_restore(flags);

	/* Invoke callbacks. */
2094
	count = count_lazy = 0;
2095 2096 2097
	while (list) {
		next = list->next;
		prefetch(next);
2098
		debug_rcu_head_unqueue(list);
2099 2100
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2101
		list = next;
2102 2103 2104 2105
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2106 2107 2108 2109
			break;
	}

	local_irq_save(flags);
2110 2111 2112
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2113 2114 2115 2116 2117

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2118 2119 2120
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2121 2122 2123
			else
				break;
	}
2124 2125
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2126
	ACCESS_ONCE(rdp->qlen) -= count;
2127
	rdp->n_cbs_invoked += count;
2128 2129 2130 2131 2132

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2133 2134 2135 2136 2137 2138
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2139
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2140

2141 2142
	local_irq_restore(flags);

2143
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2144
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2145
		invoke_rcu_core();
2146 2147 2148 2149 2150
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2151
 * Also schedule RCU core processing.
2152
 *
2153
 * This function must be called from hardirq context.  It is normally
2154 2155 2156 2157 2158
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
2159
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2160
	increment_cpu_stall_ticks();
2161
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2162 2163 2164 2165 2166

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2167
		 * a quiescent state, so note it.
2168 2169
		 *
		 * No memory barrier is required here because both
2170 2171 2172
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2173 2174
		 */

2175 2176
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
2177 2178 2179 2180 2181 2182 2183

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2184
		 * critical section, so note it.
2185 2186
		 */

2187
		rcu_bh_qs(cpu);
2188
	}
2189
	rcu_preempt_check_callbacks(cpu);
2190
	if (rcu_pending(cpu))
2191
		invoke_rcu_core();
2192
	trace_rcu_utilization(TPS("End scheduler-tick"));
2193 2194 2195 2196 2197
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2198 2199
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2200
 * The caller must have suppressed start of new grace periods.
2201
 */
2202 2203 2204 2205
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2206 2207 2208 2209 2210
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2211
	struct rcu_node *rnp;
2212

2213
	rcu_for_each_leaf_node(rsp, rnp) {
2214
		cond_resched();
2215
		mask = 0;
P
Paul E. McKenney 已提交
2216
		raw_spin_lock_irqsave(&rnp->lock, flags);
2217
		smp_mb__after_unlock_lock();
2218
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2219
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2220
			return;
2221
		}
2222
		if (rnp->qsmask == 0) {
2223
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2224 2225
			continue;
		}
2226
		cpu = rnp->grplo;
2227
		bit = 1;
2228
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2229 2230 2231 2232 2233 2234
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
					*isidle = 0;
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2235
		}
2236
		if (mask != 0) {
2237

P
Paul E. McKenney 已提交
2238 2239
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2240 2241
			continue;
		}
P
Paul E. McKenney 已提交
2242
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2243
	}
2244
	rnp = rcu_get_root(rsp);
2245 2246
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2247
		smp_mb__after_unlock_lock();
2248 2249
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2250 2251 2252 2253 2254 2255
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2256
static void force_quiescent_state(struct rcu_state *rsp)
2257 2258
{
	unsigned long flags;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2277

2278 2279
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2280
	smp_mb__after_unlock_lock();
2281 2282 2283 2284
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2285
		return;  /* Someone beat us to it. */
2286
	}
2287
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2288
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2289
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2290 2291 2292
}

/*
2293 2294 2295
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2296 2297
 */
static void
2298
__rcu_process_callbacks(struct rcu_state *rsp)
2299 2300
{
	unsigned long flags;
2301
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2302

2303 2304
	WARN_ON_ONCE(rdp->beenonline == 0);

2305 2306 2307 2308
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2309
	local_irq_save(flags);
2310
	if (cpu_needs_another_gp(rsp, rdp)) {
2311
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2312 2313
		rcu_start_gp(rsp);
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2314 2315
	} else {
		local_irq_restore(flags);
2316 2317 2318
	}

	/* If there are callbacks ready, invoke them. */
2319
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2320
		invoke_rcu_callbacks(rsp, rdp);
2321 2322
}

2323
/*
2324
 * Do RCU core processing for the current CPU.
2325
 */
2326
static void rcu_process_callbacks(struct softirq_action *unused)
2327
{
2328 2329
	struct rcu_state *rsp;

2330 2331
	if (cpu_is_offline(smp_processor_id()))
		return;
2332
	trace_rcu_utilization(TPS("Start RCU core"));
2333 2334
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2335
	trace_rcu_utilization(TPS("End RCU core"));
2336 2337
}

2338
/*
2339 2340 2341 2342 2343
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2344
 */
2345
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2346
{
2347 2348
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2349 2350
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2351 2352
		return;
	}
2353
	invoke_rcu_callbacks_kthread();
2354 2355
}

2356
static void invoke_rcu_core(void)
2357
{
2358 2359
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2360 2361
}

2362 2363 2364 2365 2366
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2367
{
2368 2369 2370 2371
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2372
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2373 2374
		invoke_rcu_core();

2375
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2376
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2377
		return;
2378

2379 2380 2381 2382 2383 2384 2385
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2386
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2387 2388

		/* Are we ignoring a completed grace period? */
2389
		note_gp_changes(rsp, rdp);
2390 2391 2392 2393 2394

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2395
			raw_spin_lock(&rnp_root->lock);
2396
			smp_mb__after_unlock_lock();
2397 2398
			rcu_start_gp(rsp);
			raw_spin_unlock(&rnp_root->lock);
2399 2400 2401 2402 2403
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2404
				force_quiescent_state(rsp);
2405 2406 2407
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2408
	}
2409 2410
}

2411 2412 2413 2414 2415 2416 2417
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2418 2419 2420 2421 2422 2423
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2424 2425
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2426
	   struct rcu_state *rsp, int cpu, bool lazy)
2427 2428 2429 2430
{
	unsigned long flags;
	struct rcu_data *rdp;

2431
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2432 2433 2434 2435 2436 2437
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2448
	rdp = this_cpu_ptr(rsp->rda);
2449 2450

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2451 2452 2453 2454 2455 2456 2457
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
		offline = !__call_rcu_nocb(rdp, head, lazy);
		WARN_ON_ONCE(offline);
2458 2459 2460 2461
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2462
	ACCESS_ONCE(rdp->qlen)++;
2463 2464
	if (lazy)
		rdp->qlen_lazy++;
2465 2466
	else
		rcu_idle_count_callbacks_posted();
2467 2468 2469
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2470

2471 2472
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2473
					 rdp->qlen_lazy, rdp->qlen);
2474
	else
2475
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2476

2477 2478
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2479 2480 2481 2482
	local_irq_restore(flags);
}

/*
2483
 * Queue an RCU-sched callback for invocation after a grace period.
2484
 */
2485
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2486
{
P
Paul E. McKenney 已提交
2487
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2488
}
2489
EXPORT_SYMBOL_GPL(call_rcu_sched);
2490 2491

/*
2492
 * Queue an RCU callback for invocation after a quicker grace period.
2493 2494 2495
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2496
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2497 2498 2499
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2511 2512
	int ret;

2513
	might_sleep();  /* Check for RCU read-side critical section. */
2514 2515 2516 2517
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2554 2555 2556 2557 2558 2559 2560 2561 2562
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2563 2564 2565 2566
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2567 2568
	if (rcu_blocking_is_gp())
		return;
2569 2570 2571 2572
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2584 2585 2586
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2587 2588 2589
 */
void synchronize_rcu_bh(void)
{
2590 2591 2592 2593
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2594 2595
	if (rcu_blocking_is_gp())
		return;
2596 2597 2598 2599
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2600 2601 2602
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2630
 *
2631 2632 2633 2634
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2659 2660
	long firstsnap, s, snap;
	int trycount = 0;
2661
	struct rcu_state *rsp = &rcu_sched_state;
2662

2663 2664 2665 2666 2667 2668 2669 2670
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2671 2672
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2673 2674
			 ULONG_MAX / 8)) {
		synchronize_sched();
2675
		atomic_long_inc(&rsp->expedited_wrap);
2676 2677
		return;
	}
2678

2679 2680 2681 2682
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2683
	snap = atomic_long_inc_return(&rsp->expedited_start);
2684
	firstsnap = snap;
2685
	get_online_cpus();
2686
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2687 2688 2689 2690 2691 2692 2693 2694 2695

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2696
		atomic_long_inc(&rsp->expedited_tryfail);
2697

2698
		/* Check to see if someone else did our work for us. */
2699
		s = atomic_long_read(&rsp->expedited_done);
2700
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2701 2702 2703
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2704 2705
			return;
		}
2706 2707

		/* No joy, try again later.  Or just synchronize_sched(). */
2708
		if (trycount++ < 10) {
2709
			udelay(trycount * num_online_cpus());
2710
		} else {
2711
			wait_rcu_gp(call_rcu_sched);
2712
			atomic_long_inc(&rsp->expedited_normal);
2713 2714 2715
			return;
		}

2716
		/* Recheck to see if someone else did our work for us. */
2717
		s = atomic_long_read(&rsp->expedited_done);
2718
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2719 2720 2721
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2722 2723 2724 2725 2726
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2727 2728 2729 2730
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2731 2732
		 */
		get_online_cpus();
2733
		snap = atomic_long_read(&rsp->expedited_start);
2734 2735
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2736
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2737 2738 2739 2740 2741

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2742
	 * than we did already did their update.
2743 2744
	 */
	do {
2745
		atomic_long_inc(&rsp->expedited_done_tries);
2746
		s = atomic_long_read(&rsp->expedited_done);
2747
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2748 2749 2750
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2751 2752
			break;
		}
2753
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2754
	atomic_long_inc(&rsp->expedited_done_exit);
2755 2756 2757 2758 2759

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2760 2761 2762 2763 2764 2765 2766 2767 2768
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2769 2770
	struct rcu_node *rnp = rdp->mynode;

2771 2772 2773 2774 2775 2776
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2777 2778
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2779
		rdp->n_rp_qs_pending++;
2780
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2781
		rdp->n_rp_report_qs++;
2782
		return 1;
2783
	}
2784 2785

	/* Does this CPU have callbacks ready to invoke? */
2786 2787
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2788
		return 1;
2789
	}
2790 2791

	/* Has RCU gone idle with this CPU needing another grace period? */
2792 2793
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2794
		return 1;
2795
	}
2796 2797

	/* Has another RCU grace period completed?  */
2798
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2799
		rdp->n_rp_gp_completed++;
2800
		return 1;
2801
	}
2802 2803

	/* Has a new RCU grace period started? */
2804
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2805
		rdp->n_rp_gp_started++;
2806
		return 1;
2807
	}
2808 2809

	/* nothing to do */
2810
	rdp->n_rp_need_nothing++;
2811 2812 2813 2814 2815 2816 2817 2818
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2819
static int rcu_pending(int cpu)
2820
{
2821 2822 2823 2824 2825 2826
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2827 2828 2829
}

/*
2830 2831 2832
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
2833
 */
2834
static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2835
{
2836 2837 2838
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
2839 2840
	struct rcu_state *rsp;

2841 2842
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2843 2844 2845 2846
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2847
			al = false;
2848 2849
			break;
		}
2850 2851 2852 2853
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
2854 2855
}

2856 2857 2858 2859
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
2860
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2861 2862 2863 2864 2865 2866
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2867 2868 2869 2870
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2871
static void rcu_barrier_callback(struct rcu_head *rhp)
2872
{
2873 2874 2875
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2876 2877
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2878
		complete(&rsp->barrier_completion);
2879 2880 2881
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2882 2883 2884 2885 2886 2887 2888
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2889
	struct rcu_state *rsp = type;
2890
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2891

2892
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2893
	atomic_inc(&rsp->barrier_cpu_count);
2894
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2895 2896 2897 2898 2899 2900
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2901
static void _rcu_barrier(struct rcu_state *rsp)
2902
{
2903 2904
	int cpu;
	struct rcu_data *rdp;
2905 2906
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2907

2908
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2909

2910
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2911
	mutex_lock(&rsp->barrier_mutex);
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
2925
	snap_done = rsp->n_barrier_done;
2926
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
2939
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2952
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2953
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2954

2955
	/*
2956 2957
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
2958 2959
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
2960
	 */
2961
	init_completion(&rsp->barrier_completion);
2962
	atomic_set(&rsp->barrier_cpu_count, 1);
2963
	get_online_cpus();
2964 2965

	/*
2966 2967 2968
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
2969
	 */
P
Paul E. McKenney 已提交
2970
	for_each_possible_cpu(cpu) {
2971
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
2972
			continue;
2973
		rdp = per_cpu_ptr(rsp->rda, cpu);
2974
		if (rcu_is_nocb_cpu(cpu)) {
P
Paul E. McKenney 已提交
2975 2976 2977 2978 2979 2980
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2981 2982
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2983
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2984
		} else {
2985 2986
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2987 2988
		}
	}
2989
	put_online_cpus();
2990 2991 2992 2993 2994

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2995
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2996
		complete(&rsp->barrier_completion);
2997

2998 2999 3000 3001
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3002
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3003 3004
	smp_mb(); /* Keep increment before caller's subsequent code. */

3005
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3006
	wait_for_completion(&rsp->barrier_completion);
3007 3008

	/* Other rcu_barrier() invocations can now safely proceed. */
3009
	mutex_unlock(&rsp->barrier_mutex);
3010 3011 3012 3013 3014 3015 3016
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3017
	_rcu_barrier(&rcu_bh_state);
3018 3019 3020 3021 3022 3023 3024 3025
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3026
	_rcu_barrier(&rcu_sched_state);
3027 3028 3029
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3030
/*
3031
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3032
 */
3033 3034
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3035 3036
{
	unsigned long flags;
3037
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3038 3039 3040
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3041
	raw_spin_lock_irqsave(&rnp->lock, flags);
3042
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3043
	init_callback_list(rdp);
3044
	rdp->qlen_lazy = 0;
3045
	ACCESS_ONCE(rdp->qlen) = 0;
3046
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3047
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3048
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3049
	rdp->cpu = cpu;
3050
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3051
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3052
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3053 3054 3055 3056 3057 3058 3059
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3060
 */
3061
static void
P
Paul E. McKenney 已提交
3062
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3063 3064 3065
{
	unsigned long flags;
	unsigned long mask;
3066
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3067 3068
	struct rcu_node *rnp = rcu_get_root(rsp);

3069 3070 3071
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3072
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3073
	raw_spin_lock_irqsave(&rnp->lock, flags);
3074
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
3075
	rdp->preemptible = preemptible;
3076 3077
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3078
	rdp->blimit = blimit;
3079
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3080
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3081
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3082 3083
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3084
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3085 3086 3087 3088 3089 3090

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3091
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3092 3093
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3094
		if (rnp == rdp->mynode) {
3095 3096 3097 3098 3099 3100
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3101
			rdp->completed = rnp->completed;
3102 3103
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3104
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3105
		}
P
Paul E. McKenney 已提交
3106
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3107 3108
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3109
	local_irq_restore(flags);
3110

3111
	mutex_unlock(&rsp->onoff_mutex);
3112 3113
}

3114
static void rcu_prepare_cpu(int cpu)
3115
{
3116 3117 3118 3119 3120
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
3121 3122 3123
}

/*
3124
 * Handle CPU online/offline notification events.
3125
 */
3126
static int rcu_cpu_notify(struct notifier_block *self,
3127
				    unsigned long action, void *hcpu)
3128 3129
{
	long cpu = (long)hcpu;
3130
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3131
	struct rcu_node *rnp = rdp->mynode;
3132
	struct rcu_state *rsp;
3133

3134
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3135 3136 3137
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3138 3139
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3140 3141
		break;
	case CPU_ONLINE:
3142
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3143
		rcu_boost_kthread_setaffinity(rnp, -1);
3144 3145
		break;
	case CPU_DOWN_PREPARE:
3146
		rcu_boost_kthread_setaffinity(rnp, cpu);
3147
		break;
3148 3149
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3150 3151
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3152
		break;
3153 3154 3155 3156
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3157 3158
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
3159 3160 3161 3162
		break;
	default:
		break;
	}
3163
	trace_rcu_utilization(TPS("End CPU hotplug"));
3164
	return NOTIFY_OK;
3165 3166
}

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
3197
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3198 3199 3200 3201 3202
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
3203
		rcu_spawn_nocb_kthreads(rsp);
3204 3205 3206 3207 3208
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3224 3225 3226 3227 3228 3229 3230 3231 3232
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3233
	for (i = rcu_num_lvls - 1; i > 0; i--)
3234
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3235
	rsp->levelspread[0] = rcu_fanout_leaf;
3236 3237 3238 3239 3240 3241 3242 3243
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3244
	cprv = nr_cpu_ids;
3245
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3256 3257
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3258
{
3259 3260 3261 3262 3263 3264 3265 3266
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3267 3268 3269 3270 3271
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3272 3273
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3274 3275 3276 3277
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3278 3279
	/* Initialize the level-tracking arrays. */

3280 3281 3282
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3283 3284 3285 3286 3287
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3288
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3289 3290 3291
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3292
			raw_spin_lock_init(&rnp->lock);
3293 3294
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3295 3296 3297
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3298 3299
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3317
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3318
			rcu_init_one_nocb(rnp);
3319 3320
		}
	}
3321

3322
	rsp->rda = rda;
3323
	init_waitqueue_head(&rsp->gp_wq);
3324
	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3325
	rnp = rsp->level[rcu_num_lvls - 1];
3326
	for_each_possible_cpu(i) {
3327
		while (i > rnp->grphi)
3328
			rnp++;
3329
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3330 3331
		rcu_boot_init_percpu_data(i, rsp);
	}
3332
	list_add(&rsp->flavors, &rcu_struct_flavors);
3333 3334
}

3335 3336
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3337
 * replace the definitions in tree.h because those are needed to size
3338 3339 3340 3341
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3342
	ulong d;
3343 3344
	int i;
	int j;
3345
	int n = nr_cpu_ids;
3346 3347
	int rcu_capacity[MAX_RCU_LVLS + 1];

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3361
	/* If the compile-time values are accurate, just leave. */
3362 3363
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3410
void __init rcu_init(void)
3411
{
P
Paul E. McKenney 已提交
3412
	int cpu;
3413

3414
	rcu_bootup_announce();
3415
	rcu_init_geometry();
3416
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3417
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3418
	__rcu_init_preempt();
J
Jiang Fang 已提交
3419
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3420 3421 3422 3423 3424 3425 3426

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3427
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3428 3429
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3430 3431
}

3432
#include "tree_plugin.h"