fc_exch.c 62.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright(c) 2007 Intel Corporation. All rights reserved.
 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
 * Copyright(c) 2008 Mike Christie
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Maintained at www.Open-FCoE.org
 */

/*
 * Fibre Channel exchange and sequence handling.
 */

#include <linux/timer.h>
27
#include <linux/slab.h>
28 29 30 31 32 33 34
#include <linux/err.h>

#include <scsi/fc/fc_fc2.h>

#include <scsi/libfc.h>
#include <scsi/fc_encode.h>

35 36
#include "fc_libfc.h"

37 38 39
u16	fc_cpu_mask;		/* cpu mask for possible cpus */
EXPORT_SYMBOL(fc_cpu_mask);
static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
40
static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
41
static struct workqueue_struct *fc_exch_workqueue;
42 43 44 45 46 47 48 49 50 51 52 53 54 55

/*
 * Structure and function definitions for managing Fibre Channel Exchanges
 * and Sequences.
 *
 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
 *
 * fc_exch_mgr holds the exchange state for an N port
 *
 * fc_exch holds state for one exchange and links to its active sequence.
 *
 * fc_seq holds the state for an individual sequence.
 */

56 57 58 59 60 61
/**
 * struct fc_exch_pool - Per cpu exchange pool
 * @next_index:	  Next possible free exchange index
 * @total_exches: Total allocated exchanges
 * @lock:	  Exch pool lock
 * @ex_list:	  List of exchanges
62 63 64 65 66 67
 *
 * This structure manages per cpu exchanges in array of exchange pointers.
 * This array is allocated followed by struct fc_exch_pool memory for
 * assigned range of exchanges to per cpu pool.
 */
struct fc_exch_pool {
68 69
	u16		 next_index;
	u16		 total_exches;
70 71 72 73 74

	/* two cache of free slot in exch array */
	u16		 left;
	u16		 right;

75 76
	spinlock_t	 lock;
	struct list_head ex_list;
77 78
};

79 80 81 82 83 84 85 86 87 88
/**
 * struct fc_exch_mgr - The Exchange Manager (EM).
 * @class:	    Default class for new sequences
 * @kref:	    Reference counter
 * @min_xid:	    Minimum exchange ID
 * @max_xid:	    Maximum exchange ID
 * @ep_pool:	    Reserved exchange pointers
 * @pool_max_index: Max exch array index in exch pool
 * @pool:	    Per cpu exch pool
 * @stats:	    Statistics structure
89 90 91 92 93
 *
 * This structure is the center for creating exchanges and sequences.
 * It manages the allocation of exchange IDs.
 */
struct fc_exch_mgr {
94 95 96 97 98 99 100
	enum fc_class	class;
	struct kref	kref;
	u16		min_xid;
	u16		max_xid;
	mempool_t	*ep_pool;
	u16		pool_max_index;
	struct fc_exch_pool *pool;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

	/*
	 * currently exchange mgr stats are updated but not used.
	 * either stats can be expose via sysfs or remove them
	 * all together if not used XXX
	 */
	struct {
		atomic_t no_free_exch;
		atomic_t no_free_exch_xid;
		atomic_t xid_not_found;
		atomic_t xid_busy;
		atomic_t seq_not_found;
		atomic_t non_bls_resp;
	} stats;
};

117 118 119 120 121 122 123 124 125 126 127 128
/**
 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 * @ema_list: Exchange Manager Anchor list
 * @mp:	      Exchange Manager associated with this anchor
 * @match:    Routine to determine if this anchor's EM should be used
 *
 * When walking the list of anchors the match routine will be called
 * for each anchor to determine if that EM should be used. The last
 * anchor in the list will always match to handle any exchanges not
 * handled by other EMs. The non-default EMs would be added to the
 * anchor list by HW that provides FCoE offloads.
 */
129 130 131 132 133 134
struct fc_exch_mgr_anchor {
	struct list_head ema_list;
	struct fc_exch_mgr *mp;
	bool (*match)(struct fc_frame *);
};

135
static void fc_exch_rrq(struct fc_exch *);
136 137
static void fc_seq_ls_acc(struct fc_frame *);
static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138
			  enum fc_els_rjt_explan);
139 140
static void fc_exch_els_rec(struct fc_frame *);
static void fc_exch_els_rrq(struct fc_frame *);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

/*
 * Internal implementation notes.
 *
 * The exchange manager is one by default in libfc but LLD may choose
 * to have one per CPU. The sequence manager is one per exchange manager
 * and currently never separated.
 *
 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 * assigned by the Sequence Initiator that shall be unique for a specific
 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 * qualified by exchange ID, which one might think it would be.
 * In practice this limits the number of open sequences and exchanges to 256
 * per session.	 For most targets we could treat this limit as per exchange.
 *
 * The exchange and its sequence are freed when the last sequence is received.
 * It's possible for the remote port to leave an exchange open without
 * sending any sequences.
 *
 * Notes on reference counts:
 *
 * Exchanges are reference counted and exchange gets freed when the reference
 * count becomes zero.
 *
 * Timeouts:
 * Sequences are timed out for E_D_TOV and R_A_TOV.
 *
 * Sequence event handling:
 *
 * The following events may occur on initiator sequences:
 *
 *	Send.
 *	    For now, the whole thing is sent.
 *	Receive ACK
 *	    This applies only to class F.
 *	    The sequence is marked complete.
 *	ULP completion.
 *	    The upper layer calls fc_exch_done() when done
 *	    with exchange and sequence tuple.
 *	RX-inferred completion.
 *	    When we receive the next sequence on the same exchange, we can
 *	    retire the previous sequence ID.  (XXX not implemented).
 *	Timeout.
 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 *	    E_D_TOV causes abort and calls upper layer response handler
 *	    with FC_EX_TIMEOUT error.
 *	Receive RJT
 *	    XXX defer.
 *	Send ABTS
 *	    On timeout.
 *
 * The following events may occur on recipient sequences:
 *
 *	Receive
 *	    Allocate sequence for first frame received.
 *	    Hold during receive handler.
 *	    Release when final frame received.
 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 *	Receive ABTS
 *	    Deallocate sequence
 *	Send RJT
 *	    Deallocate
 *
 * For now, we neglect conditions where only part of a sequence was
 * received or transmitted, or where out-of-order receipt is detected.
 */

/*
 * Locking notes:
 *
 * The EM code run in a per-CPU worker thread.
 *
 * To protect against concurrency between a worker thread code and timers,
 * sequence allocation and deallocation must be locked.
 *  - exchange refcnt can be done atomicly without locks.
 *  - sequence allocation must be locked by exch lock.
217 218
 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 *    EM pool lock must be taken before the ex_lock.
219 220 221 222 223 224 225
 */

/*
 * opcode names for debugging.
 */
static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;

226 227 228 229 230 231 232 233 234
/**
 * fc_exch_name_lookup() - Lookup name by opcode
 * @op:	       Opcode to be looked up
 * @table:     Opcode/name table
 * @max_index: Index not to be exceeded
 *
 * This routine is used to determine a human-readable string identifying
 * a R_CTL opcode.
 */
235 236 237 238 239 240 241 242 243 244 245 246
static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
					      unsigned int max_index)
{
	const char *name = NULL;

	if (op < max_index)
		name = table[op];
	if (!name)
		name = "unknown";
	return name;
}

247 248 249 250
/**
 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 * @op: The opcode to be looked up
 */
251 252 253
static const char *fc_exch_rctl_name(unsigned int op)
{
	return fc_exch_name_lookup(op, fc_exch_rctl_names,
K
Kulikov Vasiliy 已提交
254
				   ARRAY_SIZE(fc_exch_rctl_names));
255 256
}

257 258 259
/**
 * fc_exch_hold() - Increment an exchange's reference count
 * @ep: Echange to be held
260
 */
261
static inline void fc_exch_hold(struct fc_exch *ep)
262 263 264 265
{
	atomic_inc(&ep->ex_refcnt);
}

266 267 268 269 270 271 272 273 274
/**
 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 *			 and determine SOF and EOF.
 * @ep:	   The exchange to that will use the header
 * @fp:	   The frame whose header is to be modified
 * @f_ctl: F_CTL bits that will be used for the frame header
 *
 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
 */
static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
			      u32 f_ctl)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	u16 fill;

	fr_sof(fp) = ep->class;
	if (ep->seq.cnt)
		fr_sof(fp) = fc_sof_normal(ep->class);

	if (f_ctl & FC_FC_END_SEQ) {
		fr_eof(fp) = FC_EOF_T;
		if (fc_sof_needs_ack(ep->class))
			fr_eof(fp) = FC_EOF_N;
		/*
291
		 * From F_CTL.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		 * The number of fill bytes to make the length a 4-byte
		 * multiple is the low order 2-bits of the f_ctl.
		 * The fill itself will have been cleared by the frame
		 * allocation.
		 * After this, the length will be even, as expected by
		 * the transport.
		 */
		fill = fr_len(fp) & 3;
		if (fill) {
			fill = 4 - fill;
			/* TODO, this may be a problem with fragmented skb */
			skb_put(fp_skb(fp), fill);
			hton24(fh->fh_f_ctl, f_ctl | fill);
		}
	} else {
		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
		fr_eof(fp) = FC_EOF_N;
	}

	/*
	 * Initialize remainig fh fields
	 * from fc_fill_fc_hdr
	 */
	fh->fh_ox_id = htons(ep->oxid);
	fh->fh_rx_id = htons(ep->rxid);
	fh->fh_seq_id = ep->seq.id;
	fh->fh_seq_cnt = htons(ep->seq.cnt);
}

321 322 323 324 325 326
/**
 * fc_exch_release() - Decrement an exchange's reference count
 * @ep: Exchange to be released
 *
 * If the reference count reaches zero and the exchange is complete,
 * it is freed.
327 328 329 330 331 332 333 334 335
 */
static void fc_exch_release(struct fc_exch *ep)
{
	struct fc_exch_mgr *mp;

	if (atomic_dec_and_test(&ep->ex_refcnt)) {
		mp = ep->em;
		if (ep->destructor)
			ep->destructor(&ep->seq, ep->arg);
336
		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 338 339 340
		mempool_free(ep, mp->ep_pool);
	}
}

341 342 343 344
/**
 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 * @ep: The exchange that is complete
 */
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static int fc_exch_done_locked(struct fc_exch *ep)
{
	int rc = 1;

	/*
	 * We must check for completion in case there are two threads
	 * tyring to complete this. But the rrq code will reuse the
	 * ep, and in that case we only clear the resp and set it as
	 * complete, so it can be reused by the timer to send the rrq.
	 */
	ep->resp = NULL;
	if (ep->state & FC_EX_DONE)
		return rc;
	ep->esb_stat |= ESB_ST_COMPLETE;

	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
		ep->state |= FC_EX_DONE;
		if (cancel_delayed_work(&ep->timeout_work))
			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
		rc = 0;
	}
	return rc;
}

369 370 371 372 373 374 375 376 377
/**
 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 * @pool:  Exchange Pool to get an exchange from
 * @index: Index of the exchange within the pool
 *
 * Use the index to get an exchange from within an exchange pool. exches
 * will point to an array of exchange pointers. The index will select
 * the exchange within the array.
 */
378 379 380 381 382 383 384
static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
					      u16 index)
{
	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
	return exches[index];
}

385 386 387 388 389 390
/**
 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 * @pool:  The pool to assign the exchange to
 * @index: The index in the pool where the exchange will be assigned
 * @ep:	   The exchange to assign to the pool
 */
391 392 393 394 395 396
static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
				   struct fc_exch *ep)
{
	((struct fc_exch **)(pool + 1))[index] = ep;
}

397 398 399 400
/**
 * fc_exch_delete() - Delete an exchange
 * @ep: The exchange to be deleted
 */
401
static void fc_exch_delete(struct fc_exch *ep)
402
{
403
	struct fc_exch_pool *pool;
404
	u16 index;
405

406 407 408 409
	pool = ep->pool;
	spin_lock_bh(&pool->lock);
	WARN_ON(pool->total_exches <= 0);
	pool->total_exches--;
410 411 412 413 414 415 416 417 418 419 420

	/* update cache of free slot */
	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
	if (pool->left == FC_XID_UNKNOWN)
		pool->left = index;
	else if (pool->right == FC_XID_UNKNOWN)
		pool->right = index;
	else
		pool->next_index = index;

	fc_exch_ptr_set(pool, index, NULL);
421
	list_del(&ep->ex_list);
422
	spin_unlock_bh(&pool->lock);
423 424 425
	fc_exch_release(ep);	/* drop hold for exch in mp */
}

426 427 428 429 430 431 432 433
/**
 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 *				the exchange lock held
 * @ep:		The exchange whose timer will start
 * @timer_msec: The timeout period
 *
 * Used for upper level protocols to time out the exchange.
 * The timer is cancelled when it fires or when the exchange completes.
434 435 436 437 438 439 440
 */
static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
					    unsigned int timer_msec)
{
	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
		return;

441
	FC_EXCH_DBG(ep, "Exchange timer armed\n");
442

443 444
	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
			       msecs_to_jiffies(timer_msec)))
445 446 447
		fc_exch_hold(ep);		/* hold for timer */
}

448 449 450 451
/**
 * fc_exch_timer_set() - Lock the exchange and set the timer
 * @ep:		The exchange whose timer will start
 * @timer_msec: The timeout period
452 453 454 455 456 457 458 459
 */
static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
{
	spin_lock_bh(&ep->ex_lock);
	fc_exch_timer_set_locked(ep, timer_msec);
	spin_unlock_bh(&ep->ex_lock);
}

460
/**
461 462 463 464
 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 * @lport: The local port that the exchange will be sent on
 * @sp:	   The sequence to be sent
 * @fp:	   The frame to be sent on the exchange
465
 */
466
static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 468 469 470 471
		       struct fc_frame *fp)
{
	struct fc_exch *ep;
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	int error;
472
	u32 f_ctl;
473 474 475 476 477 478

	ep = fc_seq_exch(sp);
	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);

	f_ctl = ntoh24(fh->fh_f_ctl);
	fc_exch_setup_hdr(ep, fp, f_ctl);
J
Joe Eykholt 已提交
479
	fr_encaps(fp) = ep->encaps;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

	/*
	 * update sequence count if this frame is carrying
	 * multiple FC frames when sequence offload is enabled
	 * by LLD.
	 */
	if (fr_max_payload(fp))
		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
					fr_max_payload(fp));
	else
		sp->cnt++;

	/*
	 * Send the frame.
	 */
495
	error = lport->tt.frame_send(lport, fp);
496 497 498 499 500 501 502 503

	/*
	 * Update the exchange and sequence flags,
	 * assuming all frames for the sequence have been sent.
	 * We can only be called to send once for each sequence.
	 */
	spin_lock_bh(&ep->ex_lock);
	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
504
	if (f_ctl & FC_FC_SEQ_INIT)
505 506 507 508 509 510
		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
	spin_unlock_bh(&ep->ex_lock);
	return error;
}

/**
511 512 513
 * fc_seq_alloc() - Allocate a sequence for a given exchange
 * @ep:	    The exchange to allocate a new sequence for
 * @seq_id: The sequence ID to be used
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
 *
 * We don't support multiple originated sequences on the same exchange.
 * By implication, any previously originated sequence on this exchange
 * is complete, and we reallocate the same sequence.
 */
static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
{
	struct fc_seq *sp;

	sp = &ep->seq;
	sp->ssb_stat = 0;
	sp->cnt = 0;
	sp->id = seq_id;
	return sp;
}

530 531 532 533 534
/**
 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 *				exchange as the supplied sequence
 * @sp: The sequence/exchange to get a new sequence for
 */
535 536 537 538 539 540 541 542 543 544 545
static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
{
	struct fc_exch *ep = fc_seq_exch(sp);

	sp = fc_seq_alloc(ep, ep->seq_id++);
	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
		    ep->f_ctl, sp->id);
	return sp;
}

/**
546 547 548
 * fc_seq_start_next() - Lock the exchange and get a new sequence
 *			 for a given sequence/exchange pair
 * @sp: The sequence/exchange to get a new exchange for
549 550 551 552 553 554 555 556 557 558 559 560
 */
static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
{
	struct fc_exch *ep = fc_seq_exch(sp);

	spin_lock_bh(&ep->ex_lock);
	sp = fc_seq_start_next_locked(sp);
	spin_unlock_bh(&ep->ex_lock);

	return sp;
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 * Set the response handler for the exchange associated with a sequence.
 */
static void fc_seq_set_resp(struct fc_seq *sp,
			    void (*resp)(struct fc_seq *, struct fc_frame *,
					 void *),
			    void *arg)
{
	struct fc_exch *ep = fc_seq_exch(sp);

	spin_lock_bh(&ep->ex_lock);
	ep->resp = resp;
	ep->arg = arg;
	spin_unlock_bh(&ep->ex_lock);
}

577
/**
578 579 580 581 582
 * fc_seq_exch_abort() - Abort an exchange and sequence
 * @req_sp:	The sequence to be aborted
 * @timer_msec: The period of time to wait before aborting
 *
 * Generally called because of a timeout or an abort from the upper layer.
583 584 585
 */
static int fc_seq_exch_abort(const struct fc_seq *req_sp,
			     unsigned int timer_msec)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
{
	struct fc_seq *sp;
	struct fc_exch *ep;
	struct fc_frame *fp;
	int error;

	ep = fc_seq_exch(req_sp);

	spin_lock_bh(&ep->ex_lock);
	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
		spin_unlock_bh(&ep->ex_lock);
		return -ENXIO;
	}

	/*
	 * Send the abort on a new sequence if possible.
	 */
	sp = fc_seq_start_next_locked(&ep->seq);
	if (!sp) {
		spin_unlock_bh(&ep->ex_lock);
		return -ENOMEM;
	}

	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
	if (timer_msec)
		fc_exch_timer_set_locked(ep, timer_msec);
	spin_unlock_bh(&ep->ex_lock);

	/*
	 * If not logged into the fabric, don't send ABTS but leave
	 * sequence active until next timeout.
	 */
	if (!ep->sid)
		return 0;

	/*
	 * Send an abort for the sequence that timed out.
	 */
	fp = fc_frame_alloc(ep->lp, 0);
	if (fp) {
		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
		error = fc_seq_send(ep->lp, sp, fp);
	} else
		error = -ENOBUFS;
	return error;
}

635 636 637
/**
 * fc_exch_timeout() - Handle exchange timer expiration
 * @work: The work_struct identifying the exchange that timed out
638 639 640 641 642 643 644 645 646 647 648
 */
static void fc_exch_timeout(struct work_struct *work)
{
	struct fc_exch *ep = container_of(work, struct fc_exch,
					  timeout_work.work);
	struct fc_seq *sp = &ep->seq;
	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
	void *arg;
	u32 e_stat;
	int rc = 1;

649 650
	FC_EXCH_DBG(ep, "Exchange timed out\n");

651 652 653 654 655 656 657
	spin_lock_bh(&ep->ex_lock);
	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
		goto unlock;

	e_stat = ep->esb_stat;
	if (e_stat & ESB_ST_COMPLETE) {
		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
658
		spin_unlock_bh(&ep->ex_lock);
659 660 661 662 663 664 665 666 667 668 669 670
		if (e_stat & ESB_ST_REC_QUAL)
			fc_exch_rrq(ep);
		goto done;
	} else {
		resp = ep->resp;
		arg = ep->arg;
		ep->resp = NULL;
		if (e_stat & ESB_ST_ABNORMAL)
			rc = fc_exch_done_locked(ep);
		spin_unlock_bh(&ep->ex_lock);
		if (resp)
			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
671 672 673 674 675
		if (!rc) {
			/* delete the exchange if it's already being aborted */
			fc_exch_delete(ep);
			return;
		}
676 677 678 679 680 681 682 683 684 685 686 687
		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
		goto done;
	}
unlock:
	spin_unlock_bh(&ep->ex_lock);
done:
	/*
	 * This release matches the hold taken when the timer was set.
	 */
	fc_exch_release(ep);
}

688
/**
689 690 691
 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 * @lport: The local port that the exchange is for
 * @mp:	   The exchange manager that will allocate the exchange
692
 *
693
 * Returns pointer to allocated fc_exch with exch lock held.
694
 */
695
static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
696
					struct fc_exch_mgr *mp)
697 698
{
	struct fc_exch *ep;
699 700 701
	unsigned int cpu;
	u16 index;
	struct fc_exch_pool *pool;
702 703 704 705 706 707 708 709 710

	/* allocate memory for exchange */
	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
	if (!ep) {
		atomic_inc(&mp->stats.no_free_exch);
		goto out;
	}
	memset(ep, 0, sizeof(*ep));

711
	cpu = get_cpu();
712 713
	pool = per_cpu_ptr(mp->pool, cpu);
	spin_lock_bh(&pool->lock);
714
	put_cpu();
715 716 717 718 719 720 721 722 723 724 725 726 727

	/* peek cache of free slot */
	if (pool->left != FC_XID_UNKNOWN) {
		index = pool->left;
		pool->left = FC_XID_UNKNOWN;
		goto hit;
	}
	if (pool->right != FC_XID_UNKNOWN) {
		index = pool->right;
		pool->right = FC_XID_UNKNOWN;
		goto hit;
	}

728 729 730 731 732
	index = pool->next_index;
	/* allocate new exch from pool */
	while (fc_exch_ptr_get(pool, index)) {
		index = index == mp->pool_max_index ? 0 : index + 1;
		if (index == pool->next_index)
733 734
			goto err;
	}
735
	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
736
hit:
737 738 739 740 741 742 743 744 745
	fc_exch_hold(ep);	/* hold for exch in mp */
	spin_lock_init(&ep->ex_lock);
	/*
	 * Hold exch lock for caller to prevent fc_exch_reset()
	 * from releasing exch	while fc_exch_alloc() caller is
	 * still working on exch.
	 */
	spin_lock_bh(&ep->ex_lock);

746 747
	fc_exch_ptr_set(pool, index, ep);
	list_add_tail(&ep->ex_list, &pool->ex_list);
748
	fc_seq_alloc(ep, ep->seq_id++);
749 750
	pool->total_exches++;
	spin_unlock_bh(&pool->lock);
751 752 753 754

	/*
	 *  update exchange
	 */
755
	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
756
	ep->em = mp;
757
	ep->pool = pool;
758
	ep->lp = lport;
759 760 761 762 763 764 765
	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
	ep->rxid = FC_XID_UNKNOWN;
	ep->class = mp->class;
	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
out:
	return ep;
err:
766
	spin_unlock_bh(&pool->lock);
767 768 769 770
	atomic_inc(&mp->stats.no_free_exch_xid);
	mempool_free(ep, mp->ep_pool);
	return NULL;
}
771 772

/**
773 774 775 776
 * fc_exch_alloc() - Allocate an exchange from an EM on a
 *		     local port's list of EMs.
 * @lport: The local port that will own the exchange
 * @fp:	   The FC frame that the exchange will be for
777
 *
778 779 780 781
 * This function walks the list of exchange manager(EM)
 * anchors to select an EM for a new exchange allocation. The
 * EM is selected when a NULL match function pointer is encountered
 * or when a call to a match function returns true.
782
 */
783 784
static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
					    struct fc_frame *fp)
785 786 787
{
	struct fc_exch_mgr_anchor *ema;

788 789 790
	list_for_each_entry(ema, &lport->ema_list, ema_list)
		if (!ema->match || ema->match(fp))
			return fc_exch_em_alloc(lport, ema->mp);
791 792
	return NULL;
}
793

794 795 796 797
/**
 * fc_exch_find() - Lookup and hold an exchange
 * @mp:	 The exchange manager to lookup the exchange from
 * @xid: The XID of the exchange to look up
798 799 800
 */
static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
{
801
	struct fc_exch_pool *pool;
802 803 804
	struct fc_exch *ep = NULL;

	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
805 806 807
		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
		spin_lock_bh(&pool->lock);
		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
808 809 810 811
		if (ep) {
			fc_exch_hold(ep);
			WARN_ON(ep->xid != xid);
		}
812
		spin_unlock_bh(&pool->lock);
813 814 815 816
	}
	return ep;
}

817 818 819

/**
 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
820 821
 *		    the memory allocated for the related objects may be freed.
 * @sp: The sequence that has completed
822 823
 */
static void fc_exch_done(struct fc_seq *sp)
824 825 826 827 828 829 830 831
{
	struct fc_exch *ep = fc_seq_exch(sp);
	int rc;

	spin_lock_bh(&ep->ex_lock);
	rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
832
		fc_exch_delete(ep);
833 834
}

835 836 837 838 839 840
/**
 * fc_exch_resp() - Allocate a new exchange for a response frame
 * @lport: The local port that the exchange was for
 * @mp:	   The exchange manager to allocate the exchange from
 * @fp:	   The response frame
 *
841 842
 * Sets the responder ID in the frame header.
 */
843 844 845
static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
				    struct fc_exch_mgr *mp,
				    struct fc_frame *fp)
846 847 848 849
{
	struct fc_exch *ep;
	struct fc_frame_header *fh;

850
	ep = fc_exch_alloc(lport, fp);
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	if (ep) {
		ep->class = fc_frame_class(fp);

		/*
		 * Set EX_CTX indicating we're responding on this exchange.
		 */
		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
		fh = fc_frame_header_get(fp);
		ep->sid = ntoh24(fh->fh_d_id);
		ep->did = ntoh24(fh->fh_s_id);
		ep->oid = ep->did;

		/*
		 * Allocated exchange has placed the XID in the
		 * originator field. Move it to the responder field,
		 * and set the originator XID from the frame.
		 */
		ep->rxid = ep->xid;
		ep->oxid = ntohs(fh->fh_ox_id);
		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
			ep->esb_stat &= ~ESB_ST_SEQ_INIT;

		fc_exch_hold(ep);	/* hold for caller */
876
		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
877 878 879 880
	}
	return ep;
}

881 882 883 884 885 886 887
/**
 * fc_seq_lookup_recip() - Find a sequence where the other end
 *			   originated the sequence
 * @lport: The local port that the frame was sent to
 * @mp:	   The Exchange Manager to lookup the exchange from
 * @fp:	   The frame associated with the sequence we're looking for
 *
888 889 890
 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
 * on the ep that should be released by the caller.
 */
891 892
static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
						 struct fc_exch_mgr *mp,
893
						 struct fc_frame *fp)
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_exch *ep = NULL;
	struct fc_seq *sp = NULL;
	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
	u32 f_ctl;
	u16 xid;

	f_ctl = ntoh24(fh->fh_f_ctl);
	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);

	/*
	 * Lookup or create the exchange if we will be creating the sequence.
	 */
	if (f_ctl & FC_FC_EX_CTX) {
		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
		ep = fc_exch_find(mp, xid);
		if (!ep) {
			atomic_inc(&mp->stats.xid_not_found);
			reject = FC_RJT_OX_ID;
			goto out;
		}
		if (ep->rxid == FC_XID_UNKNOWN)
			ep->rxid = ntohs(fh->fh_rx_id);
		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
			reject = FC_RJT_OX_ID;
			goto rel;
		}
	} else {
		xid = ntohs(fh->fh_rx_id);	/* we are the responder */

		/*
		 * Special case for MDS issuing an ELS TEST with a
		 * bad rxid of 0.
		 * XXX take this out once we do the proper reject.
		 */
		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
		    fc_frame_payload_op(fp) == ELS_TEST) {
			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
			xid = FC_XID_UNKNOWN;
		}

		/*
		 * new sequence - find the exchange
		 */
		ep = fc_exch_find(mp, xid);
		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
			if (ep) {
				atomic_inc(&mp->stats.xid_busy);
				reject = FC_RJT_RX_ID;
				goto rel;
			}
946
			ep = fc_exch_resp(lport, mp, fp);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
			if (!ep) {
				reject = FC_RJT_EXCH_EST;	/* XXX */
				goto out;
			}
			xid = ep->xid;	/* get our XID */
		} else if (!ep) {
			atomic_inc(&mp->stats.xid_not_found);
			reject = FC_RJT_RX_ID;	/* XID not found */
			goto out;
		}
	}

	/*
	 * At this point, we have the exchange held.
	 * Find or create the sequence.
	 */
	if (fc_sof_is_init(fr_sof(fp))) {
964
		sp = &ep->seq;
965
		sp->ssb_stat |= SSB_ST_RESP;
966
		sp->id = fh->fh_seq_id;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	} else {
		sp = &ep->seq;
		if (sp->id != fh->fh_seq_id) {
			atomic_inc(&mp->stats.seq_not_found);
			reject = FC_RJT_SEQ_ID;	/* sequence/exch should exist */
			goto rel;
		}
	}
	WARN_ON(ep != fc_seq_exch(sp));

	if (f_ctl & FC_FC_SEQ_INIT)
		ep->esb_stat |= ESB_ST_SEQ_INIT;

	fr_seq(fp) = sp;
out:
	return reject;
rel:
	fc_exch_done(&ep->seq);
	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
	return reject;
}

989 990 991 992 993 994
/**
 * fc_seq_lookup_orig() - Find a sequence where this end
 *			  originated the sequence
 * @mp:	   The Exchange Manager to lookup the exchange from
 * @fp:	   The frame associated with the sequence we're looking for
 *
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
 * Does not hold the sequence for the caller.
 */
static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
					 struct fc_frame *fp)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_exch *ep;
	struct fc_seq *sp = NULL;
	u32 f_ctl;
	u16 xid;

	f_ctl = ntoh24(fh->fh_f_ctl);
	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
	ep = fc_exch_find(mp, xid);
	if (!ep)
		return NULL;
	if (ep->seq.id == fh->fh_seq_id) {
		/*
		 * Save the RX_ID if we didn't previously know it.
		 */
		sp = &ep->seq;
		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
		    ep->rxid == FC_XID_UNKNOWN) {
			ep->rxid = ntohs(fh->fh_rx_id);
		}
	}
	fc_exch_release(ep);
	return sp;
}

1026 1027 1028 1029 1030 1031
/**
 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
 * @ep:	     The exchange to set the addresses for
 * @orig_id: The originator's ID
 * @resp_id: The responder's ID
 *
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 * Note this must be done before the first sequence of the exchange is sent.
 */
static void fc_exch_set_addr(struct fc_exch *ep,
			     u32 orig_id, u32 resp_id)
{
	ep->oid = orig_id;
	if (ep->esb_stat & ESB_ST_RESP) {
		ep->sid = resp_id;
		ep->did = orig_id;
	} else {
		ep->sid = orig_id;
		ep->did = resp_id;
	}
}

1047
/**
1048 1049
 * fc_seq_els_rsp_send() - Send an ELS response using infomation from
 *			   the existing sequence/exchange.
1050
 * @fp:	      The received frame
1051 1052
 * @els_cmd:  The ELS command to be sent
 * @els_data: The ELS data to be sent
1053 1054
 *
 * The received frame is not freed.
1055
 */
1056
static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1057
				struct fc_seq_els_data *els_data)
1058 1059 1060
{
	switch (els_cmd) {
	case ELS_LS_RJT:
1061
		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1062 1063
		break;
	case ELS_LS_ACC:
1064
		fc_seq_ls_acc(fp);
1065 1066
		break;
	case ELS_RRQ:
1067
		fc_exch_els_rrq(fp);
1068 1069
		break;
	case ELS_REC:
1070
		fc_exch_els_rec(fp);
1071 1072
		break;
	default:
1073
		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1074 1075 1076
	}
}

1077 1078 1079 1080 1081 1082
/**
 * fc_seq_send_last() - Send a sequence that is the last in the exchange
 * @sp:	     The sequence that is to be sent
 * @fp:	     The frame that will be sent on the sequence
 * @rctl:    The R_CTL information to be sent
 * @fh_type: The frame header type
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
 */
static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
			     enum fc_rctl rctl, enum fc_fh_type fh_type)
{
	u32 f_ctl;
	struct fc_exch *ep = fc_seq_exch(sp);

	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
	f_ctl |= ep->f_ctl;
	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
	fc_seq_send(ep->lp, sp, fp);
}

1096 1097 1098 1099 1100
/**
 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
 * @sp:	   The sequence to send the ACK on
 * @rx_fp: The received frame that is being acknoledged
 *
1101 1102 1103 1104 1105 1106 1107 1108
 * Send ACK_1 (or equiv.) indicating we received something.
 */
static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
{
	struct fc_frame *fp;
	struct fc_frame_header *rx_fh;
	struct fc_frame_header *fh;
	struct fc_exch *ep = fc_seq_exch(sp);
1109
	struct fc_lport *lport = ep->lp;
1110 1111 1112 1113 1114 1115
	unsigned int f_ctl;

	/*
	 * Don't send ACKs for class 3.
	 */
	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1116
		fp = fc_frame_alloc(lport, 0);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		if (!fp)
			return;

		fh = fc_frame_header_get(fp);
		fh->fh_r_ctl = FC_RCTL_ACK_1;
		fh->fh_type = FC_TYPE_BLS;

		/*
		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
		 * Last ACK uses bits 7-6 (continue sequence),
		 * bits 5-4 are meaningful (what kind of ACK to use).
		 */
		rx_fh = fc_frame_header_get(rx_fp);
		f_ctl = ntoh24(rx_fh->fh_f_ctl);
		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
		hton24(fh->fh_f_ctl, f_ctl);

		fc_exch_setup_hdr(ep, fp, f_ctl);
		fh->fh_seq_id = rx_fh->fh_seq_id;
		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
		fh->fh_parm_offset = htonl(1);	/* ack single frame */

		fr_sof(fp) = fr_sof(rx_fp);
		if (f_ctl & FC_FC_END_SEQ)
			fr_eof(fp) = FC_EOF_T;
		else
			fr_eof(fp) = FC_EOF_N;

1151
		lport->tt.frame_send(lport, fp);
1152 1153 1154
	}
}

1155 1156 1157 1158 1159 1160
/**
 * fc_exch_send_ba_rjt() - Send BLS Reject
 * @rx_fp:  The frame being rejected
 * @reason: The reason the frame is being rejected
 * @explan: The explaination for the rejection
 *
1161 1162
 * This is for rejecting BA_ABTS only.
 */
1163 1164 1165
static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
				enum fc_ba_rjt_reason reason,
				enum fc_ba_rjt_explan explan)
1166 1167 1168 1169 1170
{
	struct fc_frame *fp;
	struct fc_frame_header *rx_fh;
	struct fc_frame_header *fh;
	struct fc_ba_rjt *rp;
1171
	struct fc_lport *lport;
1172 1173
	unsigned int f_ctl;

1174 1175
	lport = fr_dev(rx_fp);
	fp = fc_frame_alloc(lport, sizeof(*rp));
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (!fp)
		return;
	fh = fc_frame_header_get(fp);
	rx_fh = fc_frame_header_get(rx_fp);

	memset(fh, 0, sizeof(*fh) + sizeof(*rp));

	rp = fc_frame_payload_get(fp, sizeof(*rp));
	rp->br_reason = reason;
	rp->br_explan = explan;

	/*
	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
	 */
	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1192 1193
	fh->fh_ox_id = rx_fh->fh_ox_id;
	fh->fh_rx_id = rx_fh->fh_rx_id;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
	fh->fh_r_ctl = FC_RCTL_BA_RJT;
	fh->fh_type = FC_TYPE_BLS;

	/*
	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
	 * Last ACK uses bits 7-6 (continue sequence),
	 * bits 5-4 are meaningful (what kind of ACK to use).
	 * Always set LAST_SEQ, END_SEQ.
	 */
	f_ctl = ntoh24(rx_fh->fh_f_ctl);
	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
		FC_FC_END_CONN | FC_FC_SEQ_INIT |
		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
	f_ctl &= ~FC_FC_FIRST_SEQ;
	hton24(fh->fh_f_ctl, f_ctl);

	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
	fr_eof(fp) = FC_EOF_T;
	if (fc_sof_needs_ack(fr_sof(fp)))
		fr_eof(fp) = FC_EOF_N;

1220
	lport->tt.frame_send(lport, fp);
1221 1222
}

1223 1224 1225 1226 1227 1228 1229 1230
/**
 * fc_exch_recv_abts() - Handle an incoming ABTS
 * @ep:	   The exchange the abort was on
 * @rx_fp: The ABTS frame
 *
 * This would be for target mode usually, but could be due to lost
 * FCP transfer ready, confirm or RRQ. We always handle this as an
 * exchange abort, ignoring the parameter.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
 */
static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
{
	struct fc_frame *fp;
	struct fc_ba_acc *ap;
	struct fc_frame_header *fh;
	struct fc_seq *sp;

	if (!ep)
		goto reject;
	spin_lock_bh(&ep->ex_lock);
	if (ep->esb_stat & ESB_ST_COMPLETE) {
		spin_unlock_bh(&ep->ex_lock);
		goto reject;
	}
	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
		fc_exch_hold(ep);		/* hold for REC_QUAL */
	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
	fc_exch_timer_set_locked(ep, ep->r_a_tov);

	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
	if (!fp) {
		spin_unlock_bh(&ep->ex_lock);
		goto free;
	}
	fh = fc_frame_header_get(fp);
	ap = fc_frame_payload_get(fp, sizeof(*ap));
	memset(ap, 0, sizeof(*ap));
	sp = &ep->seq;
	ap->ba_high_seq_cnt = htons(0xffff);
	if (sp->ssb_stat & SSB_ST_RESP) {
		ap->ba_seq_id = sp->id;
		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
		ap->ba_low_seq_cnt = htons(sp->cnt);
	}
1267
	sp = fc_seq_start_next_locked(sp);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	spin_unlock_bh(&ep->ex_lock);
	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
	fc_frame_free(rx_fp);
	return;

reject:
	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
free:
	fc_frame_free(rx_fp);
}

1279 1280 1281 1282 1283 1284
/**
 * fc_seq_assign() - Assign exchange and sequence for incoming request
 * @lport: The local port that received the request
 * @fp:    The request frame
 *
 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1285 1286
 * A reference will be held on the exchange/sequence for the caller, which
 * must call fc_seq_release().
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
 */
static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
{
	struct fc_exch_mgr_anchor *ema;

	WARN_ON(lport != fr_dev(fp));
	WARN_ON(fr_seq(fp));
	fr_seq(fp) = NULL;

	list_for_each_entry(ema, &lport->ema_list, ema_list)
		if ((!ema->match || ema->match(fp)) &&
1298
		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1299 1300 1301 1302
			break;
	return fr_seq(fp);
}

1303 1304 1305 1306 1307 1308 1309 1310 1311
/**
 * fc_seq_release() - Release the hold
 * @sp:    The sequence.
 */
static void fc_seq_release(struct fc_seq *sp)
{
	fc_exch_release(fc_seq_exch(sp));
}

1312
/**
1313
 * fc_exch_recv_req() - Handler for an incoming request
1314 1315 1316
 * @lport: The local port that received the request
 * @mp:	   The EM that the exchange is on
 * @fp:	   The request frame
1317 1318 1319
 *
 * This is used when the other end is originating the exchange
 * and the sequence.
1320
 */
1321
static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1322 1323 1324 1325 1326 1327 1328
			     struct fc_frame *fp)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_seq *sp = NULL;
	struct fc_exch *ep = NULL;
	enum fc_pf_rjt_reason reject;

1329 1330 1331
	/* We can have the wrong fc_lport at this point with NPIV, which is a
	 * problem now that we know a new exchange needs to be allocated
	 */
1332 1333
	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
	if (!lport) {
1334 1335 1336
		fc_frame_free(fp);
		return;
	}
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	fr_dev(fp) = lport;

	BUG_ON(fr_seq(fp));		/* XXX remove later */

	/*
	 * If the RX_ID is 0xffff, don't allocate an exchange.
	 * The upper-level protocol may request one later, if needed.
	 */
	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
		return lport->tt.lport_recv(lport, fp);
1347

1348
	reject = fc_seq_lookup_recip(lport, mp, fp);
1349 1350 1351 1352
	if (reject == FC_RJT_NONE) {
		sp = fr_seq(fp);	/* sequence will be held */
		ep = fc_seq_exch(sp);
		fc_seq_send_ack(sp, fp);
J
Joe Eykholt 已提交
1353
		ep->encaps = fr_encaps(fp);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

		/*
		 * Call the receive function.
		 *
		 * The receive function may allocate a new sequence
		 * over the old one, so we shouldn't change the
		 * sequence after this.
		 *
		 * The frame will be freed by the receive function.
		 * If new exch resp handler is valid then call that
		 * first.
		 */
		if (ep->resp)
			ep->resp(sp, fp, ep->arg);
		else
1369
			lport->tt.lport_recv(lport, fp);
1370 1371
		fc_exch_release(ep);	/* release from lookup */
	} else {
1372 1373
		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
			     reject);
1374 1375 1376 1377
		fc_frame_free(fp);
	}
}

1378 1379 1380 1381 1382 1383
/**
 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
 *			     end is the originator of the sequence that is a
 *			     response to our initial exchange
 * @mp: The EM that the exchange is on
 * @fp: The response frame
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
 */
static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	struct fc_seq *sp;
	struct fc_exch *ep;
	enum fc_sof sof;
	u32 f_ctl;
	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
	void *ex_resp_arg;
	int rc;

	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
	if (!ep) {
		atomic_inc(&mp->stats.xid_not_found);
		goto out;
	}
1401 1402
	if (ep->esb_stat & ESB_ST_COMPLETE) {
		atomic_inc(&mp->stats.xid_not_found);
1403
		goto rel;
1404
	}
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (ep->rxid == FC_XID_UNKNOWN)
		ep->rxid = ntohs(fh->fh_rx_id);
	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
		atomic_inc(&mp->stats.xid_not_found);
		goto rel;
	}
	if (ep->did != ntoh24(fh->fh_s_id) &&
	    ep->did != FC_FID_FLOGI) {
		atomic_inc(&mp->stats.xid_not_found);
		goto rel;
	}
	sof = fr_sof(fp);
1417
	sp = &ep->seq;
1418
	if (fc_sof_is_init(sof)) {
1419
		sp->ssb_stat |= SSB_ST_RESP;
1420 1421 1422 1423
		sp->id = fh->fh_seq_id;
	} else if (sp->id != fh->fh_seq_id) {
		atomic_inc(&mp->stats.seq_not_found);
		goto rel;
1424
	}
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	f_ctl = ntoh24(fh->fh_f_ctl);
	fr_seq(fp) = sp;
	if (f_ctl & FC_FC_SEQ_INIT)
		ep->esb_stat |= ESB_ST_SEQ_INIT;

	if (fc_sof_needs_ack(sof))
		fc_seq_send_ack(sp, fp);
	resp = ep->resp;
	ex_resp_arg = ep->arg;

	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
		spin_lock_bh(&ep->ex_lock);
		rc = fc_exch_done_locked(ep);
		WARN_ON(fc_seq_exch(sp) != ep);
		spin_unlock_bh(&ep->ex_lock);
		if (!rc)
1444
			fc_exch_delete(ep);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	}

	/*
	 * Call the receive function.
	 * The sequence is held (has a refcnt) for us,
	 * but not for the receive function.
	 *
	 * The receive function may allocate a new sequence
	 * over the old one, so we shouldn't change the
	 * sequence after this.
	 *
	 * The frame will be freed by the receive function.
	 * If new exch resp handler is valid then call that
	 * first.
	 */
	if (resp)
		resp(sp, fp, ex_resp_arg);
	else
		fc_frame_free(fp);
	fc_exch_release(ep);
	return;
rel:
	fc_exch_release(ep);
out:
	fc_frame_free(fp);
}

1472 1473 1474 1475 1476
/**
 * fc_exch_recv_resp() - Handler for a sequence where other end is
 *			 responding to our sequence
 * @mp: The EM that the exchange is on
 * @fp: The response frame
1477 1478 1479 1480 1481 1482
 */
static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
{
	struct fc_seq *sp;

	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1483 1484

	if (!sp)
1485
		atomic_inc(&mp->stats.xid_not_found);
1486
	else
1487
		atomic_inc(&mp->stats.non_bls_resp);
1488

1489 1490 1491
	fc_frame_free(fp);
}

1492 1493 1494 1495 1496 1497 1498
/**
 * fc_exch_abts_resp() - Handler for a response to an ABT
 * @ep: The exchange that the frame is on
 * @fp: The response frame
 *
 * This response would be to an ABTS cancelling an exchange or sequence.
 * The response can be either BA_ACC or BA_RJT
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
 */
static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
{
	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
	void *ex_resp_arg;
	struct fc_frame_header *fh;
	struct fc_ba_acc *ap;
	struct fc_seq *sp;
	u16 low;
	u16 high;
	int rc = 1, has_rec = 0;

	fh = fc_frame_header_get(fp);
1512 1513
	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
		    fc_exch_rctl_name(fh->fh_r_ctl));
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	if (cancel_delayed_work_sync(&ep->timeout_work))
		fc_exch_release(ep);	/* release from pending timer hold */

	spin_lock_bh(&ep->ex_lock);
	switch (fh->fh_r_ctl) {
	case FC_RCTL_BA_ACC:
		ap = fc_frame_payload_get(fp, sizeof(*ap));
		if (!ap)
			break;

		/*
		 * Decide whether to establish a Recovery Qualifier.
		 * We do this if there is a non-empty SEQ_CNT range and
		 * SEQ_ID is the same as the one we aborted.
		 */
		low = ntohs(ap->ba_low_seq_cnt);
		high = ntohs(ap->ba_high_seq_cnt);
		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
		     ap->ba_seq_id == ep->seq_id) && low != high) {
			ep->esb_stat |= ESB_ST_REC_QUAL;
			fc_exch_hold(ep);  /* hold for recovery qualifier */
			has_rec = 1;
		}
		break;
	case FC_RCTL_BA_RJT:
		break;
	default:
		break;
	}

	resp = ep->resp;
	ex_resp_arg = ep->arg;

	/* do we need to do some other checks here. Can we reuse more of
	 * fc_exch_recv_seq_resp
	 */
	sp = &ep->seq;
	/*
	 * do we want to check END_SEQ as well as LAST_SEQ here?
	 */
	if (ep->fh_type != FC_TYPE_FCP &&
	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
		rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
1561
		fc_exch_delete(ep);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	if (resp)
		resp(sp, fp, ex_resp_arg);
	else
		fc_frame_free(fp);

	if (has_rec)
		fc_exch_timer_set(ep, ep->r_a_tov);

}

1573 1574 1575 1576 1577 1578
/**
 * fc_exch_recv_bls() - Handler for a BLS sequence
 * @mp: The EM that the exchange is on
 * @fp: The request frame
 *
 * The BLS frame is always a sequence initiated by the remote side.
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
 * We may be either the originator or recipient of the exchange.
 */
static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
{
	struct fc_frame_header *fh;
	struct fc_exch *ep;
	u32 f_ctl;

	fh = fc_frame_header_get(fp);
	f_ctl = ntoh24(fh->fh_f_ctl);
	fr_seq(fp) = NULL;

	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
		spin_lock_bh(&ep->ex_lock);
		ep->esb_stat |= ESB_ST_SEQ_INIT;
		spin_unlock_bh(&ep->ex_lock);
	}
	if (f_ctl & FC_FC_SEQ_CTX) {
		/*
		 * A response to a sequence we initiated.
		 * This should only be ACKs for class 2 or F.
		 */
		switch (fh->fh_r_ctl) {
		case FC_RCTL_ACK_1:
		case FC_RCTL_ACK_0:
			break;
		default:
1608 1609 1610
			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
				    fh->fh_r_ctl,
				    fc_exch_rctl_name(fh->fh_r_ctl));
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
			break;
		}
		fc_frame_free(fp);
	} else {
		switch (fh->fh_r_ctl) {
		case FC_RCTL_BA_RJT:
		case FC_RCTL_BA_ACC:
			if (ep)
				fc_exch_abts_resp(ep, fp);
			else
				fc_frame_free(fp);
			break;
		case FC_RCTL_BA_ABTS:
			fc_exch_recv_abts(ep, fp);
			break;
		default:			/* ignore junk */
			fc_frame_free(fp);
			break;
		}
	}
	if (ep)
		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
}

1635 1636
/**
 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1637
 * @rx_fp: The received frame, not freed here.
1638
 *
1639 1640 1641
 * If this fails due to allocation or transmit congestion, assume the
 * originator will repeat the sequence.
 */
1642
static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1643
{
1644
	struct fc_lport *lport;
1645 1646 1647
	struct fc_els_ls_acc *acc;
	struct fc_frame *fp;

1648 1649 1650 1651 1652 1653 1654 1655 1656
	lport = fr_dev(rx_fp);
	fp = fc_frame_alloc(lport, sizeof(*acc));
	if (!fp)
		return;
	acc = fc_frame_payload_get(fp, sizeof(*acc));
	memset(acc, 0, sizeof(*acc));
	acc->la_cmd = ELS_LS_ACC;
	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
	lport->tt.frame_send(lport, fp);
1657 1658
}

1659 1660
/**
 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1661
 * @rx_fp: The received frame, not freed here.
1662
 * @reason: The reason the sequence is being rejected
1663
 * @explan: The explanation for the rejection
1664
 *
1665 1666 1667
 * If this fails due to allocation or transmit congestion, assume the
 * originator will repeat the sequence.
 */
1668
static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1669 1670
			  enum fc_els_rjt_explan explan)
{
1671
	struct fc_lport *lport;
1672 1673 1674
	struct fc_els_ls_rjt *rjt;
	struct fc_frame *fp;

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	lport = fr_dev(rx_fp);
	fp = fc_frame_alloc(lport, sizeof(*rjt));
	if (!fp)
		return;
	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
	memset(rjt, 0, sizeof(*rjt));
	rjt->er_cmd = ELS_LS_RJT;
	rjt->er_reason = reason;
	rjt->er_explan = explan;
	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
	lport->tt.frame_send(lport, fp);
1686 1687
}

1688 1689 1690 1691
/**
 * fc_exch_reset() - Reset an exchange
 * @ep: The exchange to be reset
 */
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static void fc_exch_reset(struct fc_exch *ep)
{
	struct fc_seq *sp;
	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
	void *arg;
	int rc = 1;

	spin_lock_bh(&ep->ex_lock);
	ep->state |= FC_EX_RST_CLEANUP;
	if (cancel_delayed_work(&ep->timeout_work))
		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
	resp = ep->resp;
	ep->resp = NULL;
	if (ep->esb_stat & ESB_ST_REC_QUAL)
		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
	ep->esb_stat &= ~ESB_ST_REC_QUAL;
	arg = ep->arg;
	sp = &ep->seq;
	rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
1713
		fc_exch_delete(ep);
1714 1715 1716 1717 1718

	if (resp)
		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
}

1719
/**
1720 1721 1722 1723 1724
 * fc_exch_pool_reset() - Reset a per cpu exchange pool
 * @lport: The local port that the exchange pool is on
 * @pool:  The exchange pool to be reset
 * @sid:   The source ID
 * @did:   The destination ID
1725
 *
1726 1727 1728 1729
 * Resets a per cpu exches pool, releasing all of its sequences
 * and exchanges. If sid is non-zero then reset only exchanges
 * we sourced from the local port's FID. If did is non-zero then
 * only reset exchanges destined for the local port's FID.
1730
 */
1731 1732 1733
static void fc_exch_pool_reset(struct fc_lport *lport,
			       struct fc_exch_pool *pool,
			       u32 sid, u32 did)
1734 1735 1736 1737
{
	struct fc_exch *ep;
	struct fc_exch *next;

1738
	spin_lock_bh(&pool->lock);
1739
restart:
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
		if ((lport == ep->lp) &&
		    (sid == 0 || sid == ep->sid) &&
		    (did == 0 || did == ep->did)) {
			fc_exch_hold(ep);
			spin_unlock_bh(&pool->lock);

			fc_exch_reset(ep);

			fc_exch_release(ep);
			spin_lock_bh(&pool->lock);

			/*
			 * must restart loop incase while lock
			 * was down multiple eps were released.
			 */
			goto restart;
1757
		}
1758 1759 1760 1761 1762
	}
	spin_unlock_bh(&pool->lock);
}

/**
1763 1764 1765 1766
 * fc_exch_mgr_reset() - Reset all EMs of a local port
 * @lport: The local port whose EMs are to be reset
 * @sid:   The source ID
 * @did:   The destination ID
1767
 *
1768 1769 1770 1771
 * Reset all EMs associated with a given local port. Release all
 * sequences and exchanges. If sid is non-zero then reset only the
 * exchanges sent from the local port's FID. If did is non-zero then
 * reset only exchanges destined for the local port's FID.
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
 */
void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
{
	struct fc_exch_mgr_anchor *ema;
	unsigned int cpu;

	list_for_each_entry(ema, &lport->ema_list, ema_list) {
		for_each_possible_cpu(cpu)
			fc_exch_pool_reset(lport,
					   per_cpu_ptr(ema->mp->pool, cpu),
					   sid, did);
1783 1784 1785 1786
	}
}
EXPORT_SYMBOL(fc_exch_mgr_reset);

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/**
 * fc_exch_lookup() - find an exchange
 * @lport: The local port
 * @xid: The exchange ID
 *
 * Returns exchange pointer with hold for caller, or NULL if not found.
 */
static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
{
	struct fc_exch_mgr_anchor *ema;

	list_for_each_entry(ema, &lport->ema_list, ema_list)
		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
			return fc_exch_find(ema->mp, xid);
	return NULL;
}

1804 1805
/**
 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1806
 * @rfp: The REC frame, not freed here.
1807
 *
1808 1809
 * Note that the requesting port may be different than the S_ID in the request.
 */
1810
static void fc_exch_els_rec(struct fc_frame *rfp)
1811
{
1812
	struct fc_lport *lport;
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	struct fc_frame *fp;
	struct fc_exch *ep;
	struct fc_els_rec *rp;
	struct fc_els_rec_acc *acc;
	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
	enum fc_els_rjt_explan explan;
	u32 sid;
	u16 rxid;
	u16 oxid;

1823
	lport = fr_dev(rfp);
1824 1825 1826 1827 1828 1829 1830 1831
	rp = fc_frame_payload_get(rfp, sizeof(*rp));
	explan = ELS_EXPL_INV_LEN;
	if (!rp)
		goto reject;
	sid = ntoh24(rp->rec_s_id);
	rxid = ntohs(rp->rec_rx_id);
	oxid = ntohs(rp->rec_ox_id);

1832 1833
	ep = fc_exch_lookup(lport,
			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1834
	explan = ELS_EXPL_OXID_RXID;
1835 1836 1837 1838 1839 1840 1841 1842
	if (!ep)
		goto reject;
	if (ep->oid != sid || oxid != ep->oxid)
		goto rel;
	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
		goto rel;
	fp = fc_frame_alloc(lport, sizeof(*acc));
	if (!fp)
1843
		goto out;
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	acc = fc_frame_payload_get(fp, sizeof(*acc));
	memset(acc, 0, sizeof(*acc));
	acc->reca_cmd = ELS_LS_ACC;
	acc->reca_ox_id = rp->rec_ox_id;
	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
	acc->reca_rx_id = htons(ep->rxid);
	if (ep->sid == ep->oid)
		hton24(acc->reca_rfid, ep->did);
	else
		hton24(acc->reca_rfid, ep->sid);
	acc->reca_fc4value = htonl(ep->seq.rec_data);
	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
						 ESB_ST_SEQ_INIT |
						 ESB_ST_COMPLETE));
1859 1860
	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
	lport->tt.frame_send(lport, fp);
1861 1862 1863 1864 1865 1866 1867
out:
	fc_exch_release(ep);
	return;

rel:
	fc_exch_release(ep);
reject:
1868
	fc_seq_ls_rjt(rfp, reason, explan);
1869 1870
}

1871 1872 1873 1874 1875
/**
 * fc_exch_rrq_resp() - Handler for RRQ responses
 * @sp:	 The sequence that the RRQ is on
 * @fp:	 The RRQ frame
 * @arg: The exchange that the RRQ is on
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
 *
 * TODO: fix error handler.
 */
static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
{
	struct fc_exch *aborted_ep = arg;
	unsigned int op;

	if (IS_ERR(fp)) {
		int err = PTR_ERR(fp);

V
Vasu Dev 已提交
1887
		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1888
			goto cleanup;
1889 1890
		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
			    "frame error %d\n", err);
1891 1892 1893 1894 1895 1896 1897 1898
		return;
	}

	op = fc_frame_payload_op(fp);
	fc_frame_free(fp);

	switch (op) {
	case ELS_LS_RJT:
1899
		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1900 1901 1902 1903
		/* fall through */
	case ELS_LS_ACC:
		goto cleanup;
	default:
1904 1905
		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
			    "for RRQ", op);
1906 1907 1908 1909 1910 1911 1912 1913 1914
		return;
	}

cleanup:
	fc_exch_done(&aborted_ep->seq);
	/* drop hold for rec qual */
	fc_exch_release(aborted_ep);
}

1915 1916

/**
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
 * @lport:	The local port to send the frame on
 * @fp:		The frame to be sent
 * @resp:	The response handler for this request
 * @destructor: The destructor for the exchange
 * @arg:	The argument to be passed to the response handler
 * @timer_msec: The timeout period for the exchange
 *
 * The frame pointer with some of the header's fields must be
 * filled before calling this routine, those fields are:
 *
 * - routing control
 * - FC port did
 * - FC port sid
 * - FC header type
 * - frame control
 * - parameter or relative offset
1934
 */
1935
static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
				       struct fc_frame *fp,
				       void (*resp)(struct fc_seq *,
						    struct fc_frame *fp,
						    void *arg),
				       void (*destructor)(struct fc_seq *,
							  void *),
				       void *arg, u32 timer_msec)
{
	struct fc_exch *ep;
	struct fc_seq *sp = NULL;
	struct fc_frame_header *fh;
	int rc = 1;

1949
	ep = fc_exch_alloc(lport, fp);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	if (!ep) {
		fc_frame_free(fp);
		return NULL;
	}
	ep->esb_stat |= ESB_ST_SEQ_INIT;
	fh = fc_frame_header_get(fp);
	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
	ep->resp = resp;
	ep->destructor = destructor;
	ep->arg = arg;
	ep->r_a_tov = FC_DEF_R_A_TOV;
1961
	ep->lp = lport;
1962 1963 1964 1965 1966 1967 1968
	sp = &ep->seq;

	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
	ep->f_ctl = ntoh24(fh->fh_f_ctl);
	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
	sp->cnt++;

1969
	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1970 1971
		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);

1972
	if (unlikely(lport->tt.frame_send(lport, fp)))
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		goto err;

	if (timer_msec)
		fc_exch_timer_set_locked(ep, timer_msec);
	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */

	if (ep->f_ctl & FC_FC_SEQ_INIT)
		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
	spin_unlock_bh(&ep->ex_lock);
	return sp;
err:
	rc = fc_exch_done_locked(ep);
	spin_unlock_bh(&ep->ex_lock);
	if (!rc)
		fc_exch_delete(ep);
	return NULL;
}

1991 1992 1993 1994
/**
 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
 * @ep: The exchange to send the RRQ on
 *
1995 1996 1997 1998 1999
 * This tells the remote port to stop blocking the use of
 * the exchange and the seq_cnt range.
 */
static void fc_exch_rrq(struct fc_exch *ep)
{
2000
	struct fc_lport *lport;
2001 2002 2003 2004
	struct fc_els_rrq *rrq;
	struct fc_frame *fp;
	u32 did;

2005
	lport = ep->lp;
2006

2007
	fp = fc_frame_alloc(lport, sizeof(*rrq));
2008
	if (!fp)
2009 2010
		goto retry;

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
	memset(rrq, 0, sizeof(*rrq));
	rrq->rrq_cmd = ELS_RRQ;
	hton24(rrq->rrq_s_id, ep->sid);
	rrq->rrq_ox_id = htons(ep->oxid);
	rrq->rrq_rx_id = htons(ep->rxid);

	did = ep->did;
	if (ep->esb_stat & ESB_ST_RESP)
		did = ep->sid;

	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2023
		       lport->port_id, FC_TYPE_ELS,
2024 2025
		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);

2026 2027
	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
			     lport->e_d_tov))
2028 2029 2030 2031 2032 2033 2034 2035
		return;

retry:
	spin_lock_bh(&ep->ex_lock);
	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
		spin_unlock_bh(&ep->ex_lock);
		/* drop hold for rec qual */
		fc_exch_release(ep);
2036 2037
		return;
	}
2038 2039 2040
	ep->esb_stat |= ESB_ST_REC_QUAL;
	fc_exch_timer_set_locked(ep, ep->r_a_tov);
	spin_unlock_bh(&ep->ex_lock);
2041 2042
}

2043 2044
/**
 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2045
 * @fp: The RRQ frame, not freed here.
2046
 */
2047
static void fc_exch_els_rrq(struct fc_frame *fp)
2048
{
2049
	struct fc_lport *lport;
2050
	struct fc_exch *ep = NULL;	/* request or subject exchange */
2051 2052 2053 2054 2055
	struct fc_els_rrq *rp;
	u32 sid;
	u16 xid;
	enum fc_els_rjt_explan explan;

2056
	lport = fr_dev(fp);
2057 2058 2059 2060 2061 2062 2063 2064 2065
	rp = fc_frame_payload_get(fp, sizeof(*rp));
	explan = ELS_EXPL_INV_LEN;
	if (!rp)
		goto reject;

	/*
	 * lookup subject exchange.
	 */
	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2066 2067 2068
	xid = fc_host_port_id(lport->host) == sid ?
			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
	ep = fc_exch_lookup(lport, xid);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	explan = ELS_EXPL_OXID_RXID;
	if (!ep)
		goto reject;
	spin_lock_bh(&ep->ex_lock);
	if (ep->oxid != ntohs(rp->rrq_ox_id))
		goto unlock_reject;
	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
	    ep->rxid != FC_XID_UNKNOWN)
		goto unlock_reject;
	explan = ELS_EXPL_SID;
	if (ep->sid != sid)
		goto unlock_reject;

	/*
	 * Clear Recovery Qualifier state, and cancel timer if complete.
	 */
	if (ep->esb_stat & ESB_ST_REC_QUAL) {
		ep->esb_stat &= ~ESB_ST_REC_QUAL;
		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
	}
	if (ep->esb_stat & ESB_ST_COMPLETE) {
		if (cancel_delayed_work(&ep->timeout_work))
			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
	}

	spin_unlock_bh(&ep->ex_lock);

	/*
	 * Send LS_ACC.
	 */
2099
	fc_seq_ls_acc(fp);
2100
	goto out;
2101 2102 2103 2104

unlock_reject:
	spin_unlock_bh(&ep->ex_lock);
reject:
2105
	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2106 2107 2108
out:
	if (ep)
		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2109 2110
}

2111 2112 2113 2114 2115 2116
/**
 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
 * @lport: The local port to add the exchange manager to
 * @mp:	   The exchange manager to be added to the local port
 * @match: The match routine that indicates when this EM should be used
 */
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
					   struct fc_exch_mgr *mp,
					   bool (*match)(struct fc_frame *))
{
	struct fc_exch_mgr_anchor *ema;

	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
	if (!ema)
		return ema;

	ema->mp = mp;
	ema->match = match;
	/* add EM anchor to EM anchors list */
	list_add_tail(&ema->ema_list, &lport->ema_list);
	kref_get(&mp->kref);
	return ema;
}
EXPORT_SYMBOL(fc_exch_mgr_add);

2136 2137 2138 2139
/**
 * fc_exch_mgr_destroy() - Destroy an exchange manager
 * @kref: The reference to the EM to be destroyed
 */
2140 2141 2142 2143 2144
static void fc_exch_mgr_destroy(struct kref *kref)
{
	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);

	mempool_destroy(mp->ep_pool);
2145
	free_percpu(mp->pool);
2146 2147 2148
	kfree(mp);
}

2149 2150 2151 2152
/**
 * fc_exch_mgr_del() - Delete an EM from a local port's list
 * @ema: The exchange manager anchor identifying the EM to be deleted
 */
2153 2154 2155 2156 2157 2158 2159 2160 2161
void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
{
	/* remove EM anchor from EM anchors list */
	list_del(&ema->ema_list);
	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
	kfree(ema);
}
EXPORT_SYMBOL(fc_exch_mgr_del);

2162
/**
2163 2164 2165
 * fc_exch_mgr_list_clone() - Share all exchange manager objects
 * @src: Source lport to clone exchange managers from
 * @dst: New lport that takes references to all the exchange managers
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
 */
int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
{
	struct fc_exch_mgr_anchor *ema, *tmp;

	list_for_each_entry(ema, &src->ema_list, ema_list) {
		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
			goto err;
	}
	return 0;
err:
	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
		fc_exch_mgr_del(ema);
	return -ENOMEM;
}

2182 2183 2184 2185 2186 2187 2188 2189 2190
/**
 * fc_exch_mgr_alloc() - Allocate an exchange manager
 * @lport:   The local port that the new EM will be associated with
 * @class:   The default FC class for new exchanges
 * @min_xid: The minimum XID for exchanges from the new EM
 * @max_xid: The maximum XID for exchanges from the new EM
 * @match:   The match routine for the new EM
 */
struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2191
				      enum fc_class class,
2192 2193
				      u16 min_xid, u16 max_xid,
				      bool (*match)(struct fc_frame *))
2194 2195
{
	struct fc_exch_mgr *mp;
2196 2197 2198 2199
	u16 pool_exch_range;
	size_t pool_size;
	unsigned int cpu;
	struct fc_exch_pool *pool;
2200

2201 2202
	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
	    (min_xid & fc_cpu_mask) != 0) {
2203
		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2204
			     min_xid, max_xid);
2205 2206 2207 2208
		return NULL;
	}

	/*
2209
	 * allocate memory for EM
2210
	 */
2211
	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	if (!mp)
		return NULL;

	mp->class = class;
	/* adjust em exch xid range for offload */
	mp->min_xid = min_xid;
	mp->max_xid = max_xid;

	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
	if (!mp->ep_pool)
		goto free_mp;

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	/*
	 * Setup per cpu exch pool with entire exchange id range equally
	 * divided across all cpus. The exch pointers array memory is
	 * allocated for exch range per pool.
	 */
	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
	mp->pool_max_index = pool_exch_range - 1;

	/*
	 * Allocate and initialize per cpu exch pool
	 */
	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
	if (!mp->pool)
		goto free_mempool;
	for_each_possible_cpu(cpu) {
		pool = per_cpu_ptr(mp->pool, cpu);
2241 2242
		pool->left = FC_XID_UNKNOWN;
		pool->right = FC_XID_UNKNOWN;
2243 2244 2245 2246
		spin_lock_init(&pool->lock);
		INIT_LIST_HEAD(&pool->ex_list);
	}

2247
	kref_init(&mp->kref);
2248
	if (!fc_exch_mgr_add(lport, mp, match)) {
2249 2250
		free_percpu(mp->pool);
		goto free_mempool;
2251 2252 2253 2254 2255 2256 2257 2258
	}

	/*
	 * Above kref_init() sets mp->kref to 1 and then
	 * call to fc_exch_mgr_add incremented mp->kref again,
	 * so adjust that extra increment.
	 */
	kref_put(&mp->kref, fc_exch_mgr_destroy);
2259 2260
	return mp;

2261 2262
free_mempool:
	mempool_destroy(mp->ep_pool);
2263 2264 2265 2266 2267 2268
free_mp:
	kfree(mp);
	return NULL;
}
EXPORT_SYMBOL(fc_exch_mgr_alloc);

2269 2270 2271 2272
/**
 * fc_exch_mgr_free() - Free all exchange managers on a local port
 * @lport: The local port whose EMs are to be freed
 */
2273
void fc_exch_mgr_free(struct fc_lport *lport)
2274
{
2275 2276
	struct fc_exch_mgr_anchor *ema, *next;

2277
	flush_workqueue(fc_exch_workqueue);
2278 2279
	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
		fc_exch_mgr_del(ema);
2280 2281 2282
}
EXPORT_SYMBOL(fc_exch_mgr_free);

2283 2284 2285 2286
/**
 * fc_exch_recv() - Handler for received frames
 * @lport: The local port the frame was received on
 * @fp:	   The received frame
2287
 */
2288
void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2289 2290
{
	struct fc_frame_header *fh = fc_frame_header_get(fp);
2291 2292 2293
	struct fc_exch_mgr_anchor *ema;
	u32 f_ctl, found = 0;
	u16 oxid;
2294 2295

	/* lport lock ? */
2296 2297
	if (!lport || lport->state == LPORT_ST_DISABLED) {
		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2298
			     "has not been initialized correctly\n");
2299 2300 2301 2302
		fc_frame_free(fp);
		return;
	}

2303 2304 2305
	f_ctl = ntoh24(fh->fh_f_ctl);
	oxid = ntohs(fh->fh_ox_id);
	if (f_ctl & FC_FC_EX_CTX) {
2306
		list_for_each_entry(ema, &lport->ema_list, ema_list) {
2307 2308 2309 2310 2311 2312 2313 2314
			if ((oxid >= ema->mp->min_xid) &&
			    (oxid <= ema->mp->max_xid)) {
				found = 1;
				break;
			}
		}

		if (!found) {
2315
			FC_LPORT_DBG(lport, "Received response for out "
2316 2317 2318 2319 2320
				     "of range oxid:%hx\n", oxid);
			fc_frame_free(fp);
			return;
		}
	} else
2321
		ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list);
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	/*
	 * If frame is marked invalid, just drop it.
	 */
	switch (fr_eof(fp)) {
	case FC_EOF_T:
		if (f_ctl & FC_FC_END_SEQ)
			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
		/* fall through */
	case FC_EOF_N:
		if (fh->fh_type == FC_TYPE_BLS)
2333
			fc_exch_recv_bls(ema->mp, fp);
2334 2335
		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
			 FC_FC_EX_CTX)
2336
			fc_exch_recv_seq_resp(ema->mp, fp);
2337
		else if (f_ctl & FC_FC_SEQ_CTX)
2338
			fc_exch_recv_resp(ema->mp, fp);
2339
		else	/* no EX_CTX and no SEQ_CTX */
2340
			fc_exch_recv_req(lport, ema->mp, fp);
2341 2342
		break;
	default:
2343 2344
		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
			     fr_eof(fp));
2345 2346 2347 2348 2349
		fc_frame_free(fp);
	}
}
EXPORT_SYMBOL(fc_exch_recv);

2350 2351 2352 2353 2354
/**
 * fc_exch_init() - Initialize the exchange layer for a local port
 * @lport: The local port to initialize the exchange layer for
 */
int fc_exch_init(struct fc_lport *lport)
2355
{
2356 2357
	if (!lport->tt.seq_start_next)
		lport->tt.seq_start_next = fc_seq_start_next;
2358

2359 2360 2361
	if (!lport->tt.seq_set_resp)
		lport->tt.seq_set_resp = fc_seq_set_resp;

2362 2363
	if (!lport->tt.exch_seq_send)
		lport->tt.exch_seq_send = fc_exch_seq_send;
2364

2365 2366
	if (!lport->tt.seq_send)
		lport->tt.seq_send = fc_seq_send;
2367

2368 2369
	if (!lport->tt.seq_els_rsp_send)
		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2370

2371 2372
	if (!lport->tt.exch_done)
		lport->tt.exch_done = fc_exch_done;
2373

2374 2375
	if (!lport->tt.exch_mgr_reset)
		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2376

2377 2378
	if (!lport->tt.seq_exch_abort)
		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2379

2380 2381 2382
	if (!lport->tt.seq_assign)
		lport->tt.seq_assign = fc_seq_assign;

2383 2384 2385
	if (!lport->tt.seq_release)
		lport->tt.seq_release = fc_seq_release;

2386 2387 2388 2389 2390 2391 2392
	return 0;
}
EXPORT_SYMBOL(fc_exch_init);

/**
 * fc_setup_exch_mgr() - Setup an exchange manager
 */
2393
int fc_setup_exch_mgr(void)
2394 2395 2396 2397 2398 2399
{
	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
					 0, SLAB_HWCACHE_ALIGN, NULL);
	if (!fc_em_cachep)
		return -ENOMEM;

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	/*
	 * Initialize fc_cpu_mask and fc_cpu_order. The
	 * fc_cpu_mask is set for nr_cpu_ids rounded up
	 * to order of 2's * power and order is stored
	 * in fc_cpu_order as this is later required in
	 * mapping between an exch id and exch array index
	 * in per cpu exch pool.
	 *
	 * This round up is required to align fc_cpu_mask
	 * to exchange id's lower bits such that all incoming
	 * frames of an exchange gets delivered to the same
	 * cpu on which exchange originated by simple bitwise
	 * AND operation between fc_cpu_mask and exchange id.
	 */
	fc_cpu_mask = 1;
	fc_cpu_order = 0;
	while (fc_cpu_mask < nr_cpu_ids) {
		fc_cpu_mask <<= 1;
		fc_cpu_order++;
	}
	fc_cpu_mask--;

2422 2423 2424
	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
	if (!fc_exch_workqueue)
		return -ENOMEM;
2425 2426 2427
	return 0;
}

2428 2429 2430
/**
 * fc_destroy_exch_mgr() - Destroy an exchange manager
 */
2431
void fc_destroy_exch_mgr(void)
2432
{
2433
	destroy_workqueue(fc_exch_workqueue);
2434 2435
	kmem_cache_destroy(fc_em_cachep);
}