efi.c 30.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * Extensible Firmware Interface
 *
 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
 *
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 1999-2003 Hewlett-Packard Co.
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *	Stephane Eranian <eranian@hpl.hp.com>
11 12
 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
L
Linus Torvalds 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
 *
 * All EFI Runtime Services are not implemented yet as EFI only
 * supports physical mode addressing on SoftSDV. This is to be fixed
 * in a future version.  --drummond 1999-07-20
 *
 * Implemented EFI runtime services and virtual mode calls.  --davidm
 *
 * Goutham Rao: <goutham.rao@intel.com>
 *	Skip non-WB memory and ignore empty memory ranges.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/efi.h>

#include <asm/io.h>
#include <asm/kregs.h>
#include <asm/meminit.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/mca.h>

#define EFI_DEBUG	0

extern efi_status_t efi_call_phys (void *, ...);

struct efi efi;
EXPORT_SYMBOL(efi);
static efi_runtime_services_t *runtime;
static unsigned long mem_limit = ~0UL, max_addr = ~0UL;

#define efi_call_virt(f, args...)	(*(f))(args)

#define STUB_GET_TIME(prefix, adjust_arg)							  \
static efi_status_t										  \
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)						  \
{												  \
	struct ia64_fpreg fr[6];								  \
	efi_time_cap_t *atc = NULL;								  \
	efi_status_t ret;									  \
												  \
	if (tc)											  \
		atc = adjust_arg(tc);								  \
	ia64_save_scratch_fpregs(fr);								  \
	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
	ia64_load_scratch_fpregs(fr);								  \
	return ret;										  \
}

#define STUB_SET_TIME(prefix, adjust_arg)							\
static efi_status_t										\
prefix##_set_time (efi_time_t *tm)								\
{												\
	struct ia64_fpreg fr[6];								\
	efi_status_t ret;									\
												\
	ia64_save_scratch_fpregs(fr);								\
	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));	\
	ia64_load_scratch_fpregs(fr);								\
	return ret;										\
}

#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)						\
static efi_status_t										\
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)		\
{												\
	struct ia64_fpreg fr[6];								\
	efi_status_t ret;									\
												\
	ia64_save_scratch_fpregs(fr);								\
	ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),	\
				adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));	\
	ia64_load_scratch_fpregs(fr);								\
	return ret;										\
}

#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)						\
static efi_status_t										\
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)					\
{												\
	struct ia64_fpreg fr[6];								\
	efi_time_t *atm = NULL;									\
	efi_status_t ret;									\
												\
	if (tm)											\
		atm = adjust_arg(tm);								\
	ia64_save_scratch_fpregs(fr);								\
	ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),	\
				enabled, atm);							\
	ia64_load_scratch_fpregs(fr);								\
	return ret;										\
}

#define STUB_GET_VARIABLE(prefix, adjust_arg)						\
static efi_status_t									\
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,		\
		       unsigned long *data_size, void *data)				\
{											\
	struct ia64_fpreg fr[6];							\
	u32 *aattr = NULL;									\
	efi_status_t ret;								\
											\
	if (attr)									\
		aattr = adjust_arg(attr);						\
	ia64_save_scratch_fpregs(fr);							\
	ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),	\
				adjust_arg(name), adjust_arg(vendor), aattr,		\
				adjust_arg(data_size), adjust_arg(data));		\
	ia64_load_scratch_fpregs(fr);							\
	return ret;									\
}

#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)						\
static efi_status_t										\
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)	\
{												\
	struct ia64_fpreg fr[6];								\
	efi_status_t ret;									\
												\
	ia64_save_scratch_fpregs(fr);								\
	ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),	\
				adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));	\
	ia64_load_scratch_fpregs(fr);								\
	return ret;										\
}

#define STUB_SET_VARIABLE(prefix, adjust_arg)						\
static efi_status_t									\
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,	\
		       unsigned long data_size, void *data)				\
{											\
	struct ia64_fpreg fr[6];							\
	efi_status_t ret;								\
											\
	ia64_save_scratch_fpregs(fr);							\
	ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),	\
				adjust_arg(name), adjust_arg(vendor), attr, data_size,	\
				adjust_arg(data));					\
	ia64_load_scratch_fpregs(fr);							\
	return ret;									\
}

#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)					\
static efi_status_t										\
prefix##_get_next_high_mono_count (u32 *count)							\
{												\
	struct ia64_fpreg fr[6];								\
	efi_status_t ret;									\
												\
	ia64_save_scratch_fpregs(fr);								\
	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)				\
				__va(runtime->get_next_high_mono_count), adjust_arg(count));	\
	ia64_load_scratch_fpregs(fr);								\
	return ret;										\
}

#define STUB_RESET_SYSTEM(prefix, adjust_arg)					\
static void									\
prefix##_reset_system (int reset_type, efi_status_t status,			\
		       unsigned long data_size, efi_char16_t *data)		\
{										\
	struct ia64_fpreg fr[6];						\
	efi_char16_t *adata = NULL;						\
										\
	if (data)								\
		adata = adjust_arg(data);					\
										\
	ia64_save_scratch_fpregs(fr);						\
	efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),	\
			  reset_type, status, data_size, adata);		\
	/* should not return, but just in case... */				\
	ia64_load_scratch_fpregs(fr);						\
}

#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))

STUB_GET_TIME(phys, phys_ptr)
STUB_SET_TIME(phys, phys_ptr)
STUB_GET_WAKEUP_TIME(phys, phys_ptr)
STUB_SET_WAKEUP_TIME(phys, phys_ptr)
STUB_GET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
STUB_SET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
STUB_RESET_SYSTEM(phys, phys_ptr)

#define id(arg)	arg

STUB_GET_TIME(virt, id)
STUB_SET_TIME(virt, id)
STUB_GET_WAKEUP_TIME(virt, id)
STUB_SET_WAKEUP_TIME(virt, id)
STUB_GET_VARIABLE(virt, id)
STUB_GET_NEXT_VARIABLE(virt, id)
STUB_SET_VARIABLE(virt, id)
STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
STUB_RESET_SYSTEM(virt, id)

void
efi_gettimeofday (struct timespec *ts)
{
	efi_time_t tm;

	memset(ts, 0, sizeof(ts));
	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
		return;

	ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
	ts->tv_nsec = tm.nanosecond;
}

static int
is_available_memory (efi_memory_desc_t *md)
{
	if (!(md->attribute & EFI_MEMORY_WB))
		return 0;

	switch (md->type) {
	      case EFI_LOADER_CODE:
	      case EFI_LOADER_DATA:
	      case EFI_BOOT_SERVICES_CODE:
	      case EFI_BOOT_SERVICES_DATA:
	      case EFI_CONVENTIONAL_MEMORY:
		return 1;
	}
	return 0;
}

243 244 245 246 247
typedef struct kern_memdesc {
	u64 attribute;
	u64 start;
	u64 num_pages;
} kern_memdesc_t;
L
Linus Torvalds 已提交
248

249
static kern_memdesc_t *kern_memmap;
L
Linus Torvalds 已提交
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)

static inline u64
kmd_end(kern_memdesc_t *kmd)
{
	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
}

static inline u64
efi_md_end(efi_memory_desc_t *md)
{
	return (md->phys_addr + efi_md_size(md));
}

static inline int
efi_wb(efi_memory_desc_t *md)
{
	return (md->attribute & EFI_MEMORY_WB);
}

static inline int
efi_uc(efi_memory_desc_t *md)
{
	return (md->attribute & EFI_MEMORY_UC);
}

L
Linus Torvalds 已提交
277
static void
278
walk (efi_freemem_callback_t callback, void *arg, u64 attr)
L
Linus Torvalds 已提交
279
{
280 281
	kern_memdesc_t *k;
	u64 start, end, voff;
L
Linus Torvalds 已提交
282

283 284 285 286 287 288 289 290 291 292
	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
	for (k = kern_memmap; k->start != ~0UL; k++) {
		if (k->attribute != attr)
			continue;
		start = PAGE_ALIGN(k->start);
		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
		if (start < end)
			if ((*callback)(start + voff, end + voff, arg) < 0)
				return;
	}
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300 301
}

/*
 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
 * has memory that is available for OS use.
 */
void
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
{
302
	walk(callback, arg, EFI_MEMORY_WB);
L
Linus Torvalds 已提交
303 304
}

J
Jes Sorensen 已提交
305
/*
306 307
 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
 * has memory that is available for uncached allocator.
J
Jes Sorensen 已提交
308
 */
309 310
void
efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
J
Jes Sorensen 已提交
311
{
312
	walk(callback, arg, EFI_MEMORY_UC);
J
Jes Sorensen 已提交
313 314
}

L
Linus Torvalds 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * Look for the PAL_CODE region reported by EFI and maps it using an
 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 * Abstraction Layer chapter 11 in ADAG
 */

void *
efi_get_pal_addr (void)
{
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	u64 efi_desc_size;
	int pal_code_count = 0;
	u64 vaddr, mask;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;
		if (md->type != EFI_PAL_CODE)
			continue;

		if (++pal_code_count > 1) {
			printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
			       md->phys_addr);
			continue;
		}
		/*
		 * The only ITLB entry in region 7 that is used is the one installed by
		 * __start().  That entry covers a 64MB range.
		 */
		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
		vaddr = PAGE_OFFSET + md->phys_addr;

		/*
		 * We must check that the PAL mapping won't overlap with the kernel
		 * mapping.
		 *
		 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
		 * 256KB and that only one ITR is needed to map it. This implies that the
		 * PAL code is always aligned on its size, i.e., the closest matching page
		 * size supported by the TLB. Therefore PAL code is guaranteed never to
		 * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
		 * now the following test is enough to determine whether or not we need a
		 * dedicated ITR for the PAL code.
		 */
		if ((vaddr & mask) == (KERNEL_START & mask)) {
			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
			       __FUNCTION__);
			continue;
		}

		if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
			panic("Woah!  PAL code size bigger than a granule!");

#if EFI_DEBUG
		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);

		printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
			smp_processor_id(), md->phys_addr,
			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
			vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
#endif
		return __va(md->phys_addr);
	}
	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
	       __FUNCTION__);
	return NULL;
}

void
efi_map_pal_code (void)
{
	void *pal_vaddr = efi_get_pal_addr ();
	u64 psr;

	if (!pal_vaddr)
		return;

	/*
	 * Cannot write to CRx with PSR.ic=1
	 */
	psr = ia64_clear_ic();
	ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
		 IA64_GRANULE_SHIFT);
	ia64_set_psr(psr);		/* restore psr */
	ia64_srlz_i();
}

void __init
efi_init (void)
{
	void *efi_map_start, *efi_map_end;
	efi_config_table_t *config_tables;
	efi_char16_t *c16;
	u64 efi_desc_size;
414
	char *cp, vendor[100] = "unknown";
L
Linus Torvalds 已提交
415 416 417 418 419 420
	extern char saved_command_line[];
	int i;

	/* it's too early to be able to use the standard kernel command line support... */
	for (cp = saved_command_line; *cp; ) {
		if (memcmp(cp, "mem=", 4) == 0) {
421
			mem_limit = memparse(cp + 4, &cp);
L
Linus Torvalds 已提交
422
		} else if (memcmp(cp, "max_addr=", 9) == 0) {
423
			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
L
Linus Torvalds 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		} else {
			while (*cp != ' ' && *cp)
				++cp;
			while (*cp == ' ')
				++cp;
		}
	}
	if (max_addr != ~0UL)
		printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);

	efi.systab = __va(ia64_boot_param->efi_systab);

	/*
	 * Verify the EFI Table
	 */
	if (efi.systab == NULL)
		panic("Woah! Can't find EFI system table.\n");
	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
		panic("Woah! EFI system table signature incorrect\n");
	if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
		printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
		       "got %d.%02d, expected %d.%02d\n",
		       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
		       EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);

	config_tables = __va(efi.systab->tables);

	/* Show what we know for posterity */
	c16 = __va(efi.systab->fw_vendor);
	if (c16) {
454
		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
L
Linus Torvalds 已提交
455 456 457 458 459 460 461
			vendor[i] = *c16++;
		vendor[i] = '\0';
	}

	printk(KERN_INFO "EFI v%u.%.02u by %s:",
	       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);

462 463 464 465 466 467 468 469 470
	efi.mps        = EFI_INVALID_TABLE_ADDR;
	efi.acpi       = EFI_INVALID_TABLE_ADDR;
	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
	efi.smbios     = EFI_INVALID_TABLE_ADDR;
	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
	efi.uga        = EFI_INVALID_TABLE_ADDR;

L
Linus Torvalds 已提交
471 472
	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
473
			efi.mps = config_tables[i].table;
L
Linus Torvalds 已提交
474 475
			printk(" MPS=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
476
			efi.acpi20 = config_tables[i].table;
L
Linus Torvalds 已提交
477 478
			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
479
			efi.acpi = config_tables[i].table;
L
Linus Torvalds 已提交
480 481
			printk(" ACPI=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
482
			efi.smbios = config_tables[i].table;
L
Linus Torvalds 已提交
483 484
			printk(" SMBIOS=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
485
			efi.sal_systab = config_tables[i].table;
L
Linus Torvalds 已提交
486 487
			printk(" SALsystab=0x%lx", config_tables[i].table);
		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
488
			efi.hcdp = config_tables[i].table;
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			printk(" HCDP=0x%lx", config_tables[i].table);
		}
	}
	printk("\n");

	runtime = __va(efi.systab->runtime);
	efi.get_time = phys_get_time;
	efi.set_time = phys_set_time;
	efi.get_wakeup_time = phys_get_wakeup_time;
	efi.set_wakeup_time = phys_set_wakeup_time;
	efi.get_variable = phys_get_variable;
	efi.get_next_variable = phys_get_next_variable;
	efi.set_variable = phys_set_variable;
	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
	efi.reset_system = phys_reset_system;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

#if EFI_DEBUG
	/* print EFI memory map: */
	{
		efi_memory_desc_t *md;
		void *p;

		for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
			md = p;
			printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
			       i, md->type, md->attribute, md->phys_addr,
			       md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
			       md->num_pages >> (20 - EFI_PAGE_SHIFT));
		}
	}
#endif

	efi_map_pal_code();
	efi_enter_virtual_mode();
}

void
efi_enter_virtual_mode (void)
{
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	efi_status_t status;
	u64 efi_desc_size;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;
		if (md->attribute & EFI_MEMORY_RUNTIME) {
			/*
			 * Some descriptors have multiple bits set, so the order of
			 * the tests is relevant.
			 */
			if (md->attribute & EFI_MEMORY_WB) {
				md->virt_addr = (u64) __va(md->phys_addr);
			} else if (md->attribute & EFI_MEMORY_UC) {
				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
			} else if (md->attribute & EFI_MEMORY_WC) {
#if 0
				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
									   | _PAGE_D
									   | _PAGE_MA_WC
									   | _PAGE_PL_0
									   | _PAGE_AR_RW));
#else
				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
			} else if (md->attribute & EFI_MEMORY_WT) {
#if 0
				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
									   | _PAGE_D | _PAGE_MA_WT
									   | _PAGE_PL_0
									   | _PAGE_AR_RW));
#else
				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
			}
		}
	}

	status = efi_call_phys(__va(runtime->set_virtual_address_map),
			       ia64_boot_param->efi_memmap_size,
			       efi_desc_size, ia64_boot_param->efi_memdesc_version,
			       ia64_boot_param->efi_memmap);
	if (status != EFI_SUCCESS) {
		printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
		       "(status=%lu)\n", status);
		return;
	}

	/*
	 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
	 */
	efi.get_time = virt_get_time;
	efi.set_time = virt_set_time;
	efi.get_wakeup_time = virt_get_wakeup_time;
	efi.set_wakeup_time = virt_set_wakeup_time;
	efi.get_variable = virt_get_variable;
	efi.get_next_variable = virt_get_next_variable;
	efi.set_variable = virt_set_variable;
	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
	efi.reset_system = virt_reset_system;
}

/*
 * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
 * this type, other I/O port ranges should be described via ACPI.
 */
u64
efi_get_iobase (void)
{
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	u64 efi_desc_size;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;
		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
			if (md->attribute & EFI_MEMORY_UC)
				return md->phys_addr;
		}
	}
	return 0;
}

626 627
static struct kern_memdesc *
kern_memory_descriptor (unsigned long phys_addr)
L
Linus Torvalds 已提交
628
{
629
	struct kern_memdesc *md;
L
Linus Torvalds 已提交
630

631 632
	for (md = kern_memmap; md->start != ~0UL; md++) {
		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
633
			 return md;
L
Linus Torvalds 已提交
634
	}
K
Keith Owens 已提交
635
	return NULL;
L
Linus Torvalds 已提交
636 637
}

638 639
static efi_memory_desc_t *
efi_memory_descriptor (unsigned long phys_addr)
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648 649 650 651
{
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	u64 efi_desc_size;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;

652 653
		if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
			 return md;
L
Linus Torvalds 已提交
654
	}
K
Keith Owens 已提交
655
	return NULL;
L
Linus Torvalds 已提交
656
}
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

u32
efi_mem_type (unsigned long phys_addr)
{
	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);

	if (md)
		return md->type;
	return 0;
}

u64
efi_mem_attributes (unsigned long phys_addr)
{
	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);

	if (md)
		return md->attribute;
	return 0;
}
L
Linus Torvalds 已提交
677 678
EXPORT_SYMBOL(efi_mem_attributes);

679 680
u64
efi_mem_attribute (unsigned long phys_addr, unsigned long size)
681
{
682
	unsigned long end = phys_addr + size;
683
	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	u64 attr;

	if (!md)
		return 0;

	/*
	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
	 * the kernel that firmware needs this region mapped.
	 */
	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
	do {
		unsigned long md_end = efi_md_end(md);

		if (end <= md_end)
			return attr;

		md = efi_memory_descriptor(md_end);
		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
			return 0;
	} while (md);
	return 0;
}

u64
kern_mem_attribute (unsigned long phys_addr, unsigned long size)
{
	unsigned long end = phys_addr + size;
	struct kern_memdesc *md;
	u64 attr;
713

714
	/*
715 716
	 * This is a hack for ioremap calls before we set up kern_memmap.
	 * Maybe we should do efi_memmap_init() earlier instead.
717
	 */
718 719 720 721
	if (!kern_memmap) {
		attr = efi_mem_attribute(phys_addr, size);
		if (attr & EFI_MEMORY_WB)
			return EFI_MEMORY_WB;
722
		return 0;
723
	}
724

725 726 727 728 729
	md = kern_memory_descriptor(phys_addr);
	if (!md)
		return 0;

	attr = md->attribute;
730
	do {
731
		unsigned long md_end = kmd_end(md);
732 733

		if (end <= md_end)
734
			return attr;
735

736 737
		md = kern_memory_descriptor(md_end);
		if (!md || md->attribute != attr)
738
			return 0;
739 740 741
	} while (md);
	return 0;
}
742
EXPORT_SYMBOL(kern_mem_attribute);
743

L
Linus Torvalds 已提交
744
int
745
valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
L
Linus Torvalds 已提交
746
{
747 748 749 750 751 752 753 754 755 756 757 758
	u64 attr;

	/*
	 * /dev/mem reads and writes use copy_to_user(), which implicitly
	 * uses a granule-sized kernel identity mapping.  It's really
	 * only safe to do this for regions in kern_memmap.  For more
	 * details, see Documentation/ia64/aliasing.txt.
	 */
	attr = kern_mem_attribute(phys_addr, size);
	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
		return 1;
	return 0;
759
}
L
Linus Torvalds 已提交
760

761
int
762
valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
763
{
764 765 766 767 768 769 770
	/*
	 * MMIO regions are often missing from the EFI memory map.
	 * We must allow mmap of them for programs like X, so we
	 * currently can't do any useful validation.
	 */
	return 1;
}
L
Linus Torvalds 已提交
771

772 773 774 775 776 777
pgprot_t
phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
		     pgprot_t vma_prot)
{
	unsigned long phys_addr = pfn << PAGE_SHIFT;
	u64 attr;
L
Linus Torvalds 已提交
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	/*
	 * For /dev/mem mmap, we use user mappings, but if the region is
	 * in kern_memmap (and hence may be covered by a kernel mapping),
	 * we must use the same attribute as the kernel mapping.
	 */
	attr = kern_mem_attribute(phys_addr, size);
	if (attr & EFI_MEMORY_WB)
		return pgprot_cacheable(vma_prot);
	else if (attr & EFI_MEMORY_UC)
		return pgprot_noncached(vma_prot);

	/*
	 * Some chipsets don't support UC access to memory.  If
	 * WB is supported, we prefer that.
	 */
	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
		return pgprot_cacheable(vma_prot);

	return pgprot_noncached(vma_prot);
L
Linus Torvalds 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
}

int __init
efi_uart_console_only(void)
{
	efi_status_t status;
	char *s, name[] = "ConOut";
	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
	efi_char16_t *utf16, name_utf16[32];
	unsigned char data[1024];
	unsigned long size = sizeof(data);
	struct efi_generic_dev_path *hdr, *end_addr;
	int uart = 0;

	/* Convert to UTF-16 */
	utf16 = name_utf16;
	s = name;
	while (*s)
		*utf16++ = *s++ & 0x7f;
	*utf16 = 0;

	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
	if (status != EFI_SUCCESS) {
		printk(KERN_ERR "No EFI %s variable?\n", name);
		return 0;
	}

	hdr = (struct efi_generic_dev_path *) data;
	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
	while (hdr < end_addr) {
		if (hdr->type == EFI_DEV_MSG &&
		    hdr->sub_type == EFI_DEV_MSG_UART)
			uart = 1;
		else if (hdr->type == EFI_DEV_END_PATH ||
			  hdr->type == EFI_DEV_END_PATH2) {
			if (!uart)
				return 0;
			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
				return 1;
			uart = 0;
		}
		hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
	}
	printk(KERN_ERR "Malformed %s value\n", name);
	return 0;
}
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

/*
 * Look for the first granule aligned memory descriptor memory
 * that is big enough to hold EFI memory map. Make sure this
 * descriptor is atleast granule sized so it does not get trimmed
 */
struct kern_memdesc *
find_memmap_space (void)
{
	u64	contig_low=0, contig_high=0;
	u64	as = 0, ae;
	void *efi_map_start, *efi_map_end, *p, *q;
	efi_memory_desc_t *md, *pmd = NULL, *check_md;
	u64	space_needed, efi_desc_size;
	unsigned long total_mem = 0;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	/*
	 * Worst case: we need 3 kernel descriptors for each efi descriptor
	 * (if every entry has a WB part in the middle, and UC head and tail),
	 * plus one for the end marker.
	 */
	space_needed = sizeof(kern_memdesc_t) *
		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);

	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
		md = p;
		if (!efi_wb(md)) {
			continue;
		}
		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
			contig_low = GRANULEROUNDUP(md->phys_addr);
			contig_high = efi_md_end(md);
			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
				check_md = q;
				if (!efi_wb(check_md))
					break;
				if (contig_high != check_md->phys_addr)
					break;
				contig_high = efi_md_end(check_md);
			}
			contig_high = GRANULEROUNDDOWN(contig_high);
		}
		if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
			continue;

		/* Round ends inward to granule boundaries */
		as = max(contig_low, md->phys_addr);
		ae = min(contig_high, efi_md_end(md));

		/* keep within max_addr= command line arg */
		ae = min(ae, max_addr);
		if (ae <= as)
			continue;

		/* avoid going over mem= command line arg */
		if (total_mem + (ae - as) > mem_limit)
			ae -= total_mem + (ae - as) - mem_limit;

		if (ae <= as)
			continue;

		if (ae - as > space_needed)
			break;
	}
	if (p >= efi_map_end)
		panic("Can't allocate space for kernel memory descriptors");

	return __va(as);
}

/*
 * Walk the EFI memory map and gather all memory available for kernel
 * to use.  We can allocate partial granules only if the unavailable
 * parts exist, and are WB.
 */
void
efi_memmap_init(unsigned long *s, unsigned long *e)
{
K
Keith Owens 已提交
926
	struct kern_memdesc *k, *prev = NULL;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	u64	contig_low=0, contig_high=0;
	u64	as, ae, lim;
	void *efi_map_start, *efi_map_end, *p, *q;
	efi_memory_desc_t *md, *pmd = NULL, *check_md;
	u64	efi_desc_size;
	unsigned long total_mem = 0;

	k = kern_memmap = find_memmap_space();

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
		md = p;
		if (!efi_wb(md)) {
			if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
				    	   md->type == EFI_BOOT_SERVICES_DATA)) {
				k->attribute = EFI_MEMORY_UC;
				k->start = md->phys_addr;
				k->num_pages = md->num_pages;
				k++;
			}
			continue;
		}
		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
			contig_low = GRANULEROUNDUP(md->phys_addr);
			contig_high = efi_md_end(md);
			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
				check_md = q;
				if (!efi_wb(check_md))
					break;
				if (contig_high != check_md->phys_addr)
					break;
				contig_high = efi_md_end(check_md);
			}
			contig_high = GRANULEROUNDDOWN(contig_high);
		}
		if (!is_available_memory(md))
			continue;

		/*
		 * Round ends inward to granule boundaries
		 * Give trimmings to uncached allocator
		 */
		if (md->phys_addr < contig_low) {
			lim = min(efi_md_end(md), contig_low);
			if (efi_uc(md)) {
				if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
				    kmd_end(k-1) == md->phys_addr) {
					(k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
				} else {
					k->attribute = EFI_MEMORY_UC;
					k->start = md->phys_addr;
					k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
					k++;
				}
			}
			as = contig_low;
		} else
			as = md->phys_addr;

		if (efi_md_end(md) > contig_high) {
			lim = max(md->phys_addr, contig_high);
			if (efi_uc(md)) {
				if (lim == md->phys_addr && k > kern_memmap &&
				    (k-1)->attribute == EFI_MEMORY_UC &&
				    kmd_end(k-1) == md->phys_addr) {
					(k-1)->num_pages += md->num_pages;
				} else {
					k->attribute = EFI_MEMORY_UC;
					k->start = lim;
					k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
					k++;
				}
			}
			ae = contig_high;
		} else
			ae = efi_md_end(md);

		/* keep within max_addr= command line arg */
		ae = min(ae, max_addr);
		if (ae <= as)
			continue;

		/* avoid going over mem= command line arg */
		if (total_mem + (ae - as) > mem_limit)
			ae -= total_mem + (ae - as) - mem_limit;

		if (ae <= as)
			continue;
		if (prev && kmd_end(prev) == md->phys_addr) {
			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
			total_mem += ae - as;
			continue;
		}
		k->attribute = EFI_MEMORY_WB;
		k->start = as;
		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
		total_mem += ae - as;
		prev = k++;
	}
	k->start = ~0L; /* end-marker */

	/* reserve the memory we are using for kern_memmap */
	*s = (u64)kern_memmap;
	*e = (u64)++k;
}
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

void
efi_initialize_iomem_resources(struct resource *code_resource,
			       struct resource *data_resource)
{
	struct resource *res;
	void *efi_map_start, *efi_map_end, *p;
	efi_memory_desc_t *md;
	u64 efi_desc_size;
	char *name;
	unsigned long flags;

	efi_map_start = __va(ia64_boot_param->efi_memmap);
	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
	efi_desc_size = ia64_boot_param->efi_memdesc_size;

	res = NULL;

	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
		md = p;

		if (md->num_pages == 0) /* should not happen */
			continue;

		flags = IORESOURCE_MEM;
		switch (md->type) {

			case EFI_MEMORY_MAPPED_IO:
			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
				continue;

			case EFI_LOADER_CODE:
			case EFI_LOADER_DATA:
			case EFI_BOOT_SERVICES_DATA:
			case EFI_BOOT_SERVICES_CODE:
			case EFI_CONVENTIONAL_MEMORY:
				if (md->attribute & EFI_MEMORY_WP) {
					name = "System ROM";
					flags |= IORESOURCE_READONLY;
				} else {
					name = "System RAM";
				}
				break;

			case EFI_ACPI_MEMORY_NVS:
				name = "ACPI Non-volatile Storage";
				flags |= IORESOURCE_BUSY;
				break;

			case EFI_UNUSABLE_MEMORY:
				name = "reserved";
				flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
				break;

			case EFI_RESERVED_TYPE:
			case EFI_RUNTIME_SERVICES_CODE:
			case EFI_RUNTIME_SERVICES_DATA:
			case EFI_ACPI_RECLAIM_MEMORY:
			default:
				name = "reserved";
				flags |= IORESOURCE_BUSY;
				break;
		}

1099
		if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			printk(KERN_ERR "failed to alocate resource for iomem\n");
			return;
		}

		res->name = name;
		res->start = md->phys_addr;
		res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
		res->flags = flags;

		if (insert_resource(&iomem_resource, res) < 0)
			kfree(res);
		else {
			/*
			 * We don't know which region contains
			 * kernel data so we try it repeatedly and
			 * let the resource manager test it.
			 */
			insert_resource(res, code_resource);
			insert_resource(res, data_resource);
		}
	}
}