mmc_spi.c 38.4 KB
Newer Older
D
David Brownell 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
 *
 * (C) Copyright 2005, Intec Automation,
 *		Mike Lavender (mike@steroidmicros)
 * (C) Copyright 2006-2007, David Brownell
 * (C) Copyright 2007, Axis Communications,
 *		Hans-Peter Nilsson (hp@axis.com)
 * (C) Copyright 2007, ATRON electronic GmbH,
 *		Jan Nikitenko <jan.nikitenko@gmail.com>
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <linux/hrtimer.h>
#include <linux/delay.h>
29
#include <linux/bio.h>
D
David Brownell 已提交
30 31 32
#include <linux/dma-mapping.h>
#include <linux/crc7.h>
#include <linux/crc-itu-t.h>
A
Al Viro 已提交
33
#include <linux/scatterlist.h>
D
David Brownell 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */

#include <linux/spi/spi.h>
#include <linux/spi/mmc_spi.h>

#include <asm/unaligned.h>


/* NOTES:
 *
 * - For now, we won't try to interoperate with a real mmc/sd/sdio
 *   controller, although some of them do have hardware support for
 *   SPI protocol.  The main reason for such configs would be mmc-ish
 *   cards like DataFlash, which don't support that "native" protocol.
 *
 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
 *   switch between driver stacks, and in any case if "native" mode
 *   is available, it will be faster and hence preferable.
 *
 * - MMC depends on a different chipselect management policy than the
 *   SPI interface currently supports for shared bus segments:  it needs
 *   to issue multiple spi_message requests with the chipselect active,
 *   using the results of one message to decide the next one to issue.
 *
 *   Pending updates to the programming interface, this driver expects
 *   that it not share the bus with other drivers (precluding conflicts).
 *
 * - We tell the controller to keep the chipselect active from the
 *   beginning of an mmc_host_ops.request until the end.  So beware
 *   of SPI controller drivers that mis-handle the cs_change flag!
 *
 *   However, many cards seem OK with chipselect flapping up/down
 *   during that time ... at least on unshared bus segments.
 */


/*
 * Local protocol constants, internal to data block protocols.
 */

/* Response tokens used to ack each block written: */
#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)

/* Read and write blocks start with these tokens and end with crc;
 * on error, read tokens act like a subset of R2_SPI_* values.
 */
#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */

#define MMC_SPI_BLOCKSIZE	512


/* These fixed timeouts come from the latest SD specs, which say to ignore
 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
 * reads which takes nowhere near that long.  Older cards may be able to use
 * shorter timeouts ... but why bother?
 */
#define readblock_timeout	ktime_set(0, 100 * 1000 * 1000)
#define writeblock_timeout	ktime_set(0, 250 * 1000 * 1000)
#define r1b_timeout		ktime_set(3, 0)


/****************************************************************************/

/*
 * Local Data Structures
 */

/* "scratch" is per-{command,block} data exchanged with the card */
struct scratch {
	u8			status[29];
	u8			data_token;
	__be16			crc_val;
};

struct mmc_spi_host {
	struct mmc_host		*mmc;
	struct spi_device	*spi;

	unsigned char		power_mode;
	u16			powerup_msecs;

	struct mmc_spi_platform_data	*pdata;

	/* for bulk data transfers */
	struct spi_transfer	token, t, crc, early_status;
	struct spi_message	m;

	/* for status readback */
	struct spi_transfer	status;
	struct spi_message	readback;

	/* underlying DMA-aware controller, or null */
	struct device		*dma_dev;

	/* buffer used for commands and for message "overhead" */
	struct scratch		*data;
	dma_addr_t		data_dma;

	/* Specs say to write ones most of the time, even when the card
	 * has no need to read its input data; and many cards won't care.
	 * This is our source of those ones.
	 */
	void			*ones;
	dma_addr_t		ones_dma;
};


/****************************************************************************/

/*
 * MMC-over-SPI protocol glue, used by the MMC stack interface
 */

static inline int mmc_cs_off(struct mmc_spi_host *host)
{
	/* chipselect will always be inactive after setup() */
	return spi_setup(host->spi);
}

static int
mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
{
	int status;

	if (len > sizeof(*host->data)) {
		WARN_ON(1);
		return -EIO;
	}

	host->status.len = len;

	if (host->dma_dev)
		dma_sync_single_for_device(host->dma_dev,
				host->data_dma, sizeof(*host->data),
				DMA_FROM_DEVICE);

	status = spi_sync(host->spi, &host->readback);

	if (host->dma_dev)
		dma_sync_single_for_cpu(host->dma_dev,
				host->data_dma, sizeof(*host->data),
				DMA_FROM_DEVICE);

	return status;
}

static int
mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
{
	u8		*cp = host->data->status;

	timeout = ktime_add(timeout, ktime_get());

	while (1) {
		int		status;
		unsigned	i;

		status = mmc_spi_readbytes(host, n);
		if (status < 0)
			return status;

		for (i = 0; i < n; i++) {
			if (cp[i] != byte)
				return cp[i];
		}

		/* REVISIT investigate msleep() to avoid busy-wait I/O
		 * in at least some cases.
		 */
		if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
			break;
	}
	return -ETIMEDOUT;
}

static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
{
	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
}

static int mmc_spi_readtoken(struct mmc_spi_host *host)
{
	return mmc_spi_skip(host, readblock_timeout, 1, 0xff);
}


/*
 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 *
 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 * newer cards R7 (IF_COND).
 */

static char *maptype(struct mmc_command *cmd)
{
	switch (mmc_spi_resp_type(cmd)) {
	case MMC_RSP_SPI_R1:	return "R1";
	case MMC_RSP_SPI_R1B:	return "R1B";
	case MMC_RSP_SPI_R2:	return "R2/R5";
	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
	default:		return "?";
	}
}

/* return zero, else negative errno after setting cmd->error */
static int mmc_spi_response_get(struct mmc_spi_host *host,
		struct mmc_command *cmd, int cs_on)
{
	u8	*cp = host->data->status;
	u8	*end = cp + host->t.len;
	int	value = 0;
	char	tag[32];

	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
		cmd->opcode, maptype(cmd));

	/* Except for data block reads, the whole response will already
	 * be stored in the scratch buffer.  It's somewhere after the
	 * command and the first byte we read after it.  We ignore that
	 * first byte.  After STOP_TRANSMISSION command it may include
	 * two data bits, but otherwise it's all ones.
	 */
	cp += 8;
	while (cp < end && *cp == 0xff)
		cp++;

	/* Data block reads (R1 response types) may need more data... */
	if (cp == end) {
		unsigned	i;

		cp = host->data->status;

		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
		 * status byte ... and we already scanned 2 bytes.
		 *
		 * REVISIT block read paths use nasty byte-at-a-time I/O
		 * so it can always DMA directly into the target buffer.
		 * It'd probably be better to memcpy() the first chunk and
		 * avoid extra i/o calls...
		 */
		for (i = 2; i < 9; i++) {
			value = mmc_spi_readbytes(host, 1);
			if (value < 0)
				goto done;
			if (*cp != 0xff)
				goto checkstatus;
		}
		value = -ETIMEDOUT;
		goto done;
	}

checkstatus:
	if (*cp & 0x80) {
		dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
					tag, *cp);
		value = -EBADR;
		goto done;
	}

	cmd->resp[0] = *cp++;
	cmd->error = 0;

	/* Status byte: the entire seven-bit R1 response.  */
	if (cmd->resp[0] != 0) {
		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
					| R1_SPI_ILLEGAL_COMMAND)
				& cmd->resp[0])
			value = -EINVAL;
		else if (R1_SPI_COM_CRC & cmd->resp[0])
			value = -EILSEQ;
		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
				& cmd->resp[0])
			value = -EIO;
		/* else R1_SPI_IDLE, "it's resetting" */
	}

	switch (mmc_spi_resp_type(cmd)) {

	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
	 * and less-common stuff like various erase operations.
	 */
	case MMC_RSP_SPI_R1B:
		/* maybe we read all the busy tokens already */
		while (cp < end && *cp == 0)
			cp++;
		if (cp == end)
			mmc_spi_wait_unbusy(host, r1b_timeout);
		break;

	/* SPI R2 == R1 + second status byte; SEND_STATUS
	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
	 */
	case MMC_RSP_SPI_R2:
		cmd->resp[0] |= *cp << 8;
		break;

	/* SPI R3, R4, or R7 == R1 + 4 bytes */
	case MMC_RSP_SPI_R3:
343
		cmd->resp[1] = get_unaligned_be32(cp);
D
David Brownell 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		break;

	/* SPI R1 == just one status byte */
	case MMC_RSP_SPI_R1:
		break;

	default:
		dev_dbg(&host->spi->dev, "bad response type %04x\n",
				mmc_spi_resp_type(cmd));
		if (value >= 0)
			value = -EINVAL;
		goto done;
	}

	if (value < 0)
		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
			tag, cmd->resp[0], cmd->resp[1]);

	/* disable chipselect on errors and some success cases */
	if (value >= 0 && cs_on)
		return value;
done:
	if (value < 0)
		cmd->error = value;
	mmc_cs_off(host);
	return value;
}

/* Issue command and read its response.
 * Returns zero on success, negative for error.
 *
 * On error, caller must cope with mmc core retry mechanism.  That
 * means immediate low-level resubmit, which affects the bus lock...
 */
static int
mmc_spi_command_send(struct mmc_spi_host *host,
		struct mmc_request *mrq,
		struct mmc_command *cmd, int cs_on)
{
	struct scratch		*data = host->data;
	u8			*cp = data->status;
	u32			arg = cmd->arg;
	int			status;
	struct spi_transfer	*t;

	/* We can handle most commands (except block reads) in one full
	 * duplex I/O operation before either starting the next transfer
	 * (data block or command) or else deselecting the card.
	 *
	 * First, write 7 bytes:
	 *  - an all-ones byte to ensure the card is ready
	 *  - opcode byte (plus start and transmission bits)
	 *  - four bytes of big-endian argument
	 *  - crc7 (plus end bit) ... always computed, it's cheap
	 *
	 * We init the whole buffer to all-ones, which is what we need
	 * to write while we're reading (later) response data.
	 */
	memset(cp++, 0xff, sizeof(data->status));

	*cp++ = 0x40 | cmd->opcode;
	*cp++ = (u8)(arg >> 24);
	*cp++ = (u8)(arg >> 16);
	*cp++ = (u8)(arg >> 8);
	*cp++ = (u8)arg;
	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;

	/* Then, read up to 13 bytes (while writing all-ones):
	 *  - N(CR) (== 1..8) bytes of all-ones
	 *  - status byte (for all response types)
	 *  - the rest of the response, either:
	 *      + nothing, for R1 or R1B responses
	 *	+ second status byte, for R2 responses
	 *	+ four data bytes, for R3 and R7 responses
	 *
	 * Finally, read some more bytes ... in the nice cases we know in
	 * advance how many, and reading 1 more is always OK:
	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
	 *
	 * So in those cases one full duplex I/O of at most 21 bytes will
	 * handle the whole command, leaving the card ready to receive a
	 * data block or new command.  We do that whenever we can, shaving
	 * CPU and IRQ costs (especially when using DMA or FIFOs).
	 *
	 * There are two other cases, where it's not generally practical
	 * to rely on a single I/O:
	 *
	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
	 *
	 *    In this case we can *try* to fit it into one I/O, then
	 *    maybe read more data later.
	 *
	 *  - Data block reads are more troublesome, since a variable
	 *    number of padding bytes precede the token and data.
	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
	 *      + N(AC) (== 1..many) bytes of all-ones
	 *
	 *    In this case we currently only have minimal speedups here:
	 *    when N(CR) == 1 we can avoid I/O in response_get().
	 */
	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
		cp += 2;	/* min(N(CR)) + status */
		/* R1 */
	} else {
		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
			cp++;
		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
			cp += 4;
		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
			cp = data->status + sizeof(data->status);
		/* else:  R1 (most commands) */
	}

	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
		cmd->opcode, maptype(cmd));

	/* send command, leaving chipselect active */
	spi_message_init(&host->m);

	t = &host->t;
	memset(t, 0, sizeof(*t));
	t->tx_buf = t->rx_buf = data->status;
	t->tx_dma = t->rx_dma = host->data_dma;
	t->len = cp - data->status;
	t->cs_change = 1;
	spi_message_add_tail(t, &host->m);

	if (host->dma_dev) {
		host->m.is_dma_mapped = 1;
		dma_sync_single_for_device(host->dma_dev,
				host->data_dma, sizeof(*host->data),
				DMA_BIDIRECTIONAL);
	}
	status = spi_sync(host->spi, &host->m);

	if (host->dma_dev)
		dma_sync_single_for_cpu(host->dma_dev,
				host->data_dma, sizeof(*host->data),
				DMA_BIDIRECTIONAL);
	if (status < 0) {
		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
		cmd->error = status;
		return status;
	}

	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
	return mmc_spi_response_get(host, cmd, cs_on);
}

/* Build data message with up to four separate transfers.  For TX, we
 * start by writing the data token.  And in most cases, we finish with
 * a status transfer.
 *
 * We always provide TX data for data and CRC.  The MMC/SD protocol
 * requires us to write ones; but Linux defaults to writing zeroes;
 * so we explicitly initialize it to all ones on RX paths.
 *
 * We also handle DMA mapping, so the underlying SPI controller does
 * not need to (re)do it for each message.
 */
static void
mmc_spi_setup_data_message(
	struct mmc_spi_host	*host,
	int			multiple,
	enum dma_data_direction	direction)
{
	struct spi_transfer	*t;
	struct scratch		*scratch = host->data;
	dma_addr_t		dma = host->data_dma;

	spi_message_init(&host->m);
	if (dma)
		host->m.is_dma_mapped = 1;

	/* for reads, readblock() skips 0xff bytes before finding
	 * the token; for writes, this transfer issues that token.
	 */
	if (direction == DMA_TO_DEVICE) {
		t = &host->token;
		memset(t, 0, sizeof(*t));
		t->len = 1;
		if (multiple)
			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
		else
			scratch->data_token = SPI_TOKEN_SINGLE;
		t->tx_buf = &scratch->data_token;
		if (dma)
			t->tx_dma = dma + offsetof(struct scratch, data_token);
		spi_message_add_tail(t, &host->m);
	}

	/* Body of transfer is buffer, then CRC ...
	 * either TX-only, or RX with TX-ones.
	 */
	t = &host->t;
	memset(t, 0, sizeof(*t));
	t->tx_buf = host->ones;
	t->tx_dma = host->ones_dma;
	/* length and actual buffer info are written later */
	spi_message_add_tail(t, &host->m);

	t = &host->crc;
	memset(t, 0, sizeof(*t));
	t->len = 2;
	if (direction == DMA_TO_DEVICE) {
		/* the actual CRC may get written later */
		t->tx_buf = &scratch->crc_val;
		if (dma)
			t->tx_dma = dma + offsetof(struct scratch, crc_val);
	} else {
		t->tx_buf = host->ones;
		t->tx_dma = host->ones_dma;
		t->rx_buf = &scratch->crc_val;
		if (dma)
			t->rx_dma = dma + offsetof(struct scratch, crc_val);
	}
	spi_message_add_tail(t, &host->m);

	/*
	 * A single block read is followed by N(EC) [0+] all-ones bytes
	 * before deselect ... don't bother.
	 *
	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
	 * collect that single byte, so readblock() doesn't need to.
	 *
	 * For a write, the one-byte data response follows immediately, then
	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
	 * Then single block reads may deselect, and multiblock ones issue
	 * the next token (next data block, or STOP_TRAN).  We can try to
	 * minimize I/O ops by using a single read to collect end-of-busy.
	 */
	if (multiple || direction == DMA_TO_DEVICE) {
		t = &host->early_status;
		memset(t, 0, sizeof(*t));
		t->len = (direction == DMA_TO_DEVICE)
				? sizeof(scratch->status)
				: 1;
		t->tx_buf = host->ones;
		t->tx_dma = host->ones_dma;
		t->rx_buf = scratch->status;
		if (dma)
			t->rx_dma = dma + offsetof(struct scratch, status);
		t->cs_change = 1;
		spi_message_add_tail(t, &host->m);
	}
}

/*
 * Write one block:
 *  - caller handled preceding N(WR) [1+] all-ones bytes
 *  - data block
 *	+ token
 *	+ data bytes
 *	+ crc16
 *  - an all-ones byte ... card writes a data-response byte
 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 *
 * Return negative errno, else success.
 */
static int
mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t)
{
	struct spi_device	*spi = host->spi;
	int			status, i;
	struct scratch		*scratch = host->data;

	if (host->mmc->use_spi_crc)
		scratch->crc_val = cpu_to_be16(
				crc_itu_t(0, t->tx_buf, t->len));
	if (host->dma_dev)
		dma_sync_single_for_device(host->dma_dev,
				host->data_dma, sizeof(*scratch),
				DMA_BIDIRECTIONAL);

	status = spi_sync(spi, &host->m);

	if (status != 0) {
		dev_dbg(&spi->dev, "write error (%d)\n", status);
		return status;
	}

	if (host->dma_dev)
		dma_sync_single_for_cpu(host->dma_dev,
				host->data_dma, sizeof(*scratch),
				DMA_BIDIRECTIONAL);

	/*
	 * Get the transmission data-response reply.  It must follow
	 * immediately after the data block we transferred.  This reply
	 * doesn't necessarily tell whether the write operation succeeded;
	 * it just says if the transmission was ok and whether *earlier*
	 * writes succeeded; see the standard.
	 */
	switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
	case SPI_RESPONSE_ACCEPTED:
		status = 0;
		break;
	case SPI_RESPONSE_CRC_ERR:
		/* host shall then issue MMC_STOP_TRANSMISSION */
		status = -EILSEQ;
		break;
	case SPI_RESPONSE_WRITE_ERR:
		/* host shall then issue MMC_STOP_TRANSMISSION,
		 * and should MMC_SEND_STATUS to sort it out
		 */
		status = -EIO;
		break;
	default:
		status = -EPROTO;
		break;
	}
	if (status != 0) {
		dev_dbg(&spi->dev, "write error %02x (%d)\n",
			scratch->status[0], status);
		return status;
	}

	t->tx_buf += t->len;
	if (host->dma_dev)
		t->tx_dma += t->len;

	/* Return when not busy.  If we didn't collect that status yet,
	 * we'll need some more I/O.
	 */
	for (i = 1; i < sizeof(scratch->status); i++) {
		if (scratch->status[i] != 0)
			return 0;
	}
	return mmc_spi_wait_unbusy(host, writeblock_timeout);
}

/*
 * Read one block:
 *  - skip leading all-ones bytes ... either
 *      + N(AC) [1..f(clock,CSD)] usually, else
 *      + N(CX) [0..8] when reading CSD or CID
 *  - data block
 *	+ token ... if error token, no data or crc
 *	+ data bytes
 *	+ crc16
 *
 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 * before dropping chipselect.
 *
 * For multiblock reads, caller either reads the next block or issues a
 * STOP_TRANSMISSION command.
 */
static int
mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t)
{
	struct spi_device	*spi = host->spi;
	int			status;
	struct scratch		*scratch = host->data;

	/* At least one SD card sends an all-zeroes byte when N(CX)
	 * applies, before the all-ones bytes ... just cope with that.
	 */
	status = mmc_spi_readbytes(host, 1);
	if (status < 0)
		return status;
	status = scratch->status[0];
	if (status == 0xff || status == 0)
		status = mmc_spi_readtoken(host);

	if (status == SPI_TOKEN_SINGLE) {
		if (host->dma_dev) {
			dma_sync_single_for_device(host->dma_dev,
					host->data_dma, sizeof(*scratch),
					DMA_BIDIRECTIONAL);
			dma_sync_single_for_device(host->dma_dev,
					t->rx_dma, t->len,
					DMA_FROM_DEVICE);
		}

		status = spi_sync(spi, &host->m);

		if (host->dma_dev) {
			dma_sync_single_for_cpu(host->dma_dev,
					host->data_dma, sizeof(*scratch),
					DMA_BIDIRECTIONAL);
			dma_sync_single_for_cpu(host->dma_dev,
					t->rx_dma, t->len,
					DMA_FROM_DEVICE);
		}

	} else {
		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);

		/* we've read extra garbage, timed out, etc */
		if (status < 0)
			return status;

		/* low four bits are an R2 subset, fifth seems to be
		 * vendor specific ... map them all to generic error..
		 */
		return -EIO;
	}

	if (host->mmc->use_spi_crc) {
		u16 crc = crc_itu_t(0, t->rx_buf, t->len);

		be16_to_cpus(&scratch->crc_val);
		if (scratch->crc_val != crc) {
			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
					"computed=0x%04x len=%d\n",
					scratch->crc_val, crc, t->len);
			return -EILSEQ;
		}
	}

	t->rx_buf += t->len;
	if (host->dma_dev)
		t->rx_dma += t->len;

	return 0;
}

/*
 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 * and inline handshaking.  That handhaking makes it unlike most
 * other SPI protocol stacks.
 */
static void
mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
		struct mmc_data *data, u32 blk_size)
{
	struct spi_device	*spi = host->spi;
	struct device		*dma_dev = host->dma_dev;
	struct spi_transfer	*t;
	enum dma_data_direction	direction;
	struct scatterlist	*sg;
	unsigned		n_sg;
	int			multiple = (data->blocks > 1);

	if (data->flags & MMC_DATA_READ)
		direction = DMA_FROM_DEVICE;
	else
		direction = DMA_TO_DEVICE;
	mmc_spi_setup_data_message(host, multiple, direction);
	t = &host->t;

	/* Handle scatterlist segments one at a time, with synch for
	 * each 512-byte block
	 */
	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
		int			status = 0;
		dma_addr_t		dma_addr = 0;
		void			*kmap_addr;
		unsigned		length = sg->length;
		enum dma_data_direction	dir = direction;

		/* set up dma mapping for controller drivers that might
		 * use DMA ... though they may fall back to PIO
		 */
		if (dma_dev) {
			/* never invalidate whole *shared* pages ... */
			if ((sg->offset != 0 || length != PAGE_SIZE)
					&& dir == DMA_FROM_DEVICE)
				dir = DMA_BIDIRECTIONAL;

J
Jens Axboe 已提交
808
			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
D
David Brownell 已提交
809 810 811 812 813 814 815 816
						PAGE_SIZE, dir);
			if (direction == DMA_TO_DEVICE)
				t->tx_dma = dma_addr + sg->offset;
			else
				t->rx_dma = dma_addr + sg->offset;
		}

		/* allow pio too; we don't allow highmem */
J
Jens Axboe 已提交
817
		kmap_addr = kmap(sg_page(sg));
D
David Brownell 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		if (direction == DMA_TO_DEVICE)
			t->tx_buf = kmap_addr + sg->offset;
		else
			t->rx_buf = kmap_addr + sg->offset;

		/* transfer each block, and update request status */
		while (length) {
			t->len = min(length, blk_size);

			dev_dbg(&host->spi->dev,
				"    mmc_spi: %s block, %d bytes\n",
				(direction == DMA_TO_DEVICE)
				? "write"
				: "read",
				t->len);

			if (direction == DMA_TO_DEVICE)
				status = mmc_spi_writeblock(host, t);
			else
				status = mmc_spi_readblock(host, t);
			if (status < 0)
				break;

			data->bytes_xfered += t->len;
			length -= t->len;

			if (!multiple)
				break;
		}

		/* discard mappings */
		if (direction == DMA_FROM_DEVICE)
J
Jens Axboe 已提交
850 851
			flush_kernel_dcache_page(sg_page(sg));
		kunmap(sg_page(sg));
D
David Brownell 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		if (dma_dev)
			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);

		if (status < 0) {
			data->error = status;
			dev_dbg(&spi->dev, "%s status %d\n",
				(direction == DMA_TO_DEVICE)
					? "write" : "read",
				status);
			break;
		}
	}

	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
	 * can be issued before multiblock writes.  Unlike its more widely
	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
	 * that can affect the STOP_TRAN logic.   Complete (and current)
	 * MMC specs should sort that out before Linux starts using CMD23.
	 */
	if (direction == DMA_TO_DEVICE && multiple) {
		struct scratch	*scratch = host->data;
		int		tmp;
		const unsigned	statlen = sizeof(scratch->status);

		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");

		/* Tweak the per-block message we set up earlier by morphing
		 * it to hold single buffer with the token followed by some
		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
		 * "not busy any longer" status, and leave chip selected.
		 */
		INIT_LIST_HEAD(&host->m.transfers);
		list_add(&host->early_status.transfer_list,
				&host->m.transfers);

		memset(scratch->status, 0xff, statlen);
		scratch->status[0] = SPI_TOKEN_STOP_TRAN;

		host->early_status.tx_buf = host->early_status.rx_buf;
		host->early_status.tx_dma = host->early_status.rx_dma;
		host->early_status.len = statlen;

		if (host->dma_dev)
			dma_sync_single_for_device(host->dma_dev,
					host->data_dma, sizeof(*scratch),
					DMA_BIDIRECTIONAL);

		tmp = spi_sync(spi, &host->m);

		if (host->dma_dev)
			dma_sync_single_for_cpu(host->dma_dev,
					host->data_dma, sizeof(*scratch),
					DMA_BIDIRECTIONAL);

		if (tmp < 0) {
			if (!data->error)
				data->error = tmp;
			return;
		}

		/* Ideally we collected "not busy" status with one I/O,
		 * avoiding wasteful byte-at-a-time scanning... but more
		 * I/O is often needed.
		 */
		for (tmp = 2; tmp < statlen; tmp++) {
			if (scratch->status[tmp] != 0)
				return;
		}
		tmp = mmc_spi_wait_unbusy(host, writeblock_timeout);
		if (tmp < 0 && !data->error)
			data->error = tmp;
	}
}

/****************************************************************************/

/*
 * MMC driver implementation -- the interface to the MMC stack
 */

static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct mmc_spi_host	*host = mmc_priv(mmc);
	int			status = -EINVAL;

#ifdef DEBUG
	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
	{
		struct mmc_command	*cmd;
		int			invalid = 0;

		cmd = mrq->cmd;
		if (!mmc_spi_resp_type(cmd)) {
			dev_dbg(&host->spi->dev, "bogus command\n");
			cmd->error = -EINVAL;
			invalid = 1;
		}

		cmd = mrq->stop;
		if (cmd && !mmc_spi_resp_type(cmd)) {
			dev_dbg(&host->spi->dev, "bogus STOP command\n");
			cmd->error = -EINVAL;
			invalid = 1;
		}

		if (invalid) {
			dump_stack();
			mmc_request_done(host->mmc, mrq);
			return;
		}
	}
#endif

	/* issue command; then optionally data and stop */
	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
	if (status == 0 && mrq->data) {
		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
		if (mrq->stop)
			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
		else
			mmc_cs_off(host);
	}

	mmc_request_done(host->mmc, mrq);
}

/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
 *
 * NOTE that here we can't know that the card has just been powered up;
 * not all MMC/SD sockets support power switching.
 *
 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
 * this doesn't seem to do the right thing at all...
 */
static void mmc_spi_initsequence(struct mmc_spi_host *host)
{
	/* Try to be very sure any previous command has completed;
	 * wait till not-busy, skip debris from any old commands.
	 */
	mmc_spi_wait_unbusy(host, r1b_timeout);
	mmc_spi_readbytes(host, 10);

	/*
	 * Do a burst with chipselect active-high.  We need to do this to
	 * meet the requirement of 74 clock cycles with both chipselect
	 * and CMD (MOSI) high before CMD0 ... after the card has been
	 * powered up to Vdd(min), and so is ready to take commands.
	 *
	 * Some cards are particularly needy of this (e.g. Viking "SD256")
	 * while most others don't seem to care.
	 *
	 * Note that this is one of the places MMC/SD plays games with the
	 * SPI protocol.  Another is that when chipselect is released while
	 * the card returns BUSY status, the clock must issue several cycles
	 * with chipselect high before the card will stop driving its output.
	 */
	host->spi->mode |= SPI_CS_HIGH;
	if (spi_setup(host->spi) != 0) {
		/* Just warn; most cards work without it. */
		dev_warn(&host->spi->dev,
				"can't change chip-select polarity\n");
		host->spi->mode &= ~SPI_CS_HIGH;
	} else {
		mmc_spi_readbytes(host, 18);

		host->spi->mode &= ~SPI_CS_HIGH;
		if (spi_setup(host->spi) != 0) {
			/* Wot, we can't get the same setup we had before? */
			dev_err(&host->spi->dev,
					"can't restore chip-select polarity\n");
		}
	}
}

static char *mmc_powerstring(u8 power_mode)
{
	switch (power_mode) {
	case MMC_POWER_OFF: return "off";
	case MMC_POWER_UP:  return "up";
	case MMC_POWER_ON:  return "on";
	}
	return "?";
}

static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct mmc_spi_host *host = mmc_priv(mmc);

	if (host->power_mode != ios->power_mode) {
		int		canpower;

		canpower = host->pdata && host->pdata->setpower;

		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
				mmc_powerstring(ios->power_mode),
				ios->vdd,
				canpower ? ", can switch" : "");

		/* switch power on/off if possible, accounting for
		 * max 250msec powerup time if needed.
		 */
		if (canpower) {
			switch (ios->power_mode) {
			case MMC_POWER_OFF:
			case MMC_POWER_UP:
				host->pdata->setpower(&host->spi->dev,
						ios->vdd);
				if (ios->power_mode == MMC_POWER_UP)
					msleep(host->powerup_msecs);
			}
		}

		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
		if (ios->power_mode == MMC_POWER_ON)
			mmc_spi_initsequence(host);

		/* If powering down, ground all card inputs to avoid power
		 * delivery from data lines!  On a shared SPI bus, this
		 * will probably be temporary; 6.4.2 of the simplified SD
		 * spec says this must last at least 1msec.
		 *
		 *   - Clock low means CPOL 0, e.g. mode 0
		 *   - MOSI low comes from writing zero
		 *   - Chipselect is usually active low...
		 */
		if (canpower && ios->power_mode == MMC_POWER_OFF) {
			int mres;

			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
			mres = spi_setup(host->spi);
			if (mres < 0)
				dev_dbg(&host->spi->dev,
					"switch to SPI mode 0 failed\n");

			if (spi_w8r8(host->spi, 0x00) < 0)
				dev_dbg(&host->spi->dev,
					"put spi signals to low failed\n");

			/*
			 * Now clock should be low due to spi mode 0;
			 * MOSI should be low because of written 0x00;
			 * chipselect should be low (it is active low)
			 * power supply is off, so now MMC is off too!
			 *
			 * FIXME no, chipselect can be high since the
			 * device is inactive and SPI_CS_HIGH is clear...
			 */
			msleep(10);
			if (mres == 0) {
				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
				mres = spi_setup(host->spi);
				if (mres < 0)
					dev_dbg(&host->spi->dev,
						"switch back to SPI mode 3"
						" failed\n");
			}
		}

		host->power_mode = ios->power_mode;
	}

	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
		int		status;

		host->spi->max_speed_hz = ios->clock;
		status = spi_setup(host->spi);
		dev_dbg(&host->spi->dev,
			"mmc_spi:  clock to %d Hz, %d\n",
			host->spi->max_speed_hz, status);
	}
}

static int mmc_spi_get_ro(struct mmc_host *mmc)
{
	struct mmc_spi_host *host = mmc_priv(mmc);

	if (host->pdata && host->pdata->get_ro)
		return host->pdata->get_ro(mmc->parent);
	/* board doesn't support read only detection; assume writeable */
	return 0;
}

1134 1135 1136 1137 1138 1139 1140 1141
static int mmc_spi_get_cd(struct mmc_host *mmc)
{
	struct mmc_spi_host *host = mmc_priv(mmc);

	if (host->pdata && host->pdata->get_cd)
		return !!host->pdata->get_cd(mmc->parent);
	return -ENOSYS;
}
D
David Brownell 已提交
1142 1143 1144 1145 1146

static const struct mmc_host_ops mmc_spi_ops = {
	.request	= mmc_spi_request,
	.set_ios	= mmc_spi_set_ios,
	.get_ro		= mmc_spi_get_ro,
1147
	.get_cd		= mmc_spi_get_cd,
D
David Brownell 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
};


/****************************************************************************/

/*
 * SPI driver implementation
 */

static irqreturn_t
mmc_spi_detect_irq(int irq, void *mmc)
{
	struct mmc_spi_host *host = mmc_priv(mmc);
	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);

	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
	return IRQ_HANDLED;
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
struct count_children {
	unsigned	n;
	struct bus_type	*bus;
};

static int maybe_count_child(struct device *dev, void *c)
{
	struct count_children *ccp = c;

	if (dev->bus == ccp->bus) {
		if (ccp->n)
			return -EBUSY;
		ccp->n++;
	}
	return 0;
}

D
David Brownell 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static int mmc_spi_probe(struct spi_device *spi)
{
	void			*ones;
	struct mmc_host		*mmc;
	struct mmc_spi_host	*host;
	int			status;

	/* MMC and SD specs only seem to care that sampling is on the
	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
	 * should be legit.  We'll use mode 0 since it seems to be a
	 * bit less troublesome on some hardware ... unclear why.
	 */
	spi->mode = SPI_MODE_0;
	spi->bits_per_word = 8;

	status = spi_setup(spi);
	if (status < 0) {
		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
				spi->mode, spi->max_speed_hz / 1000,
				status);
		return status;
	}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	/* We can use the bus safely iff nobody else will interfere with us.
	 * Most commands consist of one SPI message to issue a command, then
	 * several more to collect its response, then possibly more for data
	 * transfer.  Clocking access to other devices during that period will
	 * corrupt the command execution.
	 *
	 * Until we have software primitives which guarantee non-interference,
	 * we'll aim for a hardware-level guarantee.
	 *
	 * REVISIT we can't guarantee another device won't be added later...
D
David Brownell 已提交
1217 1218
	 */
	if (spi->master->num_chipselect > 1) {
1219
		struct count_children cc;
D
David Brownell 已提交
1220

1221 1222 1223 1224
		cc.n = 0;
		cc.bus = spi->dev.bus;
		status = device_for_each_child(spi->dev.parent, &cc,
				maybe_count_child);
D
David Brownell 已提交
1225 1226 1227 1228 1229
		if (status < 0) {
			dev_err(&spi->dev, "can't share SPI bus\n");
			return status;
		}

1230
		dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
D
David Brownell 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	}

	/* We need a supply of ones to transmit.  This is the only time
	 * the CPU touches these, so cache coherency isn't a concern.
	 *
	 * NOTE if many systems use more than one MMC-over-SPI connector
	 * it'd save some memory to share this.  That's evidently rare.
	 */
	status = -ENOMEM;
	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
	if (!ones)
		goto nomem;
	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);

	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
	if (!mmc)
		goto nomem;

	mmc->ops = &mmc_spi_ops;
	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;

	/* As long as we keep track of the number of successfully
	 * transmitted blocks, we're good for multiwrite.
	 */
	mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE;

	/* SPI doesn't need the lowspeed device identification thing for
	 * MMC or SD cards, since it never comes up in open drain mode.
	 * That's good; some SPI masters can't handle very low speeds!
	 *
	 * However, low speed SDIO cards need not handle over 400 KHz;
	 * that's the only reason not to use a few MHz for f_min (until
	 * the upper layer reads the target frequency from the CSD).
	 */
	mmc->f_min = 400000;
	mmc->f_max = spi->max_speed_hz;

	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->spi = spi;

	host->ones = ones;

	/* Platform data is used to hook up things like card sensing
	 * and power switching gpios.
	 */
	host->pdata = spi->dev.platform_data;
	if (host->pdata)
		mmc->ocr_avail = host->pdata->ocr_mask;
	if (!mmc->ocr_avail) {
		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
	}
	if (host->pdata && host->pdata->setpower) {
		host->powerup_msecs = host->pdata->powerup_msecs;
		if (!host->powerup_msecs || host->powerup_msecs > 250)
			host->powerup_msecs = 250;
	}

	dev_set_drvdata(&spi->dev, mmc);

	/* preallocate dma buffers */
	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
	if (!host->data)
		goto fail_nobuf1;

T
Tony Jones 已提交
1297 1298
	if (spi->master->dev.parent->dma_mask) {
		struct device	*dev = spi->master->dev.parent;
D
David Brownell 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

		host->dma_dev = dev;
		host->ones_dma = dma_map_single(dev, ones,
				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
		host->data_dma = dma_map_single(dev, host->data,
				sizeof(*host->data), DMA_BIDIRECTIONAL);

		/* REVISIT in theory those map operations can fail... */

		dma_sync_single_for_cpu(host->dma_dev,
				host->data_dma, sizeof(*host->data),
				DMA_BIDIRECTIONAL);
	}

	/* setup message for status/busy readback */
	spi_message_init(&host->readback);
	host->readback.is_dma_mapped = (host->dma_dev != NULL);

	spi_message_add_tail(&host->status, &host->readback);
	host->status.tx_buf = host->ones;
	host->status.tx_dma = host->ones_dma;
	host->status.rx_buf = &host->data->status;
	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
	host->status.cs_change = 1;

	/* register card detect irq */
	if (host->pdata && host->pdata->init) {
		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
		if (status != 0)
			goto fail_glue_init;
	}

1331 1332 1333 1334
	/* pass platform capabilities, if any */
	if (host->pdata)
		mmc->caps |= host->pdata->caps;

D
David Brownell 已提交
1335 1336 1337 1338
	status = mmc_add_host(mmc);
	if (status != 0)
		goto fail_add_host;

1339
	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
D
David Brownell 已提交
1340 1341 1342 1343 1344
			mmc->class_dev.bus_id,
			host->dma_dev ? "" : ", no DMA",
			(host->pdata && host->pdata->get_ro)
				? "" : ", no WP",
			(host->pdata && host->pdata->setpower)
1345 1346 1347
				? "" : ", no poweroff",
			(mmc->caps & MMC_CAP_NEEDS_POLL)
				? ", cd polling" : "");
D
David Brownell 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	return 0;

fail_add_host:
	mmc_remove_host (mmc);
fail_glue_init:
	if (host->dma_dev)
		dma_unmap_single(host->dma_dev, host->data_dma,
				sizeof(*host->data), DMA_BIDIRECTIONAL);
	kfree(host->data);

fail_nobuf1:
	mmc_free_host(mmc);
	dev_set_drvdata(&spi->dev, NULL);

nomem:
	kfree(ones);
	return status;
}


static int __devexit mmc_spi_remove(struct spi_device *spi)
{
	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
	struct mmc_spi_host	*host;

	if (mmc) {
		host = mmc_priv(mmc);

		/* prevent new mmc_detect_change() calls */
		if (host->pdata && host->pdata->exit)
			host->pdata->exit(&spi->dev, mmc);

		mmc_remove_host(mmc);

		if (host->dma_dev) {
			dma_unmap_single(host->dma_dev, host->ones_dma,
				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
			dma_unmap_single(host->dma_dev, host->data_dma,
				sizeof(*host->data), DMA_BIDIRECTIONAL);
		}

		kfree(host->data);
		kfree(host->ones);

		spi->max_speed_hz = mmc->f_max;
		mmc_free_host(mmc);
		dev_set_drvdata(&spi->dev, NULL);
	}
	return 0;
}


static struct spi_driver mmc_spi_driver = {
	.driver = {
		.name =		"mmc_spi",
		.bus =		&spi_bus_type,
		.owner =	THIS_MODULE,
	},
	.probe =	mmc_spi_probe,
	.remove =	__devexit_p(mmc_spi_remove),
};


static int __init mmc_spi_init(void)
{
	return spi_register_driver(&mmc_spi_driver);
}
module_init(mmc_spi_init);


static void __exit mmc_spi_exit(void)
{
	spi_unregister_driver(&mmc_spi_driver);
}
module_exit(mmc_spi_exit);


MODULE_AUTHOR("Mike Lavender, David Brownell, "
		"Hans-Peter Nilsson, Jan Nikitenko");
MODULE_DESCRIPTION("SPI SD/MMC host driver");
MODULE_LICENSE("GPL");