fsi.c 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/delay.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <sound/soc.h>
#include <sound/sh_fsi.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
33 34
#define OUT_SEL		0x0030
#define REG_END		OUT_SEL
35

36 37
#define A_MST_CTLR	0x0180
#define B_MST_CTLR	0x01A0
38 39 40
#define CPU_INT_ST	0x01F4
#define CPU_IEMSK	0x01F8
#define CPU_IMSK	0x01FC
41 42 43 44 45 46
#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
47
#define FIFO_SZ		0x0218
48
#define MREG_START	A_MST_CTLR
49
#define MREG_END	FIFO_SZ
50 51 52

/* DO_FMT */
/* DI_FMT */
53 54 55 56 57 58
#define CR_MONO		(0x0 << 4)
#define CR_MONO_D	(0x1 << 4)
#define CR_PCM		(0x2 << 4)
#define CR_I2S		(0x3 << 4)
#define CR_TDM		(0x4 << 4)
#define CR_TDM_D	(0x5 << 4)
59
#define CR_SPDIF	0x00100120
60 61 62 63 64 65 66 67 68

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
69
#define ST_ERR		(ERR_OVER | ERR_UNDER)
70

71 72 73 74
/* CKG1 */
#define ACKMD_MASK	0x00007000
#define BPFMD_MASK	0x00000700

75 76 77 78
/* A/B MST_CTLR */
#define BP	(1 << 4)	/* Fix the signal of Biphase output */
#define SE	(1 << 0)	/* Fix the master clock */

79 80 81 82 83 84 85 86 87 88
/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

89 90 91 92 93 94
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

95 96 97 98 99
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

100 101 102 103
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

104 105 106
/*
 *		struct
 */
107 108 109 110

struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
111
	struct fsi_master *master;
112 113 114 115 116 117 118 119

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
120 121

	u32 mst_ctrl;
122 123
};

124 125 126
struct fsi_core {
	int ver;

127 128 129 130 131
	u32 int_st;
	u32 iemsk;
	u32 imsk;
};

132 133 134 135 136
struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
137
	struct fsi_core *core;
138
	struct sh_fsi_platform_info *info;
139
	spinlock_t lock;
140 141
};

142 143 144
/*
 *		basic read write function
 */
145

146
static void __fsi_reg_write(u32 reg, u32 data)
147 148 149 150
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

151
	__raw_writel(data, reg);
152 153 154 155
}

static u32 __fsi_reg_read(u32 reg)
{
156
	return __raw_readl(reg);
157 158
}

159
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
160 161 162 163 164 165
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

166
	__fsi_reg_write(reg, val);
167 168
}

169
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
170
{
171 172
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
173
		return;
174
	}
175

176
	__fsi_reg_write((u32)(fsi->base + reg), data);
177 178 179 180
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
181 182
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
183
		return 0;
184
	}
185 186 187 188

	return __fsi_reg_read((u32)(fsi->base + reg));
}

189
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
190
{
191 192
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
193
		return;
194
	}
195

196
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
197 198
}

199
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
200
{
201 202
	unsigned long flags;

203
	if ((reg < MREG_START) ||
204 205
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
206
		return;
207
	}
208

209
	spin_lock_irqsave(&master->lock, flags);
210
	__fsi_reg_write((u32)(master->base + reg), data);
211
	spin_unlock_irqrestore(&master->lock, flags);
212 213
}

214
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
215
{
216 217 218
	u32 ret;
	unsigned long flags;

219
	if ((reg < MREG_START) ||
220 221
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
222
		return 0;
223
	}
224

225 226 227 228 229
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
230 231
}

232
static void fsi_master_mask_set(struct fsi_master *master,
233
			       u32 reg, u32 mask, u32 data)
234
{
235 236
	unsigned long flags;

237
	if ((reg < MREG_START) ||
238 239
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
240
		return;
241
	}
242

243
	spin_lock_irqsave(&master->lock, flags);
244
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
245
	spin_unlock_irqrestore(&master->lock, flags);
246 247
}

248 249 250
/*
 *		basic function
 */
251

252
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
253
{
254
	return fsi->master;
255 256 257 258
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
259 260
	return fsi->master->base == fsi->base;
}
261

262
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
263 264
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
265

266
	return  rtd->cpu_dai;
267 268 269 270 271
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
272
	struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
273

274 275 276 277
	if (dai->id == 0)
		return &master->fsia;
	else
		return &master->fsib;
278 279 280 281 282
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
283
	struct fsi_master *master = fsi_get_master(fsi);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

351 352 353 354
/*
 *		dma function
 */

355 356 357 358 359
static u8 *fsi_dma_get_area(struct fsi_priv *fsi)
{
	return fsi->substream->runtime->dma_area + fsi->byte_offset;
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static void fsi_dma_soft_push16(struct fsi_priv *fsi, int size)
{
	u16 *start;
	int i;

	start  = (u16 *)fsi_dma_get_area(fsi);

	for (i = 0; i < size; i++)
		fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
}

static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int size)
{
	u16 *start;
	int i;

	start  = (u16 *)fsi_dma_get_area(fsi);

	for (i = 0; i < size; i++)
		*(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
}

static void fsi_dma_soft_push32(struct fsi_priv *fsi, int size)
{
	u32 *start;
	int i;

	start  = (u32 *)fsi_dma_get_area(fsi);

	for (i = 0; i < size; i++)
		fsi_reg_write(fsi, DODT, *(start + i));
}

static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int size)
{
	u32 *start;
	int i;

	start  = (u32 *)fsi_dma_get_area(fsi);

	for (i = 0; i < size; i++)
		*(start + i) = fsi_reg_read(fsi, DIDT);
}

404 405 406
/*
 *		irq function
 */
407 408 409 410

static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
411
	struct fsi_master *master = fsi_get_master(fsi);
412

413 414
	fsi_master_mask_set(master, master->core->imsk,  data, data);
	fsi_master_mask_set(master, master->core->iemsk, data, data);
415 416 417 418 419
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
420
	struct fsi_master *master = fsi_get_master(fsi);
421

422 423
	fsi_master_mask_set(master, master->core->imsk,  data, 0);
	fsi_master_mask_set(master, master->core->iemsk, data, 0);
424 425
}

426 427
static u32 fsi_irq_get_status(struct fsi_master *master)
{
428
	return fsi_master_read(master, master->core->int_st);
429 430 431 432
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
433
	fsi_master_write(master, master->core->int_st, 0);
434 435
}

436 437 438 439 440 441 442 443 444
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
445
	fsi_master_mask_set(master, master->core->int_st, data, 0);
446 447
}

448 449 450 451 452
/*
 *		SPDIF master clock function
 *
 * These functions are used later FSI2
 */
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	struct fsi_master *master = fsi_get_master(fsi);
	u32 val = BP | SE;

	if (master->core->ver < 2) {
		pr_err("fsi: register access err (%s)\n", __func__);
		return;
	}

	if (enable)
		fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
	else
		fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
}

469 470 471
/*
 *		ctrl function
 */
472

473 474 475
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
476
	struct fsi_master *master = fsi_get_master(fsi);
477 478

	if (enable)
479
		fsi_master_mask_set(master, CLK_RST, val, val);
480
	else
481
		fsi_master_mask_set(master, CLK_RST, val, 0);
482 483
}

484 485 486
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
487
{
488 489
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;
490

491 492 493 494 495 496
	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
	fsi->fifo_max = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
	for (i = 1; i < fsi->chan; i <<= 1)
		fsi->fifo_max >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
520 521 522 523 524 525 526 527 528 529

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

530
static void fsi_soft_all_reset(struct fsi_master *master)
531 532
{
	/* port AB reset */
533
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
534 535 536
	mdelay(10);

	/* soft reset */
537 538
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
539 540 541 542
	mdelay(10);
}

/* playback interrupt */
543
static int fsi_data_push(struct fsi_priv *fsi, int startup)
544 545 546
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
547
	u32 status;
548 549 550
	int send;
	int fifo_free;
	int width;
551
	int over_period;
552 553 554 555 556 557

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

558 559 560
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
561 562 563 564 565 566 567

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

568
		over_period = 1;
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

588 589
	switch (width) {
	case 2:
590
		fsi_dma_soft_push16(fsi, send);
591 592
		break;
	case 4:
593
		fsi_dma_soft_push32(fsi, send);
594 595
		break;
	default:
596
		return -EINVAL;
597
	}
598 599 600

	fsi->byte_offset += send * width;

601
	status = fsi_reg_read(fsi, DOFF_ST);
602
	if (!startup) {
603
		struct snd_soc_dai *dai = fsi_get_dai(substream);
604 605 606 607 608

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
609
	}
610
	fsi_reg_write(fsi, DOFF_ST, 0);
611

612 613
	fsi_irq_enable(fsi, 1);

614
	if (over_period)
615 616
		snd_pcm_period_elapsed(substream);

617
	return 0;
618 619
}

620
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
621 622 623
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
624
	u32 status;
625 626 627
	int free;
	int fifo_fill;
	int width;
628
	int over_period;
629 630 631 632 633 634

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

635 636 637
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
638 639 640 641 642 643 644

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

645
		over_period = 1;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	switch (width) {
	case 2:
666
		fsi_dma_soft_pop16(fsi, fifo_fill);
667 668
		break;
	case 4:
669
		fsi_dma_soft_pop32(fsi, fifo_fill);
670 671 672 673 674 675 676
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

677
	status = fsi_reg_read(fsi, DIFF_ST);
678
	if (!startup) {
679
		struct snd_soc_dai *dai = fsi_get_dai(substream);
680 681 682 683 684

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
685
	}
686
	fsi_reg_write(fsi, DIFF_ST, 0);
687

688 689
	fsi_irq_enable(fsi, 0);

690
	if (over_period)
691 692
		snd_pcm_period_elapsed(substream);

693
	return 0;
694 695
}

696 697
static irqreturn_t fsi_interrupt(int irq, void *data)
{
698
	struct fsi_master *master = data;
699
	u32 int_st = fsi_irq_get_status(master);
700 701

	/* clear irq status */
702 703
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
704 705

	if (int_st & INT_A_OUT)
706
		fsi_data_push(&master->fsia, 0);
707
	if (int_st & INT_B_OUT)
708
		fsi_data_push(&master->fsib, 0);
709
	if (int_st & INT_A_IN)
710
		fsi_data_pop(&master->fsia, 0);
711
	if (int_st & INT_B_IN)
712
		fsi_data_pop(&master->fsib, 0);
713

714
	fsi_irq_clear_all_status(master);
715 716 717 718

	return IRQ_HANDLED;
}

719 720 721
/*
 *		dai ops
 */
722 723 724 725

static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
726
	struct fsi_priv *fsi = fsi_get_priv(substream);
727
	u32 flags = fsi_get_info_flags(fsi);
728
	struct fsi_master *master = fsi_get_master(fsi);
729 730 731 732 733 734 735
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

736
	pm_runtime_get_sync(dai->dev);
737 738 739 740 741 742 743 744 745 746 747

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
748 749 750 751 752 753 754 755 756
	if (SH_FSI_LRM_INV & flags)
		data |= 1 << 12;
	if (SH_FSI_BRM_INV & flags)
		data |= 1 << 8;
	if (SH_FSI_LRS_INV & flags)
		data |= 1 << 4;
	if (SH_FSI_BRS_INV & flags)
		data |= 1 << 0;

757 758 759 760 761 762 763 764
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
765
		data = CR_MONO;
766 767 768
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
769
		data = CR_MONO_D;
770 771 772
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
773
		data = CR_PCM;
774 775 776
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
777
		data = CR_I2S;
778 779 780 781 782
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
783
		data = CR_TDM | (fsi->chan - 1);
784 785 786 787
		break;
	case SH_FSI_FMT_TDM_DELAY:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
788
		data = CR_TDM_D | (fsi->chan - 1);
789
		break;
790 791 792 793 794 795 796 797 798 799
	case SH_FSI_FMT_SPDIF:
		if (master->core->ver < 2) {
			dev_err(dai->dev, "This FSI can not use SPDIF\n");
			return -EINVAL;
		}
		data = CR_SPDIF;
		fsi->chan = 2;
		fsi_spdif_clk_ctrl(fsi, 1);
		fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
		break;
800 801 802 803 804 805
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

806 807 808 809 810
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
811
	fsi_fifo_init(fsi, is_play, dai);
812 813 814 815 816 817 818

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
819
	struct fsi_priv *fsi = fsi_get_priv(substream);
820 821 822 823 824
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

825
	pm_runtime_put_sync(dai->dev);
826 827 828 829 830
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
831
	struct fsi_priv *fsi = fsi_get_priv(substream);
832 833 834 835 836 837 838 839 840
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
841
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
842 843 844 845 846 847 848 849 850 851
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *params,
			     struct snd_soc_dai *dai)
{
	struct fsi_priv *fsi = fsi_get_priv(substream);
	struct fsi_master *master = fsi_get_master(fsi);
	int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
	int fsi_ver = master->core->ver;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int ret;

	/* if slave mode, set_rate is not needed */
	if (!fsi_is_master_mode(fsi, is_play))
		return 0;

	/* it is error if no set_rate */
	if (!set_rate)
		return -EIO;

	ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
	if (ret > 0) {
		u32 data = 0;

		switch (ret & SH_FSI_ACKMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_ACKMD_512:
			data |= (0x0 << 12);
			break;
		case SH_FSI_ACKMD_256:
			data |= (0x1 << 12);
			break;
		case SH_FSI_ACKMD_128:
			data |= (0x2 << 12);
			break;
		case SH_FSI_ACKMD_64:
			data |= (0x3 << 12);
			break;
		case SH_FSI_ACKMD_32:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x4 << 12);
			break;
		}

		switch (ret & SH_FSI_BPFMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_BPFMD_32:
			data |= (0x0 << 8);
			break;
		case SH_FSI_BPFMD_64:
			data |= (0x1 << 8);
			break;
		case SH_FSI_BPFMD_128:
			data |= (0x2 << 8);
			break;
		case SH_FSI_BPFMD_256:
			data |= (0x3 << 8);
			break;
		case SH_FSI_BPFMD_512:
			data |= (0x4 << 8);
			break;
		case SH_FSI_BPFMD_16:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x7 << 8);
			break;
		}

		fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
		udelay(10);
		fsi_clk_ctrl(fsi, 1);
		ret = 0;
	}

	return ret;

}

934 935 936 937
static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
938
	.hw_params	= fsi_dai_hw_params,
939 940
};

941 942 943
/*
 *		pcm ops
 */
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
992
	struct fsi_priv *fsi = fsi_get_priv(substream);
993 994
	long location;

995
	location = (fsi->byte_offset - 1);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

1010 1011 1012
/*
 *		snd_soc_platform
 */
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

1037 1038 1039
/*
 *		alsa struct
 */
1040

1041
static struct snd_soc_dai_driver fsi_soc_dai[] = {
1042
	{
1043
		.name			= "fsia-dai",
1044 1045 1046 1047 1048 1049
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1050 1051 1052 1053 1054 1055
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1056 1057 1058
		.ops = &fsi_dai_ops,
	},
	{
1059
		.name			= "fsib-dai",
1060 1061 1062 1063 1064 1065
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1066 1067 1068 1069 1070 1071
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1072 1073 1074 1075
		.ops = &fsi_dai_ops,
	},
};

1076 1077
static struct snd_soc_platform_driver fsi_soc_platform = {
	.ops		= &fsi_pcm_ops,
1078 1079 1080 1081
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};

1082 1083 1084
/*
 *		platform function
 */
1085 1086 1087

static int fsi_probe(struct platform_device *pdev)
{
1088
	struct fsi_master *master;
1089
	const struct platform_device_id	*id_entry;
1090 1091 1092 1093
	struct resource *res;
	unsigned int irq;
	int ret;

1094 1095 1096 1097 1098 1099
	id_entry = pdev->id_entry;
	if (!id_entry) {
		dev_err(&pdev->dev, "unknown fsi device\n");
		return -ENODEV;
	}

1100 1101
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1102
	if (!res || (int)irq <= 0) {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

1122
	/* master setting */
1123 1124
	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
1125 1126 1127 1128
	master->core		= (struct fsi_core *)id_entry->driver_data;
	spin_lock_init(&master->lock);

	/* FSI A setting */
1129
	master->fsia.base	= master->base;
1130
	master->fsia.master	= master;
1131 1132 1133
	master->fsia.mst_ctrl	= A_MST_CTLR;

	/* FSI B setting */
1134
	master->fsib.base	= master->base + 0x40;
1135
	master->fsib.master	= master;
1136
	master->fsib.mst_ctrl	= B_MST_CTLR;
1137

1138 1139
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1140
	dev_set_drvdata(&pdev->dev, master);
1141

1142
	fsi_soft_all_reset(master);
1143

1144 1145
	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
			  id_entry->name, master);
1146 1147
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1148
		goto exit_iounmap;
1149 1150
	}

1151
	ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
1152 1153 1154 1155 1156
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

1157
	return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
1158 1159 1160 1161 1162

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1163
	pm_runtime_disable(&pdev->dev);
1164 1165 1166 1167 1168 1169 1170 1171 1172
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1173 1174
	struct fsi_master *master;

1175
	master = dev_get_drvdata(&pdev->dev);
1176

1177 1178
	snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&pdev->dev);
1179

1180
	pm_runtime_disable(&pdev->dev);
1181 1182 1183 1184 1185

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1186

1187 1188 1189
	return 0;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1207 1208 1209 1210
static struct fsi_core fsi1_core = {
	.ver	= 1,

	/* Interrupt */
1211 1212 1213 1214 1215
	.int_st	= INT_ST,
	.iemsk	= IEMSK,
	.imsk	= IMSK,
};

1216 1217 1218 1219
static struct fsi_core fsi2_core = {
	.ver	= 2,

	/* Interrupt */
1220 1221 1222 1223 1224 1225
	.int_st	= CPU_INT_ST,
	.iemsk	= CPU_IEMSK,
	.imsk	= CPU_IMSK,
};

static struct platform_device_id fsi_id_table[] = {
1226 1227
	{ "sh_fsi",	(kernel_ulong_t)&fsi1_core },
	{ "sh_fsi2",	(kernel_ulong_t)&fsi2_core },
1228
};
1229
MODULE_DEVICE_TABLE(platform, fsi_id_table);
1230

1231 1232
static struct platform_driver fsi_driver = {
	.driver 	= {
1233
		.name	= "fsi-pcm-audio",
1234
		.pm	= &fsi_pm_ops,
1235 1236 1237
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
1238
	.id_table	= fsi_id_table,
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
1250

1251 1252 1253 1254 1255 1256
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");