tx.c 41.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
/*
 * Atheros CARL9170 driver
 *
 * 802.11 xmit & status routines
 *
 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, see
 * http://www.gnu.org/licenses/.
 *
 * This file incorporates work covered by the following copyright and
 * permission notice:
 *    Copyright (c) 2007-2008 Atheros Communications, Inc.
 *
 *    Permission to use, copy, modify, and/or distribute this software for any
 *    purpose with or without fee is hereby granted, provided that the above
 *    copyright notice and this permission notice appear in all copies.
 *
 *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include "carl9170.h"
#include "hw.h"
#include "cmd.h"

static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
						unsigned int queue)
{
	if (unlikely(modparam_noht)) {
		return queue;
	} else {
		/*
		 * This is just another workaround, until
		 * someone figures out how to get QoS and
		 * AMPDU to play nicely together.
		 */

		return 2;		/* AC_BE */
	}
}

static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
					      struct sk_buff *skb)
{
	return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
}

static bool is_mem_full(struct ar9170 *ar)
{
	return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
		atomic_read(&ar->mem_free_blocks));
}

static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
{
	int queue, i;
	bool mem_full;

	atomic_inc(&ar->tx_total_queued);

	queue = skb_get_queue_mapping(skb);
	spin_lock_bh(&ar->tx_stats_lock);

	/*
	 * The driver has to accept the frame, regardless if the queue is
	 * full to the brim, or not. We have to do the queuing internally,
	 * since mac80211 assumes that a driver which can operate with
	 * aggregated frames does not reject frames for this reason.
	 */
	ar->tx_stats[queue].len++;
	ar->tx_stats[queue].count++;

	mem_full = is_mem_full(ar);
	for (i = 0; i < ar->hw->queues; i++) {
		if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
			ieee80211_stop_queue(ar->hw, i);
			ar->queue_stop_timeout[i] = jiffies;
		}
	}

	spin_unlock_bh(&ar->tx_stats_lock);
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/* needs rcu_read_lock */
static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
						   struct sk_buff *skb)
{
	struct _carl9170_tx_superframe *super = (void *) skb->data;
	struct ieee80211_hdr *hdr = (void *) super->frame_data;
	struct ieee80211_vif *vif;
	unsigned int vif_id;

	vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
		 CARL9170_TX_SUPER_MISC_VIF_ID_S;

	if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
		return NULL;

	vif = rcu_dereference(ar->vif_priv[vif_id].vif);
	if (unlikely(!vif))
		return NULL;

	/*
	 * Normally we should use wrappers like ieee80211_get_DA to get
	 * the correct peer ieee80211_sta.
	 *
	 * But there is a problem with indirect traffic (broadcasts, or
	 * data which is designated for other stations) in station mode.
	 * The frame will be directed to the AP for distribution and not
	 * to the actual destination.
	 */

	return ieee80211_find_sta(vif, hdr->addr1);
}

static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
{
	struct ieee80211_sta *sta;
	struct carl9170_sta_info *sta_info;

	rcu_read_lock();
	sta = __carl9170_get_tx_sta(ar, skb);
	if (unlikely(!sta))
		goto out_rcu;

	sta_info = (struct carl9170_sta_info *) sta->drv_priv;
	if (atomic_dec_return(&sta_info->pending_frames) == 0)
		ieee80211_sta_block_awake(ar->hw, sta, false);

out_rcu:
	rcu_read_unlock();
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
{
	int queue;

	queue = skb_get_queue_mapping(skb);

	spin_lock_bh(&ar->tx_stats_lock);

	ar->tx_stats[queue].len--;

	if (!is_mem_full(ar)) {
		unsigned int i;
		for (i = 0; i < ar->hw->queues; i++) {
			if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
				continue;

			if (ieee80211_queue_stopped(ar->hw, i)) {
				unsigned long tmp;

				tmp = jiffies - ar->queue_stop_timeout[i];
				if (tmp > ar->max_queue_stop_timeout[i])
					ar->max_queue_stop_timeout[i] = tmp;
			}

			ieee80211_wake_queue(ar->hw, i);
		}
	}

	spin_unlock_bh(&ar->tx_stats_lock);
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	if (atomic_dec_and_test(&ar->tx_total_queued))
		complete(&ar->tx_flush);
}

static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
{
	struct _carl9170_tx_superframe *super = (void *) skb->data;
	unsigned int chunks;
	int cookie = -1;

	atomic_inc(&ar->mem_allocs);

	chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
	if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
		atomic_add(chunks, &ar->mem_free_blocks);
		return -ENOSPC;
	}

	spin_lock_bh(&ar->mem_lock);
	cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
	spin_unlock_bh(&ar->mem_lock);

	if (unlikely(cookie < 0)) {
		atomic_add(chunks, &ar->mem_free_blocks);
		return -ENOSPC;
	}

	super = (void *) skb->data;

	/*
	 * Cookie #0 serves two special purposes:
	 *  1. The firmware might use it generate BlockACK frames
	 *     in responds of an incoming BlockAckReqs.
	 *
	 *  2. Prevent double-free bugs.
	 */
	super->s.cookie = (u8) cookie + 1;
	return 0;
}

static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
{
	struct _carl9170_tx_superframe *super = (void *) skb->data;
	int cookie;

	/* make a local copy of the cookie */
	cookie = super->s.cookie;
	/* invalidate cookie */
	super->s.cookie = 0;

	/*
	 * Do a out-of-bounds check on the cookie:
	 *
	 *  * cookie "0" is reserved and won't be assigned to any
	 *    out-going frame. Internally however, it is used to
	 *    mark no longer/un-accounted frames and serves as a
	 *    cheap way of preventing frames from being freed
	 *    twice by _accident_. NB: There is a tiny race...
	 *
	 *  * obviously, cookie number is limited by the amount
	 *    of available memory blocks, so the number can
	 *    never execeed the mem_blocks count.
	 */
	if (unlikely(WARN_ON_ONCE(cookie == 0) ||
	    WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
		return;

	atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
		   &ar->mem_free_blocks);

	spin_lock_bh(&ar->mem_lock);
	bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
	spin_unlock_bh(&ar->mem_lock);
}

/* Called from any context */
static void carl9170_tx_release(struct kref *ref)
{
	struct ar9170 *ar;
	struct carl9170_tx_info *arinfo;
	struct ieee80211_tx_info *txinfo;
	struct sk_buff *skb;

	arinfo = container_of(ref, struct carl9170_tx_info, ref);
	txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
			      rate_driver_data);
	skb = container_of((void *) txinfo, struct sk_buff, cb);

	ar = arinfo->ar;
	if (WARN_ON_ONCE(!ar))
		return;

	BUILD_BUG_ON(
280
	    offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
281

282
	memset(&txinfo->status.ack_signal, 0,
283
	       sizeof(struct ieee80211_tx_info) -
284
	       offsetof(struct ieee80211_tx_info, status.ack_signal));
285 286 287 288 289 290 291 292 293

	if (atomic_read(&ar->tx_total_queued))
		ar->tx_schedule = true;

	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
		if (!atomic_read(&ar->tx_ampdu_upload))
			ar->tx_ampdu_schedule = true;

		if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
C
Christian Lamparter 已提交
294 295 296 297 298
			struct _carl9170_tx_superframe *super;

			super = (void *)skb->data;
			txinfo->status.ampdu_len = super->s.rix;
			txinfo->status.ampdu_ack_len = super->s.cnt;
299 300
		} else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
			   !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
301 302 303 304 305 306 307 308 309 310 311
			/*
			 * drop redundant tx_status reports:
			 *
			 * 1. ampdu_ack_len of the final tx_status does
			 *    include the feedback of this particular frame.
			 *
			 * 2. tx_status_irqsafe only queues up to 128
			 *    tx feedback reports and discards the rest.
			 *
			 * 3. minstrel_ht is picky, it only accepts
			 *    reports of frames with the TX_STATUS_AMPDU flag.
312 313 314
			 *
			 * 4. mac80211 is not particularly interested in
			 *    feedback either [CTL_REQ_TX_STATUS not set]
315 316
			 */

317
			ieee80211_free_txskb(ar->hw, skb);
318 319 320
			return;
		} else {
			/*
321 322
			 * Either the frame transmission has failed or
			 * mac80211 requested tx status.
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
			 */
		}
	}

	skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
	ieee80211_tx_status_irqsafe(ar->hw, skb);
}

void carl9170_tx_get_skb(struct sk_buff *skb)
{
	struct carl9170_tx_info *arinfo = (void *)
		(IEEE80211_SKB_CB(skb))->rate_driver_data;
	kref_get(&arinfo->ref);
}

int carl9170_tx_put_skb(struct sk_buff *skb)
{
	struct carl9170_tx_info *arinfo = (void *)
		(IEEE80211_SKB_CB(skb))->rate_driver_data;

	return kref_put(&arinfo->ref, carl9170_tx_release);
}

/* Caller must hold the tid_info->lock & rcu_read_lock */
static void carl9170_tx_shift_bm(struct ar9170 *ar,
	struct carl9170_sta_tid *tid_info, u16 seq)
{
	u16 off;

	off = SEQ_DIFF(seq, tid_info->bsn);

	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
		return;

	/*
	 * Sanity check. For each MPDU we set the bit in bitmap and
	 * clear it once we received the tx_status.
	 * But if the bit is already cleared then we've been bitten
	 * by a bug.
	 */
	WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));

	off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
		return;

	if (!bitmap_empty(tid_info->bitmap, off))
		off = find_first_bit(tid_info->bitmap, off);

	tid_info->bsn += off;
	tid_info->bsn &= 0x0fff;

	bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
			   off, CARL9170_BAW_BITS);
}

static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
	struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
{
	struct _carl9170_tx_superframe *super = (void *) skb->data;
	struct ieee80211_hdr *hdr = (void *) super->frame_data;
	struct ieee80211_sta *sta;
385
	struct carl9170_sta_info *sta_info;
386 387 388 389
	struct carl9170_sta_tid *tid_info;
	u8 tid;

	if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390
	    txinfo->flags & IEEE80211_TX_CTL_INJECTED)
391 392 393
		return;

	rcu_read_lock();
394
	sta = __carl9170_get_tx_sta(ar, skb);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	if (unlikely(!sta))
		goto out_rcu;

	tid = get_tid_h(hdr);

	sta_info = (void *) sta->drv_priv;
	tid_info = rcu_dereference(sta_info->agg[tid]);
	if (!tid_info)
		goto out_rcu;

	spin_lock_bh(&tid_info->lock);
	if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
		carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));

	if (sta_info->stats[tid].clear) {
		sta_info->stats[tid].clear = false;
411
		sta_info->stats[tid].req = false;
412 413 414 415 416 417 418 419
		sta_info->stats[tid].ampdu_len = 0;
		sta_info->stats[tid].ampdu_ack_len = 0;
	}

	sta_info->stats[tid].ampdu_len++;
	if (txinfo->status.rates[0].count == 1)
		sta_info->stats[tid].ampdu_ack_len++;

420 421 422
	if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
		sta_info->stats[tid].req = true;

423
	if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
C
Christian Lamparter 已提交
424 425
		super->s.rix = sta_info->stats[tid].ampdu_len;
		super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
426
		txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
427 428 429
		if (sta_info->stats[tid].req)
			txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;

430 431 432 433 434 435 436 437
		sta_info->stats[tid].clear = true;
	}
	spin_unlock_bh(&tid_info->lock);

out_rcu:
	rcu_read_unlock();
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
	struct ieee80211_tx_info *tx_info)
{
	struct _carl9170_tx_superframe *super = (void *) skb->data;
	struct ieee80211_bar *bar = (void *) super->frame_data;

	/*
	 * Unlike all other frames, the status report for BARs does
	 * not directly come from the hardware as it is incapable of
	 * matching a BA to a previously send BAR.
	 * Instead the RX-path will scan for incoming BAs and set the
	 * IEEE80211_TX_STAT_ACK if it sees one that was likely
	 * caused by a BAR from us.
	 */

	if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
	   !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
		struct carl9170_bar_list_entry *entry;
		int queue = skb_get_queue_mapping(skb);

		rcu_read_lock();
		list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
			if (entry->skb == skb) {
				spin_lock_bh(&ar->bar_list_lock[queue]);
				list_del_rcu(&entry->list);
				spin_unlock_bh(&ar->bar_list_lock[queue]);
				kfree_rcu(entry, head);
				goto out;
			}
		}

		WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
		       queue, bar->ra, bar->ta, bar->control,
			bar->start_seq_num);
out:
		rcu_read_unlock();
	}
}

477 478 479 480 481 482 483 484 485
void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
			const bool success)
{
	struct ieee80211_tx_info *txinfo;

	carl9170_tx_accounting_free(ar, skb);

	txinfo = IEEE80211_SKB_CB(skb);

486 487
	carl9170_tx_bar_status(ar, skb, txinfo);

488 489 490 491 492 493 494 495
	if (success)
		txinfo->flags |= IEEE80211_TX_STAT_ACK;
	else
		ar->tx_ack_failures++;

	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
		carl9170_tx_status_process_ampdu(ar, skb, txinfo);

496
	carl9170_tx_ps_unblock(ar, skb);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	carl9170_tx_put_skb(skb);
}

/* This function may be called form any context */
void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
{
	struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);

	atomic_dec(&ar->tx_total_pending);

	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
		atomic_dec(&ar->tx_ampdu_upload);

	if (carl9170_tx_put_skb(skb))
		tasklet_hi_schedule(&ar->usb_tasklet);
}

static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
					       struct sk_buff_head *queue)
{
	struct sk_buff *skb;

	spin_lock_bh(&queue->lock);
	skb_queue_walk(queue, skb) {
		struct _carl9170_tx_superframe *txc = (void *) skb->data;

		if (txc->s.cookie != cookie)
			continue;

		__skb_unlink(skb, queue);
		spin_unlock_bh(&queue->lock);

		carl9170_release_dev_space(ar, skb);
		return skb;
	}
	spin_unlock_bh(&queue->lock);

	return NULL;
}

static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
	unsigned int tries, struct ieee80211_tx_info *txinfo)
{
	unsigned int i;

	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
		if (txinfo->status.rates[i].idx < 0)
			break;

		if (i == rix) {
			txinfo->status.rates[i].count = tries;
			i++;
			break;
		}
	}

	for (; i < IEEE80211_TX_MAX_RATES; i++) {
		txinfo->status.rates[i].idx = -1;
		txinfo->status.rates[i].count = 0;
	}
}

static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
{
	int i;
	struct sk_buff *skb;
	struct ieee80211_tx_info *txinfo;
	struct carl9170_tx_info *arinfo;
	bool restart = false;

	for (i = 0; i < ar->hw->queues; i++) {
		spin_lock_bh(&ar->tx_status[i].lock);

		skb = skb_peek(&ar->tx_status[i]);

		if (!skb)
			goto next;

		txinfo = IEEE80211_SKB_CB(skb);
		arinfo = (void *) txinfo->rate_driver_data;

		if (time_is_before_jiffies(arinfo->timeout +
		    msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
			restart = true;

next:
		spin_unlock_bh(&ar->tx_status[i].lock);
	}

	if (restart) {
		/*
		 * At least one queue has been stuck for long enough.
		 * Give the device a kick and hope it gets back to
		 * work.
		 *
		 * possible reasons may include:
		 *  - frames got lost/corrupted (bad connection to the device)
		 *  - stalled rx processing/usb controller hiccups
		 *  - firmware errors/bugs
		 *  - every bug you can think of.
		 *  - all bugs you can't...
		 *  - ...
		 */
		carl9170_restart(ar, CARL9170_RR_STUCK_TX);
	}
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
{
	struct carl9170_sta_tid *iter;
	struct sk_buff *skb;
	struct ieee80211_tx_info *txinfo;
	struct carl9170_tx_info *arinfo;
	struct ieee80211_sta *sta;

	rcu_read_lock();
	list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
		if (iter->state < CARL9170_TID_STATE_IDLE)
			continue;

		spin_lock_bh(&iter->lock);
		skb = skb_peek(&iter->queue);
		if (!skb)
			goto unlock;

		txinfo = IEEE80211_SKB_CB(skb);
		arinfo = (void *)txinfo->rate_driver_data;
		if (time_is_after_jiffies(arinfo->timeout +
		    msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
			goto unlock;

628
		sta = __carl9170_get_tx_sta(ar, skb);
629 630 631 632 633 634 635 636 637 638 639
		if (WARN_ON(!sta))
			goto unlock;

		ieee80211_stop_tx_ba_session(sta, iter->tid);
unlock:
		spin_unlock_bh(&iter->lock);

	}
	rcu_read_unlock();
}

640 641 642 643 644 645 646 647 648 649
void carl9170_tx_janitor(struct work_struct *work)
{
	struct ar9170 *ar = container_of(work, struct ar9170,
					 tx_janitor.work);
	if (!IS_STARTED(ar))
		return;

	ar->tx_janitor_last_run = jiffies;

	carl9170_check_queue_stop_timeout(ar);
650
	carl9170_tx_ampdu_timeout(ar);
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	if (!atomic_read(&ar->tx_total_queued))
		return;

	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
}

static void __carl9170_tx_process_status(struct ar9170 *ar,
	const uint8_t cookie, const uint8_t info)
{
	struct sk_buff *skb;
	struct ieee80211_tx_info *txinfo;
	unsigned int r, t, q;
	bool success = true;

	q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];

	skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
	if (!skb) {
		/*
		 * We have lost the race to another thread.
		 */

		return ;
	}

	txinfo = IEEE80211_SKB_CB(skb);

	if (!(info & CARL9170_TX_STATUS_SUCCESS))
		success = false;

	r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
	t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;

	carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
	carl9170_tx_status(ar, skb, success);
}

void carl9170_tx_process_status(struct ar9170 *ar,
				const struct carl9170_rsp *cmd)
{
	unsigned int i;

	for (i = 0;  i < cmd->hdr.ext; i++) {
		if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
			print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
					     (void *) cmd, cmd->hdr.len + 4);
			break;
		}

		__carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
					     cmd->_tx_status[i].info);
	}
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
	struct ieee80211_tx_info *info,	struct ieee80211_tx_rate *txrate,
	unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
{
	struct ieee80211_rate *rate = NULL;
	u8 *txpower;
	unsigned int idx;

	idx = txrate->idx;
	*tpc = 0;
	*phyrate = 0;

	if (txrate->flags & IEEE80211_TX_RC_MCS) {
		if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
			/* +1 dBm for HT40 */
			*tpc += 2;

			if (info->band == IEEE80211_BAND_2GHZ)
				txpower = ar->power_2G_ht40;
			else
				txpower = ar->power_5G_ht40;
		} else {
			if (info->band == IEEE80211_BAND_2GHZ)
				txpower = ar->power_2G_ht20;
			else
				txpower = ar->power_5G_ht20;
		}

		*phyrate = txrate->idx;
		*tpc += txpower[idx & 7];
	} else {
		if (info->band == IEEE80211_BAND_2GHZ) {
			if (idx < 4)
				txpower = ar->power_2G_cck;
			else
				txpower = ar->power_2G_ofdm;
		} else {
			txpower = ar->power_5G_leg;
			idx += 4;
		}

		rate = &__carl9170_ratetable[idx];
		*tpc += txpower[(rate->hw_value & 0x30) >> 4];
		*phyrate = rate->hw_value & 0xf;
	}

	if (ar->eeprom.tx_mask == 1) {
		*chains = AR9170_TX_PHY_TXCHAIN_1;
	} else {
		if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
		    rate && rate->bitrate >= 360)
			*chains = AR9170_TX_PHY_TXCHAIN_1;
		else
			*chains = AR9170_TX_PHY_TXCHAIN_2;
	}
762 763

	*tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
764 765
}

766 767 768
static __le32 carl9170_tx_physet(struct ar9170 *ar,
	struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
{
769
	unsigned int power = 0, chains = 0, phyrate = 0;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	__le32 tmp;

	tmp = cpu_to_le32(0);

	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
			AR9170_TX_PHY_BW_S);
	/* this works because 40 MHz is 2 and dup is 3 */
	if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
			AR9170_TX_PHY_BW_S);

	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
		tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);

	if (txrate->flags & IEEE80211_TX_RC_MCS) {
786
		SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
787 788

		/* heavy clip control */
789
		tmp |= cpu_to_le32((txrate->idx & 0x7) <<
790 791 792 793 794 795 796 797 798 799 800
			AR9170_TX_PHY_TX_HEAVY_CLIP_S);

		tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);

		/*
		 * green field preamble does not work.
		 *
		 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
		 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
		 */
	} else {
801 802 803 804 805
		if (info->band == IEEE80211_BAND_2GHZ) {
			if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
			else
				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
806
		} else {
807
			tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
808 809 810 811 812 813 814 815 816
		}

		/*
		 * short preamble seems to be broken too.
		 *
		 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
		 *	tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
		 */
	}
817 818
	carl9170_tx_rate_tpc_chains(ar, info, txrate,
				    &phyrate, &power, &chains);
819

820 821 822
	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	return tmp;
}

static bool carl9170_tx_rts_check(struct ar9170 *ar,
				  struct ieee80211_tx_rate *rate,
				  bool ampdu, bool multi)
{
	switch (ar->erp_mode) {
	case CARL9170_ERP_AUTO:
		if (ampdu)
			break;

	case CARL9170_ERP_MAC80211:
		if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
			break;

	case CARL9170_ERP_RTS:
		if (likely(!multi))
			return true;

	default:
		break;
	}

	return false;
}

static bool carl9170_tx_cts_check(struct ar9170 *ar,
				  struct ieee80211_tx_rate *rate)
{
	switch (ar->erp_mode) {
	case CARL9170_ERP_AUTO:
	case CARL9170_ERP_MAC80211:
		if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
			break;

	case CARL9170_ERP_CTS:
		return true;

	default:
		break;
	}

	return false;
}

869 870 871
static int carl9170_tx_prepare(struct ar9170 *ar,
			       struct ieee80211_sta *sta,
			       struct sk_buff *skb)
872 873 874 875 876 877 878 879 880
{
	struct ieee80211_hdr *hdr;
	struct _carl9170_tx_superframe *txc;
	struct carl9170_vif_info *cvif;
	struct ieee80211_tx_info *info;
	struct ieee80211_tx_rate *txrate;
	struct carl9170_tx_info *arinfo;
	unsigned int hw_queue;
	int i;
881 882
	__le16 mac_tmp;
	u16 len;
883 884 885 886 887 888 889 890 891 892 893
	bool ampdu, no_ack;

	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
	BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
		     CARL9170_TX_SUPERDESC_LEN);

	BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
		     AR9170_TX_HWDESC_LEN);

	BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);

894 895 896 897
	BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
		((CARL9170_TX_SUPER_MISC_VIF_ID >>
		 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];

	hdr = (void *)skb->data;
	info = IEEE80211_SKB_CB(skb);
	len = skb->len;

	/*
	 * Note: If the frame was sent through a monitor interface,
	 * the ieee80211_vif pointer can be NULL.
	 */
	if (likely(info->control.vif))
		cvif = (void *) info->control.vif->drv_priv;
	else
		cvif = NULL;

	txc = (void *)skb_push(skb, sizeof(*txc));
	memset(txc, 0, sizeof(*txc));

916 917 918 919 920 921 922 923
	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);

	if (likely(cvif))
		SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);

	if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
		txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;

924 925 926
	if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
		txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;

927 928 929 930 931
	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
		txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;

	mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
			      AR9170_TX_MAC_BACKOFF);
932
	mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
933 934
			       AR9170_TX_MAC_QOS);

935
	no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
936 937
	if (unlikely(no_ack))
		mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
938 939

	if (info->control.hw_key) {
940
		len += info->control.hw_key->icv_len;
941 942 943 944 945

		switch (info->control.hw_key->cipher) {
		case WLAN_CIPHER_SUITE_WEP40:
		case WLAN_CIPHER_SUITE_WEP104:
		case WLAN_CIPHER_SUITE_TKIP:
946
			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
947 948
			break;
		case WLAN_CIPHER_SUITE_CCMP:
949
			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
950 951 952 953 954 955 956
			break;
		default:
			WARN_ON(1);
			goto err_out;
		}
	}

957 958 959
	ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
	if (ampdu) {
		unsigned int density, factor;
960

961 962
		if (unlikely(!sta || !cvif))
			goto err_out;
963

C
Christian Lamparter 已提交
964 965
		factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
		density = sta->ht_cap.ampdu_density;
966

967 968 969 970 971 972 973
		if (density) {
			/*
			 * Watch out!
			 *
			 * Otus uses slightly different density values than
			 * those from the 802.11n spec.
			 */
974

975 976
			density = max_t(unsigned int, density + 1, 7u);
		}
977

978 979
		SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
			txc->s.ampdu_settings, density);
980

981 982
		SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
			txc->s.ampdu_settings, factor);
983 984 985 986 987 988 989
	}

	/*
	 * NOTE: For the first rate, the ERP & AMPDU flags are directly
	 * taken from mac_control. For all fallback rate, the firmware
	 * updates the mac_control flags from the rate info field.
	 */
990 991
	for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
		__le32 phy_set;
992 993 994 995
		txrate = &info->control.rates[i];
		if (txrate->idx < 0)
			break;

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		phy_set = carl9170_tx_physet(ar, info, txrate);
		if (i == 0) {
			/* first rate - part of the hw's frame header */
			txc->f.phy_control = phy_set;

			if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
			if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
			else if (carl9170_tx_cts_check(ar, txrate))
				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);

		} else {
			/* fallback rates are stored in the firmware's
			 * retry rate set array.
			 */
			txc->s.rr[i - 1] = phy_set;
		}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
			txrate->count);

		if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
				CARL9170_TX_SUPER_RI_ERP_PROT_S);
		else if (carl9170_tx_cts_check(ar, txrate))
			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
				CARL9170_TX_SUPER_RI_ERP_PROT_S);

1025 1026
		if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
			txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
1027 1028
	}

1029 1030 1031
	txc->s.len = cpu_to_le16(skb->len);
	txc->f.length = cpu_to_le16(len + FCS_LEN);
	txc->f.mac_control = mac_tmp;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	arinfo = (void *)info->rate_driver_data;
	arinfo->timeout = jiffies;
	arinfo->ar = ar;
	kref_init(&arinfo->ref);
	return 0;

err_out:
	skb_pull(skb, sizeof(*txc));
	return -EINVAL;
}

static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
{
	struct _carl9170_tx_superframe *super;

	super = (void *) skb->data;
	super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
}

static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
{
	struct _carl9170_tx_superframe *super;
	int tmp;

	super = (void *) skb->data;

	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
		CARL9170_TX_SUPER_AMPDU_DENSITY_S;

	/*
	 * If you haven't noticed carl9170_tx_prepare has already filled
	 * in all ampdu spacing & factor parameters.
	 * Now it's the time to check whenever the settings have to be
	 * updated by the firmware, or if everything is still the same.
	 *
	 * There's no sane way to handle different density values with
	 * this hardware, so we may as well just do the compare in the
	 * driver.
	 */

	if (tmp != ar->current_density) {
		ar->current_density = tmp;
		super->s.ampdu_settings |=
			CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
	}

	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
		CARL9170_TX_SUPER_AMPDU_FACTOR_S;

	if (tmp != ar->current_factor) {
		ar->current_factor = tmp;
		super->s.ampdu_settings |=
			CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
	}
}

static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest,
				   struct sk_buff *_src)
{
	struct _carl9170_tx_superframe *dest, *src;

	dest = (void *) _dest->data;
	src = (void *) _src->data;

	/*
	 * The mac80211 rate control algorithm expects that all MPDUs in
	 * an AMPDU share the same tx vectors.
	 * This is not really obvious right now, because the hardware
	 * does the AMPDU setup according to its own rulebook.
	 * Our nicely assembled, strictly monotonic increasing mpdu
	 * chains will be broken up, mashed back together...
	 */

	return (dest->f.phy_control == src->f.phy_control);
}

static void carl9170_tx_ampdu(struct ar9170 *ar)
{
	struct sk_buff_head agg;
	struct carl9170_sta_tid *tid_info;
	struct sk_buff *skb, *first;
	unsigned int i = 0, done_ampdus = 0;
	u16 seq, queue, tmpssn;

	atomic_inc(&ar->tx_ampdu_scheduler);
	ar->tx_ampdu_schedule = false;

	if (atomic_read(&ar->tx_ampdu_upload))
		return;

	if (!ar->tx_ampdu_list_len)
		return;

	__skb_queue_head_init(&agg);

	rcu_read_lock();
	tid_info = rcu_dereference(ar->tx_ampdu_iter);
	if (WARN_ON_ONCE(!tid_info)) {
		rcu_read_unlock();
		return;
	}

retry:
	list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
		i++;

		if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
			continue;

		queue = TID_TO_WME_AC(tid_info->tid);

		spin_lock_bh(&tid_info->lock);
1145 1146
		if (tid_info->state != CARL9170_TID_STATE_XMIT)
			goto processed;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

		tid_info->counter++;
		first = skb_peek(&tid_info->queue);
		tmpssn = carl9170_get_seq(first);
		seq = tid_info->snx;

		if (unlikely(tmpssn != seq)) {
			tid_info->state = CARL9170_TID_STATE_IDLE;

			goto processed;
		}

		while ((skb = skb_peek(&tid_info->queue))) {
			/* strict 0, 1, ..., n - 1, n frame sequence order */
			if (unlikely(carl9170_get_seq(skb) != seq))
				break;

			/* don't upload more than AMPDU FACTOR allows. */
			if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
			    (tid_info->max - 1)))
				break;

			if (!carl9170_tx_rate_check(ar, skb, first))
				break;

			atomic_inc(&ar->tx_ampdu_upload);
			tid_info->snx = seq = SEQ_NEXT(seq);
			__skb_unlink(skb, &tid_info->queue);

			__skb_queue_tail(&agg, skb);

			if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
				break;
		}

		if (skb_queue_empty(&tid_info->queue) ||
		    carl9170_get_seq(skb_peek(&tid_info->queue)) !=
		    tid_info->snx) {
			/*
			 * stop TID, if A-MPDU frames are still missing,
			 * or whenever the queue is empty.
			 */

			tid_info->state = CARL9170_TID_STATE_IDLE;
		}
		done_ampdus++;

processed:
		spin_unlock_bh(&tid_info->lock);

		if (skb_queue_empty(&agg))
			continue;

		/* apply ampdu spacing & factor settings */
		carl9170_set_ampdu_params(ar, skb_peek(&agg));

		/* set aggregation push bit */
		carl9170_set_immba(ar, skb_peek_tail(&agg));

		spin_lock_bh(&ar->tx_pending[queue].lock);
		skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
		spin_unlock_bh(&ar->tx_pending[queue].lock);
		ar->tx_schedule = true;
	}
	if ((done_ampdus++ == 0) && (i++ == 0))
		goto retry;

	rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
	rcu_read_unlock();
}

static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
					    struct sk_buff_head *queue)
{
	struct sk_buff *skb;
	struct ieee80211_tx_info *info;
	struct carl9170_tx_info *arinfo;

	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));

	spin_lock_bh(&queue->lock);
	skb = skb_peek(queue);
	if (unlikely(!skb))
		goto err_unlock;

	if (carl9170_alloc_dev_space(ar, skb))
		goto err_unlock;

	__skb_unlink(skb, queue);
	spin_unlock_bh(&queue->lock);

	info = IEEE80211_SKB_CB(skb);
	arinfo = (void *) info->rate_driver_data;

	arinfo->timeout = jiffies;
	return skb;

err_unlock:
	spin_unlock_bh(&queue->lock);
	return NULL;
}

void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
{
	struct _carl9170_tx_superframe *super;
	uint8_t q = 0;

	ar->tx_dropped++;

	super = (void *)skb->data;
	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
		ar9170_qmap[carl9170_get_queue(ar, skb)]);
	__carl9170_tx_process_status(ar, super->s.cookie, q);
}

1262 1263 1264 1265
static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
{
	struct ieee80211_sta *sta;
	struct carl9170_sta_info *sta_info;
1266
	struct ieee80211_tx_info *tx_info;
1267 1268 1269 1270 1271 1272 1273

	rcu_read_lock();
	sta = __carl9170_get_tx_sta(ar, skb);
	if (!sta)
		goto out_rcu;

	sta_info = (void *) sta->drv_priv;
1274
	tx_info = IEEE80211_SKB_CB(skb);
1275

1276
	if (unlikely(sta_info->sleeping) &&
1277
	    !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1278
				IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1279 1280 1281 1282 1283 1284
		rcu_read_unlock();

		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
			atomic_dec(&ar->tx_ampdu_upload);

		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1285
		carl9170_release_dev_space(ar, skb);
1286 1287 1288 1289 1290 1291 1292 1293 1294
		carl9170_tx_status(ar, skb, false);
		return true;
	}

out_rcu:
	rcu_read_unlock();
	return false;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
{
	struct _carl9170_tx_superframe *super = (void *) skb->data;
	struct ieee80211_bar *bar = (void *) super->frame_data;

	if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
	    skb->len >= sizeof(struct ieee80211_bar)) {
		struct carl9170_bar_list_entry *entry;
		unsigned int queue = skb_get_queue_mapping(skb);

		entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
		if (!WARN_ON_ONCE(!entry)) {
			entry->skb = skb;
			spin_lock_bh(&ar->bar_list_lock[queue]);
			list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
			spin_unlock_bh(&ar->bar_list_lock[queue]);
		}
	}
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static void carl9170_tx(struct ar9170 *ar)
{
	struct sk_buff *skb;
	unsigned int i, q;
	bool schedule_garbagecollector = false;

	ar->tx_schedule = false;

	if (unlikely(!IS_STARTED(ar)))
		return;

	carl9170_usb_handle_tx_err(ar);

	for (i = 0; i < ar->hw->queues; i++) {
		while (!skb_queue_empty(&ar->tx_pending[i])) {
			skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
			if (unlikely(!skb))
				break;

1334 1335 1336
			if (unlikely(carl9170_tx_ps_drop(ar, skb)))
				continue;

1337 1338
			carl9170_bar_check(ar, skb);

1339 1340 1341 1342 1343 1344 1345 1346 1347
			atomic_inc(&ar->tx_total_pending);

			q = __carl9170_get_queue(ar, i);
			/*
			 * NB: tx_status[i] vs. tx_status[q],
			 * TODO: Move into pick_skb or alloc_dev_space.
			 */
			skb_queue_tail(&ar->tx_status[q], skb);

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
			/*
			 * increase ref count to "2".
			 * Ref counting is the easiest way to solve the
			 * race between the urb's completion routine:
			 *	carl9170_tx_callback
			 * and wlan tx status functions:
			 *	carl9170_tx_status/janitor.
			 */
			carl9170_tx_get_skb(skb);

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			carl9170_usb_tx(ar, skb);
			schedule_garbagecollector = true;
		}
	}

	if (!schedule_garbagecollector)
		return;

	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
}

static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1371 1372
	struct ieee80211_sta *sta, struct sk_buff *skb,
	struct ieee80211_tx_info *txinfo)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	struct carl9170_sta_info *sta_info;
	struct carl9170_sta_tid *agg;
	struct sk_buff *iter;
	u16 tid, seq, qseq, off;
	bool run = false;

	tid = carl9170_get_tid(skb);
	seq = carl9170_get_seq(skb);
	sta_info = (void *) sta->drv_priv;

	rcu_read_lock();
	agg = rcu_dereference(sta_info->agg[tid]);

	if (!agg)
		goto err_unlock_rcu;

	spin_lock_bh(&agg->lock);
	if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
		goto err_unlock;

	/* check if sequence is within the BA window */
	if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
		goto err_unlock;

	if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
		goto err_unlock;

	off = SEQ_DIFF(seq, agg->bsn);
	if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
		goto err_unlock;

	if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
		__skb_queue_tail(&agg->queue, skb);
		agg->hsn = seq;
		goto queued;
	}

	skb_queue_reverse_walk(&agg->queue, iter) {
		qseq = carl9170_get_seq(iter);

		if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
			__skb_queue_after(&agg->queue, iter, skb);
			goto queued;
		}
	}

	__skb_queue_head(&agg->queue, skb);
queued:

	if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
		if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
			agg->state = CARL9170_TID_STATE_XMIT;
			run = true;
		}
	}

	spin_unlock_bh(&agg->lock);
	rcu_read_unlock();

	return run;

err_unlock:
	spin_unlock_bh(&agg->lock);

err_unlock_rcu:
	rcu_read_unlock();
1440
	txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
1441 1442 1443 1444 1445
	carl9170_tx_status(ar, skb, false);
	ar->tx_dropped++;
	return false;
}

1446 1447 1448
void carl9170_op_tx(struct ieee80211_hw *hw,
		    struct ieee80211_tx_control *control,
		    struct sk_buff *skb)
1449 1450 1451
{
	struct ar9170 *ar = hw->priv;
	struct ieee80211_tx_info *info;
1452
	struct ieee80211_sta *sta = control->sta;
1453 1454 1455 1456 1457 1458 1459
	bool run;

	if (unlikely(!IS_STARTED(ar)))
		goto err_free;

	info = IEEE80211_SKB_CB(skb);

1460
	if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1461 1462 1463 1464 1465 1466 1467 1468
		goto err_free;

	carl9170_tx_accounting(ar, skb);
	/*
	 * from now on, one has to use carl9170_tx_status to free
	 * all ressouces which are associated with the frame.
	 */

1469 1470 1471 1472 1473
	if (sta) {
		struct carl9170_sta_info *stai = (void *) sta->drv_priv;
		atomic_inc(&stai->pending_frames);
	}

1474
	if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1475 1476 1477 1478 1479 1480 1481
		/* to static code analyzers and reviewers:
		 * mac80211 guarantees that a valid "sta"
		 * reference is present, if a frame is to
		 * be part of an ampdu. Hence any extra
		 * sta == NULL checks are redundant in this
		 * special case.
		 */
1482
		run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		if (run)
			carl9170_tx_ampdu(ar);

	} else {
		unsigned int queue = skb_get_queue_mapping(skb);

		skb_queue_tail(&ar->tx_pending[queue], skb);
	}

	carl9170_tx(ar);
1493
	return;
1494 1495 1496

err_free:
	ar->tx_dropped++;
1497
	ieee80211_free_txskb(ar->hw, skb);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
}

void carl9170_tx_scheduler(struct ar9170 *ar)
{

	if (ar->tx_ampdu_schedule)
		carl9170_tx_ampdu(ar);

	if (ar->tx_schedule)
		carl9170_tx(ar);
}
1509

1510 1511
/* caller has to take rcu_read_lock */
static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
1512 1513
{
	struct carl9170_vif_info *cvif;
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	int i = 1;

	/* The AR9170 hardware has no fancy beacon queue or some
	 * other scheduling mechanism. So, the driver has to make
	 * due by setting the two beacon timers (pretbtt and tbtt)
	 * once and then swapping the beacon address in the HW's
	 * register file each time the pretbtt fires.
	 */

	cvif = rcu_dereference(ar->beacon_iter);
	if (ar->vifs > 0 && cvif) {
		do {
			list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
							 list) {
				if (cvif->active && cvif->enable_beacon)
					goto out;
			}
		} while (ar->beacon_enabled && i--);
	}

out:
	rcu_assign_pointer(ar->beacon_iter, cvif);
	return cvif;
}

static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
				      u32 *ht1, u32 *plcp)
{
1542
	struct ieee80211_tx_info *txinfo;
1543
	struct ieee80211_tx_rate *rate;
1544 1545
	unsigned int power, chains;
	bool ht_rate;
1546

1547 1548 1549 1550
	txinfo = IEEE80211_SKB_CB(skb);
	rate = &txinfo->control.rates[0];
	ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
	carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	*ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
	if (chains == AR9170_TX_PHY_TXCHAIN_2)
		*ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
	SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
	SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
	SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);

	if (ht_rate) {
		*ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
			*plcp |= AR9170_MAC_BCN_HT2_SGI;

		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
			*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
			*plcp |= AR9170_MAC_BCN_HT2_BW40;
		} else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
			*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
			*plcp |= AR9170_MAC_BCN_HT2_BW40;
		}

		SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
	} else {
		if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
			*plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
		else
			*plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1578 1579
	}

1580 1581
	return ht_rate;
}
1582

1583 1584 1585 1586 1587 1588 1589 1590
int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
{
	struct sk_buff *skb = NULL;
	struct carl9170_vif_info *cvif;
	__le32 *data, *old = NULL;
	u32 word, ht1, plcp, off, addr, len;
	int i = 0, err = 0;
	bool ht_rate;
1591

1592 1593 1594 1595
	rcu_read_lock();
	cvif = carl9170_pick_beaconing_vif(ar);
	if (!cvif)
		goto out_unlock;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
		NULL, NULL);

	if (!skb) {
		err = -ENOMEM;
		goto err_free;
	}

	spin_lock_bh(&ar->beacon_lock);
	data = (__le32 *)skb->data;
	if (cvif->beacon)
		old = (__le32 *)cvif->beacon->data;

	off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
	addr = ar->fw.beacon_addr + off;
	len = roundup(skb->len + FCS_LEN, 4);

	if ((off + len) > ar->fw.beacon_max_len) {
		if (net_ratelimit()) {
			wiphy_err(ar->hw->wiphy, "beacon does not "
				  "fit into device memory!\n");
		}
		err = -EINVAL;
		goto err_unlock;
	}

	if (len > AR9170_MAC_BCN_LENGTH_MAX) {
		if (net_ratelimit()) {
			wiphy_err(ar->hw->wiphy, "no support for beacons "
				"bigger than %d (yours:%d).\n",
				 AR9170_MAC_BCN_LENGTH_MAX, len);
		}

		err = -EMSGSIZE;
		goto err_unlock;
	}

1634
	ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
1635 1636

	carl9170_async_regwrite_begin(ar);
1637
	carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1638
	if (ht_rate)
1639
		carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1640 1641
	else
		carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

	for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
		/*
		 * XXX: This accesses beyond skb data for up
		 *	to the last 3 bytes!!
		 */

		if (old && (data[i] == old[i]))
			continue;

		word = le32_to_cpu(data[i]);
		carl9170_async_regwrite(addr + 4 * i, word);
	}
	carl9170_async_regwrite_finish();

	dev_kfree_skb_any(cvif->beacon);
	cvif->beacon = NULL;

	err = carl9170_async_regwrite_result();
	if (!err)
		cvif->beacon = skb;
	spin_unlock_bh(&ar->beacon_lock);
	if (err)
		goto err_free;

	if (submit) {
		err = carl9170_bcn_ctrl(ar, cvif->id,
					CARL9170_BCN_CTRL_CAB_TRIGGER,
					addr, skb->len + FCS_LEN);

		if (err)
			goto err_free;
	}
out_unlock:
	rcu_read_unlock();
	return 0;

err_unlock:
	spin_unlock_bh(&ar->beacon_lock);

err_free:
	rcu_read_unlock();
	dev_kfree_skb_any(skb);
	return err;
}