clk-kona.c 33.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2013 Broadcom Corporation
 * Copyright 2013 Linaro Limited
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "clk-kona.h"

#include <linux/delay.h>
18
#include <linux/kernel.h>
19

20 21 22 23 24 25 26 27
/*
 * "Policies" affect the frequencies of bus clocks provided by a
 * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
 * "Normal", and "Turbo".)  A lower policy number has lower power
 * consumption, and policy 2 is the default.
 */
#define CCU_POLICY_COUNT	4

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#define CCU_ACCESS_PASSWORD      0xA5A500
#define CLK_GATE_DELAY_LOOP      2000

/* Bitfield operations */

/* Produces a mask of set bits covering a range of a 32-bit value */
static inline u32 bitfield_mask(u32 shift, u32 width)
{
	return ((1 << width) - 1) << shift;
}

/* Extract the value of a bitfield found within a given register value */
static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
{
	return (reg_val & bitfield_mask(shift, width)) >> shift;
}

/* Replace the value of a bitfield found within a given register value */
static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
{
	u32 mask = bitfield_mask(shift, width);

	return (reg_val & ~mask) | (val << shift);
}

/* Divider and scaling helpers */

/* Convert a divider into the scaled divisor value it represents. */
static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
{
58
	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
}

/*
 * Build a scaled divider value as close as possible to the
 * given whole part (div_value) and fractional part (expressed
 * in billionths).
 */
u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
{
	u64 combined;

	BUG_ON(!div_value);
	BUG_ON(billionths >= BILLION);

	combined = (u64)div_value * BILLION + billionths;
74
	combined <<= div->u.s.frac_width;
75

76
	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
77 78 79 80 81 82 83
}

/* The scaled minimum divisor representable by a divider */
static inline u64
scaled_div_min(struct bcm_clk_div *div)
{
	if (divider_is_fixed(div))
84
		return (u64)div->u.fixed;
85 86 87 88 89 90 91 92 93 94

	return scaled_div_value(div, 0);
}

/* The scaled maximum divisor representable by a divider */
u64 scaled_div_max(struct bcm_clk_div *div)
{
	u32 reg_div;

	if (divider_is_fixed(div))
95
		return (u64)div->u.fixed;
96

97
	reg_div = ((u32)1 << div->u.s.width) - 1;
98 99 100 101 102 103 104 105 106 107 108 109 110 111

	return scaled_div_value(div, reg_div);
}

/*
 * Convert a scaled divisor into its divider representation as
 * stored in a divider register field.
 */
static inline u32
divider(struct bcm_clk_div *div, u64 scaled_div)
{
	BUG_ON(scaled_div < scaled_div_min(div));
	BUG_ON(scaled_div > scaled_div_max(div));

112
	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
113 114 115 116 117 118 119 120 121
}

/* Return a rate scaled for use when dividing by a scaled divisor. */
static inline u64
scale_rate(struct bcm_clk_div *div, u32 rate)
{
	if (divider_is_fixed(div))
		return (u64)rate;

122
	return (u64)rate << div->u.s.frac_width;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
}

/* CCU access */

/* Read a 32-bit register value from a CCU's address space. */
static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
{
	return readl(ccu->base + reg_offset);
}

/* Write a 32-bit register value into a CCU's address space. */
static inline void
__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
{
	writel(reg_val, ccu->base + reg_offset);
}

static inline unsigned long ccu_lock(struct ccu_data *ccu)
{
	unsigned long flags;

	spin_lock_irqsave(&ccu->lock, flags);

	return flags;
}
static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
{
	spin_unlock_irqrestore(&ccu->lock, flags);
}

/*
 * Enable/disable write access to CCU protected registers.  The
 * WR_ACCESS register for all CCUs is at offset 0.
 */
static inline void __ccu_write_enable(struct ccu_data *ccu)
{
	if (ccu->write_enabled) {
		pr_err("%s: access already enabled for %s\n", __func__,
			ccu->name);
		return;
	}
	ccu->write_enabled = true;
	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
}

static inline void __ccu_write_disable(struct ccu_data *ccu)
{
	if (!ccu->write_enabled) {
		pr_err("%s: access wasn't enabled for %s\n", __func__,
			ccu->name);
		return;
	}

	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
	ccu->write_enabled = false;
}

/*
 * Poll a register in a CCU's address space, returning when the
 * specified bit in that register's value is set (or clear).  Delay
 * a microsecond after each read of the register.  Returns true if
 * successful, or false if we gave up trying.
 *
 * Caller must ensure the CCU lock is held.
 */
static inline bool
__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
{
	unsigned int tries;
	u32 bit_mask = 1 << bit;

	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
		u32 val;
		bool bit_val;

		val = __ccu_read(ccu, reg_offset);
		bit_val = (val & bit_mask) != 0;
		if (bit_val == want)
			return true;
		udelay(1);
	}
204 205 206
	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
		ccu->name, reg_offset, bit, want ? "set" : "clear");

207 208 209
	return false;
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/* Policy operations */

static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
{
	struct bcm_policy_ctl *control = &ccu->policy.control;
	u32 offset;
	u32 go_bit;
	u32 mask;
	bool ret;

	/* If we don't need to control policy for this CCU, we're done. */
	if (!policy_ctl_exists(control))
		return true;

	offset = control->offset;
	go_bit = control->go_bit;

	/* Ensure we're not busy before we start */
	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
	if (!ret) {
		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
			__func__, ccu->name);
		return false;
	}

	/*
	 * If it's a synchronous request, we'll wait for the voltage
	 * and frequency of the active load to stabilize before
	 * returning.  To do this we select the active load by
	 * setting the ATL bit.
	 *
	 * An asynchronous request instead ramps the voltage in the
	 * background, and when that process stabilizes, the target
	 * load is copied to the active load and the CCU frequency
	 * is switched.  We do this by selecting the target load
	 * (ATL bit clear) and setting the request auto-copy (AC bit
	 * set).
	 *
	 * Note, we do NOT read-modify-write this register.
	 */
	mask = (u32)1 << go_bit;
	if (sync)
		mask |= 1 << control->atl_bit;
	else
		mask |= 1 << control->ac_bit;
	__ccu_write(ccu, offset, mask);

	/* Wait for indication that operation is complete. */
	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
	if (!ret)
		pr_err("%s: ccu %s policy engine never started\n",
			__func__, ccu->name);

	return ret;
}

static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
{
	struct bcm_lvm_en *enable = &ccu->policy.enable;
	u32 offset;
	u32 enable_bit;
	bool ret;

	/* If we don't need to control policy for this CCU, we're done. */
	if (!policy_lvm_en_exists(enable))
		return true;

	/* Ensure we're not busy before we start */
	offset = enable->offset;
	enable_bit = enable->bit;
	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
	if (!ret) {
		pr_err("%s: ccu %s policy engine already stopped\n",
			__func__, ccu->name);
		return false;
	}

	/* Now set the bit to stop the engine (NO read-modify-write) */
	__ccu_write(ccu, offset, (u32)1 << enable_bit);

	/* Wait for indication that it has stopped. */
	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
	if (!ret)
		pr_err("%s: ccu %s policy engine never stopped\n",
			__func__, ccu->name);

	return ret;
}

/*
 * A CCU has four operating conditions ("policies"), and some clocks
 * can be disabled or enabled based on which policy is currently in
 * effect.  Such clocks have a bit in a "policy mask" register for
 * each policy indicating whether the clock is enabled for that
 * policy or not.  The bit position for a clock is the same for all
 * four registers, and the 32-bit registers are at consecutive
 * addresses.
 */
static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
{
	u32 offset;
	u32 mask;
	int i;
	bool ret;

	if (!policy_exists(policy))
		return true;

	/*
	 * We need to stop the CCU policy engine to allow update
	 * of our policy bits.
	 */
	if (!__ccu_policy_engine_stop(ccu)) {
		pr_err("%s: unable to stop CCU %s policy engine\n",
			__func__, ccu->name);
		return false;
	}

	/*
	 * For now, if a clock defines its policy bit we just mark
	 * it "enabled" for all four policies.
	 */
	offset = policy->offset;
	mask = (u32)1 << policy->bit;
	for (i = 0; i < CCU_POLICY_COUNT; i++) {
		u32 reg_val;

		reg_val = __ccu_read(ccu, offset);
		reg_val |= mask;
		__ccu_write(ccu, offset, reg_val);
		offset += sizeof(u32);
	}

	/* We're done updating; fire up the policy engine again. */
	ret = __ccu_policy_engine_start(ccu, true);
	if (!ret)
		pr_err("%s: unable to restart CCU %s policy engine\n",
			__func__, ccu->name);

	return ret;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/* Gate operations */

/* Determine whether a clock is gated.  CCU lock must be held.  */
static bool
__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	u32 bit_mask;
	u32 reg_val;

	/* If there is no gate we can assume it's enabled. */
	if (!gate_exists(gate))
		return true;

	bit_mask = 1 << gate->status_bit;
	reg_val = __ccu_read(ccu, gate->offset);

	return (reg_val & bit_mask) != 0;
}

/* Determine whether a clock is gated. */
static bool
is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	long flags;
	bool ret;

	/* Avoid taking the lock if we can */
	if (!gate_exists(gate))
		return true;

	flags = ccu_lock(ccu);
	ret = __is_clk_gate_enabled(ccu, gate);
	ccu_unlock(ccu, flags);

	return ret;
}

/*
 * Commit our desired gate state to the hardware.
 * Returns true if successful, false otherwise.
 */
static bool
__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	u32 reg_val;
	u32 mask;
	bool enabled = false;

	BUG_ON(!gate_exists(gate));
	if (!gate_is_sw_controllable(gate))
		return true;		/* Nothing we can change */

	reg_val = __ccu_read(ccu, gate->offset);

	/* For a hardware/software gate, set which is in control */
	if (gate_is_hw_controllable(gate)) {
		mask = (u32)1 << gate->hw_sw_sel_bit;
		if (gate_is_sw_managed(gate))
			reg_val |= mask;
		else
			reg_val &= ~mask;
	}

	/*
	 * If software is in control, enable or disable the gate.
	 * If hardware is, clear the enabled bit for good measure.
	 * If a software controlled gate can't be disabled, we're
	 * required to write a 0 into the enable bit (but the gate
	 * will be enabled).
	 */
	mask = (u32)1 << gate->en_bit;
	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
			!gate_is_no_disable(gate))
		reg_val |= mask;
	else
		reg_val &= ~mask;

	__ccu_write(ccu, gate->offset, reg_val);

	/* For a hardware controlled gate, we're done */
	if (!gate_is_sw_managed(gate))
		return true;

	/* Otherwise wait for the gate to be in desired state */
	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
}

/*
 * Initialize a gate.  Our desired state (hardware/software select,
 * and if software, its enable state) is committed to hardware
 * without the usual checks to see if it's already set up that way.
 * Returns true if successful, false otherwise.
 */
static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	if (!gate_exists(gate))
		return true;
	return __gate_commit(ccu, gate);
}

/*
 * Set a gate to enabled or disabled state.  Does nothing if the
 * gate is not currently under software control, or if it is already
 * in the requested state.  Returns true if successful, false
 * otherwise.  CCU lock must be held.
 */
static bool
__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
{
	bool ret;

	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
		return true;	/* Nothing to do */

	if (!enable && gate_is_no_disable(gate)) {
		pr_warn("%s: invalid gate disable request (ignoring)\n",
			__func__);
		return true;
	}

	if (enable == gate_is_enabled(gate))
		return true;	/* No change */

	gate_flip_enabled(gate);
	ret = __gate_commit(ccu, gate);
	if (!ret)
		gate_flip_enabled(gate);	/* Revert the change */

	return ret;
}

/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
static int clk_gate(struct ccu_data *ccu, const char *name,
			struct bcm_clk_gate *gate, bool enable)
{
	unsigned long flags;
	bool success;

	/*
	 * Avoid taking the lock if we can.  We quietly ignore
	 * requests to change state that don't make sense.
	 */
	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
		return 0;
	if (!enable && gate_is_no_disable(gate))
		return 0;

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

	success = __clk_gate(ccu, gate, enable);

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);

	if (success)
		return 0;

	pr_err("%s: failed to %s gate for %s\n", __func__,
		enable ? "enable" : "disable", name);

	return -EIO;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
/* Hysteresis operations */

/*
 * If a clock gate requires a turn-off delay it will have
 * "hysteresis" register bits defined.  The first, if set, enables
 * the delay; and if enabled, the second bit determines whether the
 * delay is "low" or "high" (1 means high).  For now, if it's
 * defined for a clock, we set it.
 */
static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
{
	u32 offset;
	u32 reg_val;
	u32 mask;

	if (!hyst_exists(hyst))
		return true;

	offset = hyst->offset;
	mask = (u32)1 << hyst->en_bit;
	mask |= (u32)1 << hyst->val_bit;

	reg_val = __ccu_read(ccu, offset);
	reg_val |= mask;
	__ccu_write(ccu, offset, reg_val);

	return true;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/* Trigger operations */

/*
 * Caller must ensure CCU lock is held and access is enabled.
 * Returns true if successful, false otherwise.
 */
static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
{
	/* Trigger the clock and wait for it to finish */
	__ccu_write(ccu, trig->offset, 1 << trig->bit);

	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
}

/* Divider operations */

/* Read a divider value and return the scaled divisor it represents. */
static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
{
	unsigned long flags;
	u32 reg_val;
	u32 reg_div;

	if (divider_is_fixed(div))
569
		return (u64)div->u.fixed;
570 571

	flags = ccu_lock(ccu);
572
	reg_val = __ccu_read(ccu, div->u.s.offset);
573 574 575
	ccu_unlock(ccu, flags);

	/* Extract the full divider field from the register value */
576
	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

	/* Return the scaled divisor value it represents */
	return scaled_div_value(div, reg_div);
}

/*
 * Convert a divider's scaled divisor value into its recorded form
 * and commit it into the hardware divider register.
 *
 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 */
static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
{
	bool enabled;
	u32 reg_div;
	u32 reg_val;
	int ret = 0;

	BUG_ON(divider_is_fixed(div));

	/*
	 * If we're just initializing the divider, and no initial
	 * state was defined in the device tree, we just find out
	 * what its current value is rather than updating it.
	 */
604 605 606 607 608
	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
		reg_val = __ccu_read(ccu, div->u.s.offset);
		reg_div = bitfield_extract(reg_val, div->u.s.shift,
						div->u.s.width);
		div->u.s.scaled_div = scaled_div_value(div, reg_div);
609 610 611 612 613

		return 0;
	}

	/* Convert the scaled divisor to the value we need to record */
614
	reg_div = divider(div, div->u.s.scaled_div);
615 616 617 618 619 620 621 622 623

	/* Clock needs to be enabled before changing the rate */
	enabled = __is_clk_gate_enabled(ccu, gate);
	if (!enabled && !__clk_gate(ccu, gate, true)) {
		ret = -ENXIO;
		goto out;
	}

	/* Replace the divider value and record the result */
624 625 626 627
	reg_val = __ccu_read(ccu, div->u.s.offset);
	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
					reg_div);
	__ccu_write(ccu, div->u.s.offset, reg_val);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

	/* If the trigger fails we still want to disable the gate */
	if (!__clk_trigger(ccu, trig))
		ret = -EIO;

	/* Disable the clock again if it was disabled to begin with */
	if (!enabled && !__clk_gate(ccu, gate, false))
		ret = ret ? ret : -ENXIO;	/* return first error */
out:
	return ret;
}

/*
 * Initialize a divider by committing our desired state to hardware
 * without the usual checks to see if it's already set up that way.
 * Returns true if successful, false otherwise.
 */
static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
{
	if (!divider_exists(div) || divider_is_fixed(div))
		return true;
	return !__div_commit(ccu, gate, div, trig);
}

static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
			u64 scaled_div)
{
	unsigned long flags;
	u64 previous;
	int ret;

	BUG_ON(divider_is_fixed(div));

663
	previous = div->u.s.scaled_div;
664 665 666
	if (previous == scaled_div)
		return 0;	/* No change */

667
	div->u.s.scaled_div = scaled_div;
668 669 670 671 672 673 674 675 676 677

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

	ret = __div_commit(ccu, gate, div, trig);

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);

	if (ret)
678
		div->u.s.scaled_div = previous;		/* Revert the change */
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

	return ret;

}

/* Common clock rate helpers */

/*
 * Implement the common clock framework recalc_rate method, taking
 * into account a divider and an optional pre-divider.  The
 * pre-divider register pointer may be NULL.
 */
static unsigned long clk_recalc_rate(struct ccu_data *ccu,
			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
			unsigned long parent_rate)
{
	u64 scaled_parent_rate;
	u64 scaled_div;
	u64 result;

	if (!divider_exists(div))
		return parent_rate;

	if (parent_rate > (unsigned long)LONG_MAX)
		return 0;	/* actually this would be a caller bug */

	/*
	 * If there is a pre-divider, divide the scaled parent rate
	 * by the pre-divider value first.  In this case--to improve
	 * accuracy--scale the parent rate by *both* the pre-divider
	 * value and the divider before actually computing the
	 * result of the pre-divider.
	 *
	 * If there's only one divider, just scale the parent rate.
	 */
	if (pre_div && divider_exists(pre_div)) {
		u64 scaled_rate;

		scaled_rate = scale_rate(pre_div, parent_rate);
		scaled_rate = scale_rate(div, scaled_rate);
		scaled_div = divider_read_scaled(ccu, pre_div);
720
		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
721 722 723 724 725 726 727 728 729 730 731
							scaled_div);
	} else  {
		scaled_parent_rate = scale_rate(div, parent_rate);
	}

	/*
	 * Get the scaled divisor value, and divide the scaled
	 * parent rate by that to determine this clock's resulting
	 * rate.
	 */
	scaled_div = divider_read_scaled(ccu, div);
732
	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

	return (unsigned long)result;
}

/*
 * Compute the output rate produced when a given parent rate is fed
 * into two dividers.  The pre-divider can be NULL, and even if it's
 * non-null it may be nonexistent.  It's also OK for the divider to
 * be nonexistent, and in that case the pre-divider is also ignored.
 *
 * If scaled_div is non-null, it is used to return the scaled divisor
 * value used by the (downstream) divider to produce that rate.
 */
static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
				struct bcm_clk_div *pre_div,
				unsigned long rate, unsigned long parent_rate,
				u64 *scaled_div)
{
	u64 scaled_parent_rate;
	u64 min_scaled_div;
	u64 max_scaled_div;
	u64 best_scaled_div;
	u64 result;

	BUG_ON(!divider_exists(div));
	BUG_ON(!rate);
	BUG_ON(parent_rate > (u64)LONG_MAX);

	/*
	 * If there is a pre-divider, divide the scaled parent rate
	 * by the pre-divider value first.  In this case--to improve
	 * accuracy--scale the parent rate by *both* the pre-divider
	 * value and the divider before actually computing the
	 * result of the pre-divider.
	 *
	 * If there's only one divider, just scale the parent rate.
	 *
	 * For simplicity we treat the pre-divider as fixed (for now).
	 */
	if (divider_exists(pre_div)) {
		u64 scaled_rate;
		u64 scaled_pre_div;

		scaled_rate = scale_rate(pre_div, parent_rate);
		scaled_rate = scale_rate(div, scaled_rate);
		scaled_pre_div = divider_read_scaled(ccu, pre_div);
779
		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
780 781 782 783 784 785 786 787 788 789 790
							scaled_pre_div);
	} else {
		scaled_parent_rate = scale_rate(div, parent_rate);
	}

	/*
	 * Compute the best possible divider and ensure it is in
	 * range.  A fixed divider can't be changed, so just report
	 * the best we can do.
	 */
	if (!divider_is_fixed(div)) {
791
		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
792 793 794 795 796 797 798 799 800 801 802 803
							rate);
		min_scaled_div = scaled_div_min(div);
		max_scaled_div = scaled_div_max(div);
		if (best_scaled_div > max_scaled_div)
			best_scaled_div = max_scaled_div;
		else if (best_scaled_div < min_scaled_div)
			best_scaled_div = min_scaled_div;
	} else {
		best_scaled_div = divider_read_scaled(ccu, div);
	}

	/* OK, figure out the resulting rate */
804
	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

	if (scaled_div)
		*scaled_div = best_scaled_div;

	return (long)result;
}

/* Common clock parent helpers */

/*
 * For a given parent selector (register field) value, find the
 * index into a selector's parent_sel array that contains it.
 * Returns the index, or BAD_CLK_INDEX if it's not found.
 */
static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
{
	u8 i;

	BUG_ON(sel->parent_count > (u32)U8_MAX);
	for (i = 0; i < sel->parent_count; i++)
		if (sel->parent_sel[i] == parent_sel)
			return i;
	return BAD_CLK_INDEX;
}

/*
 * Fetch the current value of the selector, and translate that into
 * its corresponding index in the parent array we registered with
 * the clock framework.
 *
 * Returns parent array index that corresponds with the value found,
 * or BAD_CLK_INDEX if the found value is out of range.
 */
static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
{
	unsigned long flags;
	u32 reg_val;
	u32 parent_sel;
	u8 index;

	/* If there's no selector, there's only one parent */
	if (!selector_exists(sel))
		return 0;

	/* Get the value in the selector register */
	flags = ccu_lock(ccu);
	reg_val = __ccu_read(ccu, sel->offset);
	ccu_unlock(ccu, flags);

	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);

	/* Look up that selector's parent array index and return it */
	index = parent_index(sel, parent_sel);
	if (index == BAD_CLK_INDEX)
		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
			__func__, parent_sel, ccu->name, sel->offset);

	return index;
}

/*
 * Commit our desired selector value to the hardware.
 *
 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 */
static int
__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
{
	u32 parent_sel;
	u32 reg_val;
	bool enabled;
	int ret = 0;

	BUG_ON(!selector_exists(sel));

	/*
	 * If we're just initializing the selector, and no initial
	 * state was defined in the device tree, we just find out
	 * what its current value is rather than updating it.
	 */
	if (sel->clk_index == BAD_CLK_INDEX) {
		u8 index;

		reg_val = __ccu_read(ccu, sel->offset);
		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
		index = parent_index(sel, parent_sel);
		if (index == BAD_CLK_INDEX)
			return -EINVAL;
		sel->clk_index = index;

		return 0;
	}

	BUG_ON((u32)sel->clk_index >= sel->parent_count);
	parent_sel = sel->parent_sel[sel->clk_index];

	/* Clock needs to be enabled before changing the parent */
	enabled = __is_clk_gate_enabled(ccu, gate);
	if (!enabled && !__clk_gate(ccu, gate, true))
		return -ENXIO;

	/* Replace the selector value and record the result */
	reg_val = __ccu_read(ccu, sel->offset);
	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
	__ccu_write(ccu, sel->offset, reg_val);

	/* If the trigger fails we still want to disable the gate */
	if (!__clk_trigger(ccu, trig))
		ret = -EIO;

	/* Disable the clock again if it was disabled to begin with */
	if (!enabled && !__clk_gate(ccu, gate, false))
		ret = ret ? ret : -ENXIO;	/* return first error */

	return ret;
}

/*
 * Initialize a selector by committing our desired state to hardware
 * without the usual checks to see if it's already set up that way.
 * Returns true if successful, false otherwise.
 */
static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
{
	if (!selector_exists(sel))
		return true;
	return !__sel_commit(ccu, gate, sel, trig);
}

/*
 * Write a new value into a selector register to switch to a
 * different parent clock.  Returns 0 on success, or an error code
 * (from __sel_commit()) otherwise.
 */
static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
			u8 index)
{
	unsigned long flags;
	u8 previous;
	int ret;

	previous = sel->clk_index;
	if (previous == index)
		return 0;	/* No change */

	sel->clk_index = index;

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

	ret = __sel_commit(ccu, gate, sel, trig);

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);

	if (ret)
		sel->clk_index = previous;	/* Revert the change */

	return ret;
}

/* Clock operations */

static int kona_peri_clk_enable(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
975
	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
976

977
	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
978 979 980 981 982
}

static void kona_peri_clk_disable(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
983
	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
984

985
	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
986 987 988 989 990
}

static int kona_peri_clk_is_enabled(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
991
	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
992 993 994 995 996 997 998 999

	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
}

static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
			unsigned long parent_rate)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
1000
	struct peri_clk_data *data = bcm_clk->u.peri;
1001 1002 1003 1004 1005 1006 1007 1008 1009

	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
				parent_rate);
}

static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
			unsigned long *parent_rate)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
1010
	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1011 1012 1013 1014 1015

	if (!divider_exists(div))
		return __clk_get_rate(hw->clk);

	/* Quietly avoid a zero rate */
1016
	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1017 1018 1019
				rate ? rate : 1, *parent_rate, NULL);
}

1020
static long kona_peri_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
1021 1022
		unsigned long min_rate,
		unsigned long max_rate,
1023
		unsigned long *best_parent_rate, struct clk_hw **best_parent)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct clk *clk = hw->clk;
	struct clk *current_parent;
	unsigned long parent_rate;
	unsigned long best_delta;
	unsigned long best_rate;
	u32 parent_count;
	u32 which;

	/*
	 * If there is no other parent to choose, use the current one.
	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
	 */
	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
	parent_count = (u32)bcm_clk->init_data.num_parents;
	if (parent_count < 2)
		return kona_peri_clk_round_rate(hw, rate, best_parent_rate);

	/* Unless we can do better, stick with current parent */
	current_parent = clk_get_parent(clk);
	parent_rate = __clk_get_rate(current_parent);
	best_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
	best_delta = abs(best_rate - rate);

	/* Check whether any other parent clock can produce a better result */
	for (which = 0; which < parent_count; which++) {
		struct clk *parent = clk_get_parent_by_index(clk, which);
		unsigned long delta;
		unsigned long other_rate;

		BUG_ON(!parent);
		if (parent == current_parent)
			continue;

		/* We don't support CLK_SET_RATE_PARENT */
		parent_rate = __clk_get_rate(parent);
		other_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
		delta = abs(other_rate - rate);
		if (delta < best_delta) {
			best_delta = delta;
			best_rate = other_rate;
1066
			*best_parent = __clk_get_hw(parent);
1067 1068 1069 1070 1071 1072 1073
			*best_parent_rate = parent_rate;
		}
	}

	return best_rate;
}

1074 1075 1076
static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
1077
	struct peri_clk_data *data = bcm_clk->u.peri;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	struct bcm_clk_sel *sel = &data->sel;
	struct bcm_clk_trig *trig;
	int ret;

	BUG_ON(index >= sel->parent_count);

	/* If there's only one parent we don't require a selector */
	if (!selector_exists(sel))
		return 0;

	/*
	 * The regular trigger is used by default, but if there's a
	 * pre-trigger we want to use that instead.
	 */
	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
					       : &data->trig;

	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
	if (ret == -ENXIO) {
1097 1098
		pr_err("%s: gating failure for %s\n", __func__,
			bcm_clk->init_data.name);
1099 1100 1101 1102
		ret = -EIO;	/* Don't proliferate weird errors */
	} else if (ret == -EIO) {
		pr_err("%s: %strigger failed for %s\n", __func__,
			trig == &data->pre_trig ? "pre-" : "",
1103
			bcm_clk->init_data.name);
1104 1105 1106 1107 1108 1109 1110 1111
	}

	return ret;
}

static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
1112
	struct peri_clk_data *data = bcm_clk->u.peri;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	u8 index;

	index = selector_read_index(bcm_clk->ccu, &data->sel);

	/* Not all callers would handle an out-of-range value gracefully */
	return index == BAD_CLK_INDEX ? 0 : index;
}

static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
			unsigned long parent_rate)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
1125
	struct peri_clk_data *data = bcm_clk->u.peri;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	struct bcm_clk_div *div = &data->div;
	u64 scaled_div = 0;
	int ret;

	if (parent_rate > (unsigned long)LONG_MAX)
		return -EINVAL;

	if (rate == __clk_get_rate(hw->clk))
		return 0;

	if (!divider_exists(div))
		return rate == parent_rate ? 0 : -EINVAL;

	/*
	 * A fixed divider can't be changed.  (Nor can a fixed
	 * pre-divider be, but for now we never actually try to
	 * change that.)  Tolerate a request for a no-op change.
	 */
	if (divider_is_fixed(&data->div))
		return rate == parent_rate ? 0 : -EINVAL;

	/*
	 * Get the scaled divisor value needed to achieve a clock
	 * rate as close as possible to what was requested, given
	 * the parent clock rate supplied.
	 */
	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
				rate ? rate : 1, parent_rate, &scaled_div);

	/*
	 * We aren't updating any pre-divider at this point, so
	 * we'll use the regular trigger.
	 */
	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
				&data->trig, scaled_div);
	if (ret == -ENXIO) {
1162 1163
		pr_err("%s: gating failure for %s\n", __func__,
			bcm_clk->init_data.name);
1164 1165
		ret = -EIO;	/* Don't proliferate weird errors */
	} else if (ret == -EIO) {
1166 1167
		pr_err("%s: trigger failed for %s\n", __func__,
			bcm_clk->init_data.name);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	}

	return ret;
}

struct clk_ops kona_peri_clk_ops = {
	.enable = kona_peri_clk_enable,
	.disable = kona_peri_clk_disable,
	.is_enabled = kona_peri_clk_is_enabled,
	.recalc_rate = kona_peri_clk_recalc_rate,
1178
	.determine_rate = kona_peri_clk_determine_rate,
1179 1180 1181 1182 1183 1184 1185 1186 1187
	.set_parent = kona_peri_clk_set_parent,
	.get_parent = kona_peri_clk_get_parent,
	.set_rate = kona_peri_clk_set_rate,
};

/* Put a peripheral clock into its initial state */
static bool __peri_clk_init(struct kona_clk *bcm_clk)
{
	struct ccu_data *ccu = bcm_clk->ccu;
1188
	struct peri_clk_data *peri = bcm_clk->u.peri;
1189
	const char *name = bcm_clk->init_data.name;
1190 1191 1192 1193
	struct bcm_clk_trig *trig;

	BUG_ON(bcm_clk->type != bcm_clk_peri);

1194 1195 1196 1197 1198
	if (!policy_init(ccu, &peri->policy)) {
		pr_err("%s: error initializing policy for %s\n",
			__func__, name);
		return false;
	}
1199 1200 1201 1202
	if (!gate_init(ccu, &peri->gate)) {
		pr_err("%s: error initializing gate for %s\n", __func__, name);
		return false;
	}
1203 1204 1205 1206
	if (!hyst_init(ccu, &peri->hyst)) {
		pr_err("%s: error initializing hyst for %s\n", __func__, name);
		return false;
	}
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
		pr_err("%s: error initializing divider for %s\n", __func__,
			name);
		return false;
	}

	/*
	 * For the pre-divider and selector, the pre-trigger is used
	 * if it's present, otherwise we just use the regular trigger.
	 */
	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
					       : &peri->trig;

	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
		pr_err("%s: error initializing pre-divider for %s\n", __func__,
			name);
		return false;
	}

	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
		pr_err("%s: error initializing selector for %s\n", __func__,
			name);
		return false;
	}

	return true;
}

static bool __kona_clk_init(struct kona_clk *bcm_clk)
{
	switch (bcm_clk->type) {
	case bcm_clk_peri:
		return __peri_clk_init(bcm_clk);
	default:
		BUG();
	}
1243
	return false;
1244 1245 1246 1247 1248 1249 1250
}

/* Set a CCU and all its clocks into their desired initial state */
bool __init kona_ccu_init(struct ccu_data *ccu)
{
	unsigned long flags;
	unsigned int which;
1251
	struct clk **clks = ccu->clk_data.clks;
1252 1253 1254 1255 1256
	bool success = true;

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

1257
	for (which = 0; which < ccu->clk_data.clk_num; which++) {
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		struct kona_clk *bcm_clk;

		if (!clks[which])
			continue;
		bcm_clk = to_kona_clk(__clk_get_hw(clks[which]));
		success &= __kona_clk_init(bcm_clk);
	}

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);
	return success;
}