tilegx.c 53.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Copyright 2012 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/kernel.h>      /* printk() */
#include <linux/slab.h>        /* kmalloc() */
#include <linux/errno.h>       /* error codes */
#include <linux/types.h>       /* size_t */
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/irq.h>
#include <linux/netdevice.h>   /* struct device, and other headers */
#include <linux/etherdevice.h> /* eth_type_trans */
#include <linux/skbuff.h>
#include <linux/ioctl.h>
#include <linux/cdev.h>
#include <linux/hugetlb.h>
#include <linux/in6.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <linux/io.h>
#include <linux/ctype.h>
#include <linux/ip.h>
#include <linux/tcp.h>

#include <asm/checksum.h>
#include <asm/homecache.h>
#include <gxio/mpipe.h>
#include <arch/sim.h>

/* Default transmit lockup timeout period, in jiffies. */
#define TILE_NET_TIMEOUT (5 * HZ)

/* The maximum number of distinct channels (idesc.channel is 5 bits). */
#define TILE_NET_CHANNELS 32

/* Maximum number of idescs to handle per "poll". */
#define TILE_NET_BATCH 128

/* Maximum number of packets to handle per "poll". */
#define TILE_NET_WEIGHT 64

/* Number of entries in each iqueue. */
#define IQUEUE_ENTRIES 512

/* Number of entries in each equeue. */
#define EQUEUE_ENTRIES 2048

/* Total header bytes per equeue slot.  Must be big enough for 2 bytes
 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
 * 60 bytes of actual TCP header.  We round up to align to cache lines.
 */
#define HEADER_BYTES 128

/* Maximum completions per cpu per device (must be a power of two).
 * ISSUE: What is the right number here?  If this is too small, then
 * egress might block waiting for free space in a completions array.
 * ISSUE: At the least, allocate these only for initialized echannels.
 */
#define TILE_NET_MAX_COMPS 64

#define MAX_FRAGS (MAX_SKB_FRAGS + 1)

79 80 81
/* The "kinds" of buffer stacks (small/large/jumbo). */
#define MAX_KINDS 3

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/* Size of completions data to allocate.
 * ISSUE: Probably more than needed since we don't use all the channels.
 */
#define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))

/* Size of NotifRing data to allocate. */
#define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))

/* Timeout to wake the per-device TX timer after we stop the queue.
 * We don't want the timeout too short (adds overhead, and might end
 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
 */
#define TX_TIMER_DELAY_USEC 30

/* Timeout to wake the per-cpu egress timer to free completions. */
#define EGRESS_TIMER_DELAY_USEC 1000

MODULE_AUTHOR("Tilera Corporation");
MODULE_LICENSE("GPL");

/* A "packet fragment" (a chunk of memory). */
struct frag {
	void *buf;
	size_t length;
};

/* A single completion. */
struct tile_net_comp {
	/* The "complete_count" when the completion will be complete. */
	s64 when;
	/* The buffer to be freed when the completion is complete. */
	struct sk_buff *skb;
};

/* The completions for a given cpu and echannel. */
struct tile_net_comps {
	/* The completions. */
	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
	/* The number of completions used. */
	unsigned long comp_next;
	/* The number of completions freed. */
	unsigned long comp_last;
};

/* The transmit wake timer for a given cpu and echannel. */
struct tile_net_tx_wake {
129
	int tx_queue_idx;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	struct hrtimer timer;
	struct net_device *dev;
};

/* Info for a specific cpu. */
struct tile_net_info {
	/* The NAPI struct. */
	struct napi_struct napi;
	/* Packet queue. */
	gxio_mpipe_iqueue_t iqueue;
	/* Our cpu. */
	int my_cpu;
	/* True if iqueue is valid. */
	bool has_iqueue;
	/* NAPI flags. */
	bool napi_added;
	bool napi_enabled;
147 148
	/* Number of buffers (by kind) which must still be provided. */
	unsigned int num_needed_buffers[MAX_KINDS];
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	/* A timer for handling egress completions. */
	struct hrtimer egress_timer;
	/* True if "egress_timer" is scheduled. */
	bool egress_timer_scheduled;
	/* Comps for each egress channel. */
	struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
	/* Transmit wake timer for each egress channel. */
	struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
};

/* Info for egress on a particular egress channel. */
struct tile_net_egress {
	/* The "equeue". */
	gxio_mpipe_equeue_t *equeue;
	/* The headers for TSO. */
	unsigned char *headers;
};

/* Info for a specific device. */
struct tile_net_priv {
	/* Our network device. */
	struct net_device *dev;
	/* The primary link. */
	gxio_mpipe_link_t link;
	/* The primary channel, if open, else -1. */
	int channel;
	/* The "loopify" egress link, if needed. */
	gxio_mpipe_link_t loopify_link;
	/* The "loopify" egress channel, if open, else -1. */
	int loopify_channel;
	/* The egress channel (channel or loopify_channel). */
	int echannel;
};

/* Egress info, indexed by "priv->echannel" (lazily created as needed). */
static struct tile_net_egress egress_for_echannel[TILE_NET_CHANNELS];

/* Devices currently associated with each channel.
 * NOTE: The array entry can become NULL after ifconfig down, but
 * we do not free the underlying net_device structures, so it is
 * safe to use a pointer after reading it from this array.
 */
static struct net_device *tile_net_devs_for_channel[TILE_NET_CHANNELS];

/* A mutex for "tile_net_devs_for_channel". */
static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);

/* The per-cpu info. */
static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);

/* The "context" for all devices. */
static gxio_mpipe_context_t context;

202
/* The buffer size enums for each buffer stack.
203
 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
204 205
 * We avoid the "10384" size because it can induce "false chaining"
 * on "cut-through" jumbo packets.
206
 */
207 208 209 210 211
static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
	GXIO_MPIPE_BUFFER_SIZE_128,
	GXIO_MPIPE_BUFFER_SIZE_1664,
	GXIO_MPIPE_BUFFER_SIZE_16384
};
212

213 214
/* The actual memory allocated for the buffer stacks. */
static void *buffer_stack_vas[MAX_KINDS];
215

216 217
/* The amount of memory allocated for each buffer stack. */
static size_t buffer_stack_bytes[MAX_KINDS];
218

219 220
/* The first buffer stack index (small = +0, large = +1, jumbo = +2). */
static int first_buffer_stack = -1;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

/* The buckets. */
static int first_bucket = -1;
static int num_buckets = 1;

/* The ingress irq. */
static int ingress_irq = -1;

/* Text value of tile_net.cpus if passed as a module parameter. */
static char *network_cpus_string;

/* The actual cpus in "network_cpus". */
static struct cpumask network_cpus_map;

/* If "loopify=LINK" was specified, this is "LINK". */
static char *loopify_link_name;

/* If "tile_net.custom" was specified, this is non-NULL. */
static char *custom_str;

241 242 243
/* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
static uint jumbo_num;

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/* The "tile_net.cpus" argument specifies the cpus that are dedicated
 * to handle ingress packets.
 *
 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
 * m, n, x, y are integer numbers that represent the cpus that can be
 * neither a dedicated cpu nor a dataplane cpu.
 */
static bool network_cpus_init(void)
{
	char buf[1024];
	int rc;

	if (network_cpus_string == NULL)
		return false;

	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
	if (rc != 0) {
		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
			network_cpus_string);
		return false;
	}

	/* Remove dedicated cpus. */
	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);

	if (cpumask_empty(&network_cpus_map)) {
		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
			network_cpus_string);
		return false;
	}

	cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
	pr_info("Linux network CPUs: %s\n", buf);
	return true;
}

module_param_named(cpus, network_cpus_string, charp, 0444);
MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");

/* The "tile_net.loopify=LINK" argument causes the named device to
 * actually use "loop0" for ingress, and "loop1" for egress.  This
 * allows an app to sit between the actual link and linux, passing
 * (some) packets along to linux, and forwarding (some) packets sent
 * out by linux.
 */
module_param_named(loopify, loopify_link_name, charp, 0444);
MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");

/* The "tile_net.custom" argument causes us to ignore the "conventional"
 * classifier metadata, in particular, the "l2_offset".
 */
module_param_named(custom, custom_str, charp, 0444);
MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");

298 299 300 301 302 303
/* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
 * and to allocate the given number of "jumbo" buffers.
 */
module_param_named(jumbo, jumbo_num, uint, 0444);
MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");

304 305 306 307 308 309 310 311 312 313 314 315 316
/* Atomically update a statistics field.
 * Note that on TILE-Gx, this operation is fire-and-forget on the
 * issuing core (single-cycle dispatch) and takes only a few cycles
 * longer than a regular store when the request reaches the home cache.
 * No expensive bus management overhead is required.
 */
static void tile_net_stats_add(unsigned long value, unsigned long *field)
{
	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
	atomic_long_add(value, (atomic_long_t *)field);
}

/* Allocate and push a buffer. */
317
static bool tile_net_provide_buffer(int kind)
318
{
319 320
	gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
	size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
321 322 323 324
	const unsigned long buffer_alignment = 128;
	struct sk_buff *skb;
	int len;

325
	len = sizeof(struct sk_buff **) + buffer_alignment + bs;
326 327 328 329 330 331 332 333 334 335 336 337 338 339
	skb = dev_alloc_skb(len);
	if (skb == NULL)
		return false;

	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
	skb_reserve(skb, sizeof(struct sk_buff **));
	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));

	/* Save a back-pointer to 'skb'. */
	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;

	/* Make sure "skb" and the back-pointer have been flushed. */
	wmb();

340
	gxio_mpipe_push_buffer(&context, first_buffer_stack + kind,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
			       (void *)va_to_tile_io_addr(skb->data));

	return true;
}

/* Convert a raw mpipe buffer to its matching skb pointer. */
static struct sk_buff *mpipe_buf_to_skb(void *va)
{
	/* Acquire the associated "skb". */
	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
	struct sk_buff *skb = *skb_ptr;

	/* Paranoia. */
	if (skb->data != va) {
		/* Panic here since there's a reasonable chance
		 * that corrupt buffers means generic memory
		 * corruption, with unpredictable system effects.
		 */
		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
		      va, skb, skb->data);
	}

	return skb;
}

static void tile_net_pop_all_buffers(int stack)
{
	for (;;) {
		tile_io_addr_t addr =
			(tile_io_addr_t)gxio_mpipe_pop_buffer(&context, stack);
		if (addr == 0)
			break;
		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
	}
}

/* Provide linux buffers to mPIPE. */
static void tile_net_provide_needed_buffers(void)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
381 382 383 384 385 386 387 388 389 390 391 392
	int kind;

	for (kind = 0; kind < MAX_KINDS; kind++) {
		while (info->num_needed_buffers[kind] != 0) {
			if (!tile_net_provide_buffer(kind)) {
				/* Add info to the allocation failure dump. */
				pr_notice("Tile %d still needs some buffers\n",
					  info->my_cpu);
				return;
			}
			info->num_needed_buffers[kind]--;
		}
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	}
}

static inline bool filter_packet(struct net_device *dev, void *buf)
{
	/* Filter packets received before we're up. */
	if (dev == NULL || !(dev->flags & IFF_UP))
		return true;

	/* Filter out packets that aren't for us. */
	if (!(dev->flags & IFF_PROMISC) &&
	    !is_multicast_ether_addr(buf) &&
	    compare_ether_addr(dev->dev_addr, buf) != 0)
		return true;

	return false;
}

static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
				 gxio_mpipe_idesc_t *idesc, unsigned long len)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);

	/* Encode the actual packet length. */
	skb_put(skb, len);

	skb->protocol = eth_type_trans(skb, dev);

	/* Acknowledge "good" hardware checksums. */
	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	netif_receive_skb(skb);

	/* Update stats. */
428 429
	tile_net_stats_add(1, &dev->stats.rx_packets);
	tile_net_stats_add(len, &dev->stats.rx_bytes);
430 431

	/* Need a new buffer. */
432 433 434 435
	if (idesc->size == buffer_size_enums[0])
		info->num_needed_buffers[0]++;
	else if (idesc->size == buffer_size_enums[1])
		info->num_needed_buffers[1]++;
436
	else
437
		info->num_needed_buffers[2]++;
438 439 440 441 442 443 444 445 446 447 448 449 450
}

/* Handle a packet.  Return true if "processed", false if "filtered". */
static bool tile_net_handle_packet(gxio_mpipe_idesc_t *idesc)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
	struct net_device *dev = tile_net_devs_for_channel[idesc->channel];
	uint8_t l2_offset;
	void *va;
	void *buf;
	unsigned long len;
	bool filter;

451 452 453 454
	/* Drop packets for which no buffer was available (which can
	 * happen under heavy load), or for which the me/tr/ce flags
	 * are set (which can happen for jumbo cut-through packets,
	 * or with a customized classifier).
455
	 */
456 457
	if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
		if (dev)
458
			tile_net_stats_add(1, &dev->stats.rx_errors);
459
		goto drop;
460 461 462 463 464
	}

	/* Get the "l2_offset", if allowed. */
	l2_offset = custom_str ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);

465 466
	/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
	va = tile_io_addr_to_va((unsigned long)idesc->va);
467 468 469 470 471 472 473 474 475 476

	/* Get the actual packet start/length. */
	buf = va + l2_offset;
	len = idesc->l2_size - l2_offset;

	/* Point "va" at the raw buffer. */
	va -= NET_IP_ALIGN;

	filter = filter_packet(dev, buf);
	if (filter) {
477
		if (dev)
478
			tile_net_stats_add(1, &dev->stats.rx_dropped);
479
drop:
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
		gxio_mpipe_iqueue_drop(&info->iqueue, idesc);
	} else {
		struct sk_buff *skb = mpipe_buf_to_skb(va);

		/* Skip headroom, and any custom header. */
		skb_reserve(skb, NET_IP_ALIGN + l2_offset);

		tile_net_receive_skb(dev, skb, idesc, len);
	}

	gxio_mpipe_iqueue_consume(&info->iqueue, idesc);
	return !filter;
}

/* Handle some packets for the current CPU.
 *
 * This function handles up to TILE_NET_BATCH idescs per call.
 *
 * ISSUE: Since we do not provide new buffers until this function is
 * complete, we must initially provide enough buffers for each network
 * cpu to fill its iqueue and also its batched idescs.
 *
 * ISSUE: The "rotting packet" race condition occurs if a packet
 * arrives after the queue appears to be empty, and before the
 * hypervisor interrupt is re-enabled.
 */
static int tile_net_poll(struct napi_struct *napi, int budget)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
	unsigned int work = 0;
	gxio_mpipe_idesc_t *idesc;
	int i, n;

	/* Process packets. */
	while ((n = gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc)) > 0) {
		for (i = 0; i < n; i++) {
			if (i == TILE_NET_BATCH)
				goto done;
			if (tile_net_handle_packet(idesc + i)) {
				if (++work >= budget)
					goto done;
			}
		}
	}

	/* There are no packets left. */
	napi_complete(&info->napi);

	/* Re-enable hypervisor interrupts. */
	gxio_mpipe_enable_notif_ring_interrupt(&context, info->iqueue.ring);

	/* HACK: Avoid the "rotting packet" problem. */
	if (gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc) > 0)
		napi_schedule(&info->napi);

	/* ISSUE: Handle completions? */

done:
	tile_net_provide_needed_buffers();

	return work;
}

/* Handle an ingress interrupt on the current cpu. */
static irqreturn_t tile_net_handle_ingress_irq(int irq, void *unused)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
	napi_schedule(&info->napi);
	return IRQ_HANDLED;
}

/* Free some completions.  This must be called with interrupts blocked. */
static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
				struct tile_net_comps *comps,
				int limit, bool force_update)
{
	int n = 0;
	while (comps->comp_last < comps->comp_next) {
		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
		struct tile_net_comp *comp = &comps->comp_queue[cid];
		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
						   force_update || n == 0))
			break;
		dev_kfree_skb_irq(comp->skb);
		comps->comp_last++;
		if (++n == limit)
			break;
	}
	return n;
}

/* Add a completion.  This must be called with interrupts blocked.
 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
 */
static void add_comp(gxio_mpipe_equeue_t *equeue,
		     struct tile_net_comps *comps,
		     uint64_t when, struct sk_buff *skb)
{
	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
	comps->comp_queue[cid].when = when;
	comps->comp_queue[cid].skb = skb;
	comps->comp_next++;
}

584 585
static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
                                            int tx_queue_idx)
586
{
587
	struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
588
	struct tile_net_priv *priv = netdev_priv(dev);
589
	struct tile_net_tx_wake *tx_wake = &info->tx_wake[priv->echannel];
590

591
	hrtimer_start(&tx_wake->timer,
592 593 594 595 596 597 598 599
		      ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
		      HRTIMER_MODE_REL_PINNED);
}

static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
{
	struct tile_net_tx_wake *tx_wake =
		container_of(t, struct tile_net_tx_wake, timer);
600
	netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	return HRTIMER_NORESTART;
}

/* Make sure the egress timer is scheduled. */
static void tile_net_schedule_egress_timer(void)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);

	if (!info->egress_timer_scheduled) {
		hrtimer_start(&info->egress_timer,
			      ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
			      HRTIMER_MODE_REL_PINNED);
		info->egress_timer_scheduled = true;
	}
}

/* The "function" for "info->egress_timer".
 *
 * This timer will reschedule itself as long as there are any pending
 * completions expected for this tile.
 */
static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
	unsigned long irqflags;
	bool pending = false;
	int i;

	local_irq_save(irqflags);

	/* The timer is no longer scheduled. */
	info->egress_timer_scheduled = false;

	/* Free all possible comps for this tile. */
	for (i = 0; i < TILE_NET_CHANNELS; i++) {
		struct tile_net_egress *egress = &egress_for_echannel[i];
		struct tile_net_comps *comps = info->comps_for_echannel[i];
		if (comps->comp_last >= comps->comp_next)
			continue;
		tile_net_free_comps(egress->equeue, comps, -1, true);
		pending = pending || (comps->comp_last < comps->comp_next);
	}

	/* Reschedule timer if needed. */
	if (pending)
		tile_net_schedule_egress_timer();

	local_irq_restore(irqflags);

	return HRTIMER_NORESTART;
}

653 654
/* Helper function for "tile_net_update()". */
static void manage_ingress_irq(void *enable)
655
{
656
	if (enable)
657
		enable_percpu_irq(ingress_irq, 0);
658
	else
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		disable_percpu_irq(ingress_irq);
}

/* Helper function for tile_net_open() and tile_net_stop().
 * Always called under tile_net_devs_for_channel_mutex.
 */
static int tile_net_update(struct net_device *dev)
{
	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
	bool saw_channel = false;
	int channel;
	int rc;
	int cpu;

	gxio_mpipe_rules_init(&rules, &context);

	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
		if (tile_net_devs_for_channel[channel] == NULL)
			continue;
		if (!saw_channel) {
			saw_channel = true;
			gxio_mpipe_rules_begin(&rules, first_bucket,
					       num_buckets, NULL);
			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
		}
		gxio_mpipe_rules_add_channel(&rules, channel);
	}

	/* NOTE: This can fail if there is no classifier.
	 * ISSUE: Can anything else cause it to fail?
	 */
	rc = gxio_mpipe_rules_commit(&rules);
	if (rc != 0) {
		netdev_warn(dev, "gxio_mpipe_rules_commit failed: %d\n", rc);
		return -EIO;
	}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	/* Update all cpus, sequentially (to protect "netif_napi_add()").
	 * We use on_each_cpu to handle the IPI mask or unmask.
	 */
	if (!saw_channel)
		on_each_cpu(manage_ingress_irq, (void *)0, 1);
	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		if (!info->has_iqueue)
			continue;
		if (saw_channel) {
			if (!info->napi_added) {
				netif_napi_add(dev, &info->napi,
					       tile_net_poll, TILE_NET_WEIGHT);
				info->napi_added = true;
			}
			if (!info->napi_enabled) {
				napi_enable(&info->napi);
				info->napi_enabled = true;
			}
		} else {
			if (info->napi_enabled) {
				napi_disable(&info->napi);
				info->napi_enabled = false;
			}
			/* FIXME: Drain the iqueue. */
		}
	}
	if (saw_channel)
		on_each_cpu(manage_ingress_irq, (void *)1, 1);
725 726 727 728 729 730 731 732

	/* HACK: Allow packets to flow in the simulator. */
	if (saw_channel)
		sim_enable_mpipe_links(0, -1);

	return 0;
}

733 734 735
/* Initialize a buffer stack. */
static int create_buffer_stack(struct net_device *dev,
			       int kind, size_t num_buffers)
736 737
{
	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
738 739 740 741
	size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
	int stack_idx = first_buffer_stack + kind;
	void *va;
	int i, rc;
742

743 744
	/* Round up to 64KB and then use alloc_pages() so we get the
	 * required 64KB alignment.
745
	 */
746
	buffer_stack_bytes[kind] = ALIGN(needed, 64 * 1024);
747

748 749
	va = alloc_pages_exact(buffer_stack_bytes[kind], GFP_KERNEL);
	if (va == NULL) {
750
		netdev_err(dev,
751 752
			   "Could not alloc %zd bytes for buffer stack %d\n",
			   buffer_stack_bytes[kind], kind);
753 754
		return -ENOMEM;
	}
755 756 757 758 759

	/* Initialize the buffer stack. */
	rc = gxio_mpipe_init_buffer_stack(&context, stack_idx,
					  buffer_size_enums[kind],
					  va, buffer_stack_bytes[kind], 0);
760 761
	if (rc != 0) {
		netdev_err(dev, "gxio_mpipe_init_buffer_stack: %d\n", rc);
762
		free_pages_exact(va, buffer_stack_bytes[kind]);
763 764
		return rc;
	}
765 766 767 768

	buffer_stack_vas[kind] = va;

	rc = gxio_mpipe_register_client_memory(&context, stack_idx,
769 770
					       hash_pte, 0);
	if (rc != 0) {
771
		netdev_err(dev, "gxio_mpipe_register_client_memory: %d\n", rc);
772 773 774
		return rc;
	}

775 776 777 778 779 780
	/* Provide initial buffers. */
	for (i = 0; i < num_buffers; i++) {
		if (!tile_net_provide_buffer(kind)) {
			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
			return -ENOMEM;
		}
781
	}
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

	return 0;
}

/* Allocate and initialize mpipe buffer stacks, and register them in
 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
 * This routine supports tile_net_init_mpipe(), below.
 */
static int init_buffer_stacks(struct net_device *dev,
			      int network_cpus_count)
{
	int num_kinds = MAX_KINDS - (jumbo_num == 0);
	size_t num_buffers;
	int rc;

	/* Allocate the buffer stacks. */
	rc = gxio_mpipe_alloc_buffer_stacks(&context, num_kinds, 0, 0);
	if (rc < 0) {
		netdev_err(dev, "gxio_mpipe_alloc_buffer_stacks: %d\n", rc);
801 802
		return rc;
	}
803
	first_buffer_stack = rc;
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	/* Enough small/large buffers to (normally) avoid buffer errors. */
	num_buffers =
		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);

	/* Allocate the small memory stack. */
	if (rc >= 0)
		rc = create_buffer_stack(dev, 0, num_buffers);

	/* Allocate the large buffer stack. */
	if (rc >= 0)
		rc = create_buffer_stack(dev, 1, num_buffers);

	/* Allocate the jumbo buffer stack if needed. */
	if (rc >= 0 && jumbo_num != 0)
		rc = create_buffer_stack(dev, 2, jumbo_num);

	return rc;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
}

/* Allocate per-cpu resources (memory for completions and idescs).
 * This routine supports tile_net_init_mpipe(), below.
 */
static int alloc_percpu_mpipe_resources(struct net_device *dev,
					int cpu, int ring)
{
	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
	int order, i, rc;
	struct page *page;
	void *addr;

	/* Allocate the "comps". */
	order = get_order(COMPS_SIZE);
	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
	if (page == NULL) {
		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
			   COMPS_SIZE);
		return -ENOMEM;
	}
	addr = pfn_to_kaddr(page_to_pfn(page));
	memset(addr, 0, COMPS_SIZE);
	for (i = 0; i < TILE_NET_CHANNELS; i++)
		info->comps_for_echannel[i] =
			addr + i * sizeof(struct tile_net_comps);

	/* If this is a network cpu, create an iqueue. */
	if (cpu_isset(cpu, network_cpus_map)) {
		order = get_order(NOTIF_RING_SIZE);
		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
		if (page == NULL) {
			netdev_err(dev,
				   "Failed to alloc %zd bytes iqueue memory\n",
				   NOTIF_RING_SIZE);
			return -ENOMEM;
		}
		addr = pfn_to_kaddr(page_to_pfn(page));
		rc = gxio_mpipe_iqueue_init(&info->iqueue, &context, ring++,
					    addr, NOTIF_RING_SIZE, 0);
		if (rc < 0) {
			netdev_err(dev,
				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
			return rc;
		}
		info->has_iqueue = true;
	}

	return ring;
}

/* Initialize NotifGroup and buckets.
 * This routine supports tile_net_init_mpipe(), below.
 */
static int init_notif_group_and_buckets(struct net_device *dev,
					int ring, int network_cpus_count)
{
	int group, rc;

	/* Allocate one NotifGroup. */
	rc = gxio_mpipe_alloc_notif_groups(&context, 1, 0, 0);
	if (rc < 0) {
		netdev_err(dev, "gxio_mpipe_alloc_notif_groups failed: %d\n",
			   rc);
		return rc;
	}
	group = rc;

	/* Initialize global num_buckets value. */
	if (network_cpus_count > 4)
		num_buckets = 256;
	else if (network_cpus_count > 1)
		num_buckets = 16;

	/* Allocate some buckets, and set global first_bucket value. */
	rc = gxio_mpipe_alloc_buckets(&context, num_buckets, 0, 0);
	if (rc < 0) {
		netdev_err(dev, "gxio_mpipe_alloc_buckets failed: %d\n", rc);
		return rc;
	}
	first_bucket = rc;

	/* Init group and buckets. */
	rc = gxio_mpipe_init_notif_group_and_buckets(
		&context, group, ring, network_cpus_count,
		first_bucket, num_buckets,
		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
	if (rc != 0) {
		netdev_err(
			dev,
			"gxio_mpipe_init_notif_group_and_buckets failed: %d\n",
			rc);
		return rc;
	}

	return 0;
}

/* Create an irq and register it, then activate the irq and request
 * interrupts on all cores.  Note that "ingress_irq" being initialized
 * is how we know not to call tile_net_init_mpipe() again.
 * This routine supports tile_net_init_mpipe(), below.
 */
static int tile_net_setup_interrupts(struct net_device *dev)
{
	int cpu, rc;

	rc = create_irq();
	if (rc < 0) {
		netdev_err(dev, "create_irq failed: %d\n", rc);
		return rc;
	}
	ingress_irq = rc;
	tile_irq_activate(ingress_irq, TILE_IRQ_PERCPU);
	rc = request_irq(ingress_irq, tile_net_handle_ingress_irq,
937
			 0, "tile_net", NULL);
938 939 940 941 942 943 944 945 946 947 948 949
	if (rc != 0) {
		netdev_err(dev, "request_irq failed: %d\n", rc);
		destroy_irq(ingress_irq);
		ingress_irq = -1;
		return rc;
	}

	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		if (info->has_iqueue) {
			gxio_mpipe_request_notif_ring_interrupt(
				&context, cpu_x(cpu), cpu_y(cpu),
950
				KERNEL_PL, ingress_irq, info->iqueue.ring);
951 952 953 954 955 956 957 958 959
		}
	}

	return 0;
}

/* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
static void tile_net_init_mpipe_fail(void)
{
960
	int kind, cpu;
961 962

	/* Do cleanups that require the mpipe context first. */
963 964 965 966 967
	for (kind = 0; kind < MAX_KINDS; kind++) {
		if (buffer_stack_vas[kind] != NULL) {
			tile_net_pop_all_buffers(first_buffer_stack + kind);
		}
	}
968 969 970 971 972 973 974 975 976 977 978 979 980 981

	/* Destroy mpipe context so the hardware no longer owns any memory. */
	gxio_mpipe_destroy(&context);

	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		free_pages((unsigned long)(info->comps_for_echannel[0]),
			   get_order(COMPS_SIZE));
		info->comps_for_echannel[0] = NULL;
		free_pages((unsigned long)(info->iqueue.idescs),
			   get_order(NOTIF_RING_SIZE));
		info->iqueue.idescs = NULL;
	}

982 983 984 985 986 987 988
	for (kind = 0; kind < MAX_KINDS; kind++) {
		if (buffer_stack_vas[kind] != NULL) {
			free_pages_exact(buffer_stack_vas[kind],
					 buffer_stack_bytes[kind]);
			buffer_stack_vas[kind] = NULL;
		}
	}
989

990
	first_buffer_stack = -1;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	first_bucket = -1;
}

/* The first time any tilegx network device is opened, we initialize
 * the global mpipe state.  If this step fails, we fail to open the
 * device, but if it succeeds, we never need to do it again, and since
 * tile_net can't be unloaded, we never undo it.
 *
 * Note that some resources in this path (buffer stack indices,
 * bindings from init_buffer_stack, etc.) are hypervisor resources
 * that are freed implicitly by gxio_mpipe_destroy().
 */
static int tile_net_init_mpipe(struct net_device *dev)
{
1005
	int rc;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	int cpu;
	int first_ring, ring;
	int network_cpus_count = cpus_weight(network_cpus_map);

	if (!hash_default) {
		netdev_err(dev, "Networking requires hash_default!\n");
		return -EIO;
	}

	rc = gxio_mpipe_init(&context, 0);
	if (rc != 0) {
		netdev_err(dev, "gxio_mpipe_init failed: %d\n", rc);
		return -EIO;
	}

	/* Set up the buffer stacks. */
1022
	rc = init_buffer_stacks(dev, network_cpus_count);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	if (rc != 0)
		goto fail;

	/* Allocate one NotifRing for each network cpu. */
	rc = gxio_mpipe_alloc_notif_rings(&context, network_cpus_count, 0, 0);
	if (rc < 0) {
		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
			   rc);
		goto fail;
	}

	/* Init NotifRings per-cpu. */
	first_ring = rc;
	ring = first_ring;
	for_each_online_cpu(cpu) {
		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
		if (rc < 0)
			goto fail;
		ring = rc;
	}

	/* Initialize NotifGroup and buckets. */
	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
	if (rc != 0)
		goto fail;

	/* Create and enable interrupts. */
	rc = tile_net_setup_interrupts(dev);
	if (rc != 0)
		goto fail;

	return 0;

fail:
	tile_net_init_mpipe_fail();
	return rc;
}

/* Create persistent egress info for a given egress channel.
 * Note that this may be shared between, say, "gbe0" and "xgbe0".
 * ISSUE: Defer header allocation until TSO is actually needed?
 */
static int tile_net_init_egress(struct net_device *dev, int echannel)
{
1067
	static int ering = -1;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	struct page *headers_page, *edescs_page, *equeue_page;
	gxio_mpipe_edesc_t *edescs;
	gxio_mpipe_equeue_t *equeue;
	unsigned char *headers;
	int headers_order, edescs_order, equeue_order;
	size_t edescs_size;
	int rc = -ENOMEM;

	/* Only initialize once. */
	if (egress_for_echannel[echannel].equeue != NULL)
		return 0;

	/* Allocate memory for the "headers". */
	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
	headers_page = alloc_pages(GFP_KERNEL, headers_order);
	if (headers_page == NULL) {
		netdev_warn(dev,
			    "Could not alloc %zd bytes for TSO headers.\n",
			    PAGE_SIZE << headers_order);
		goto fail;
	}
	headers = pfn_to_kaddr(page_to_pfn(headers_page));

	/* Allocate memory for the "edescs". */
	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
	edescs_order = get_order(edescs_size);
	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
	if (edescs_page == NULL) {
		netdev_warn(dev,
			    "Could not alloc %zd bytes for eDMA ring.\n",
			    edescs_size);
		goto fail_headers;
	}
	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));

	/* Allocate memory for the "equeue". */
	equeue_order = get_order(sizeof(*equeue));
	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
	if (equeue_page == NULL) {
		netdev_warn(dev,
			    "Could not alloc %zd bytes for equeue info.\n",
			    PAGE_SIZE << equeue_order);
		goto fail_edescs;
	}
	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));

1114 1115 1116 1117 1118 1119 1120 1121 1122
	/* Allocate an edma ring (using a one entry "free list"). */
	if (ering < 0) {
		rc = gxio_mpipe_alloc_edma_rings(&context, 1, 0, 0);
		if (rc < 0) {
			netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: %d\n",
				    rc);
			goto fail_equeue;
		}
		ering = rc;
1123 1124 1125
	}

	/* Initialize the equeue. */
1126
	rc = gxio_mpipe_equeue_init(equeue, &context, ering, echannel,
1127 1128 1129 1130 1131 1132
				    edescs, edescs_size, 0);
	if (rc != 0) {
		netdev_err(dev, "gxio_mpipe_equeue_init failed: %d\n", rc);
		goto fail_equeue;
	}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	/* Don't reuse the ering later. */
	ering = -1;

	if (jumbo_num != 0) {
		/* Make sure "jumbo" packets can be egressed safely. */
		if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
			/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
			netdev_warn(dev, "Jumbo packets may not be egressed"
				    " properly on channel %d\n", echannel);
		}
	}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	/* Done. */
	egress_for_echannel[echannel].equeue = equeue;
	egress_for_echannel[echannel].headers = headers;
	return 0;

fail_equeue:
	__free_pages(equeue_page, equeue_order);

fail_edescs:
	__free_pages(edescs_page, edescs_order);

fail_headers:
	__free_pages(headers_page, headers_order);

fail:
	return rc;
}

/* Return channel number for a newly-opened link. */
static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
			      const char *link_name)
{
	int rc = gxio_mpipe_link_open(link, &context, link_name, 0);
	if (rc < 0) {
		netdev_err(dev, "Failed to open '%s'\n", link_name);
		return rc;
	}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (jumbo_num != 0) {
		u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
		rc = gxio_mpipe_link_set_attr(link, attr, 1);
		if (rc != 0) {
			netdev_err(dev,
				   "Cannot receive jumbo packets on '%s'\n",
				   link_name);
			gxio_mpipe_link_close(link);
			return rc;
		}
	}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	rc = gxio_mpipe_link_channel(link);
	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
		gxio_mpipe_link_close(link);
		return -EINVAL;
	}
	return rc;
}

/* Help the kernel activate the given network interface. */
static int tile_net_open(struct net_device *dev)
{
	struct tile_net_priv *priv = netdev_priv(dev);
	int cpu, rc;

	mutex_lock(&tile_net_devs_for_channel_mutex);

	/* Do one-time initialization the first time any device is opened. */
	if (ingress_irq < 0) {
		rc = tile_net_init_mpipe(dev);
		if (rc != 0)
			goto fail;
	}

	/* Determine if this is the "loopify" device. */
	if (unlikely((loopify_link_name != NULL) &&
		     !strcmp(dev->name, loopify_link_name))) {
		rc = tile_net_link_open(dev, &priv->link, "loop0");
		if (rc < 0)
			goto fail;
		priv->channel = rc;
		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
		if (rc < 0)
			goto fail;
		priv->loopify_channel = rc;
		priv->echannel = rc;
	} else {
		rc = tile_net_link_open(dev, &priv->link, dev->name);
		if (rc < 0)
			goto fail;
		priv->channel = rc;
		priv->echannel = rc;
	}

	/* Initialize egress info (if needed).  Once ever, per echannel. */
	rc = tile_net_init_egress(dev, priv->echannel);
	if (rc != 0)
		goto fail;

	tile_net_devs_for_channel[priv->channel] = dev;

	rc = tile_net_update(dev);
	if (rc != 0)
		goto fail;

	mutex_unlock(&tile_net_devs_for_channel_mutex);

	/* Initialize the transmit wake timer for this device for each cpu. */
	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		struct tile_net_tx_wake *tx_wake =
			&info->tx_wake[priv->echannel];

		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
			     HRTIMER_MODE_REL);
1248
		tx_wake->tx_queue_idx = cpu;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
		tx_wake->dev = dev;
	}

	for_each_online_cpu(cpu)
		netif_start_subqueue(dev, cpu);
	netif_carrier_on(dev);
	return 0;

fail:
	if (priv->loopify_channel >= 0) {
		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
			netdev_warn(dev, "Failed to close loopify link!\n");
		priv->loopify_channel = -1;
	}
	if (priv->channel >= 0) {
		if (gxio_mpipe_link_close(&priv->link) != 0)
			netdev_warn(dev, "Failed to close link!\n");
		priv->channel = -1;
	}
	priv->echannel = -1;
	tile_net_devs_for_channel[priv->channel] = NULL;
	mutex_unlock(&tile_net_devs_for_channel_mutex);

	/* Don't return raw gxio error codes to generic Linux. */
	return (rc > -512) ? rc : -EIO;
}

/* Help the kernel deactivate the given network interface. */
static int tile_net_stop(struct net_device *dev)
{
	struct tile_net_priv *priv = netdev_priv(dev);
	int cpu;

	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		struct tile_net_tx_wake *tx_wake =
			&info->tx_wake[priv->echannel];

		hrtimer_cancel(&tx_wake->timer);
		netif_stop_subqueue(dev, cpu);
	}

	mutex_lock(&tile_net_devs_for_channel_mutex);
	tile_net_devs_for_channel[priv->channel] = NULL;
	(void)tile_net_update(dev);
	if (priv->loopify_channel >= 0) {
		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
			netdev_warn(dev, "Failed to close loopify link!\n");
		priv->loopify_channel = -1;
	}
	if (priv->channel >= 0) {
		if (gxio_mpipe_link_close(&priv->link) != 0)
			netdev_warn(dev, "Failed to close link!\n");
		priv->channel = -1;
	}
	priv->echannel = -1;
	mutex_unlock(&tile_net_devs_for_channel_mutex);

	return 0;
}

/* Determine the VA for a fragment. */
static inline void *tile_net_frag_buf(skb_frag_t *f)
{
	unsigned long pfn = page_to_pfn(skb_frag_page(f));
	return pfn_to_kaddr(pfn) + f->page_offset;
}

/* Acquire a completion entry and an egress slot, or if we can't,
 * stop the queue and schedule the tx_wake timer.
 */
static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1322
				       int tx_queue_idx,
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
				       struct tile_net_comps *comps,
				       gxio_mpipe_equeue_t *equeue,
				       int num_edescs)
{
	/* Try to acquire a completion entry. */
	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
	    tile_net_free_comps(equeue, comps, 32, false) != 0) {

		/* Try to acquire an egress slot. */
		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
		if (slot >= 0)
			return slot;

		/* Freeing some completions gives the equeue time to drain. */
		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);

		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
		if (slot >= 0)
			return slot;
	}

	/* Still nothing; give up and stop the queue for a short while. */
1345 1346
	netif_stop_subqueue(dev, tx_queue_idx);
	tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	return -1;
}

/* Determine how many edesc's are needed for TSO.
 *
 * Sometimes, if "sendfile()" requires copying, we will be called with
 * "data" containing the header and payload, with "frags" being empty.
 * Sometimes, for example when using NFS over TCP, a single segment can
 * span 3 fragments.  This requires special care.
 */
static int tso_count_edescs(struct sk_buff *skb)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
1360
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1361
	unsigned int data_len = skb->len - sh_len;
1362 1363
	unsigned int p_len = sh->gso_size;
	long f_id = -1;    /* id of the current fragment */
1364 1365
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	long n;            /* size of the current piece of payload */
	int num_edescs = 0;
	int segment;

	for (segment = 0; segment < sh->gso_segs; segment++) {

		unsigned int p_used = 0;

		/* One edesc for header and for each piece of the payload. */
		for (num_edescs++; p_used < p_len; num_edescs++) {

			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
1380
				f_size = skb_frag_size(&sh->frags[f_id]);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
				f_used = 0;
			}

			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;
		}

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	return num_edescs;
}

/* Prepare modified copies of the skbuff headers.
 * FIXME: add support for IPv6.
 */
static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
				s64 slot)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
	struct iphdr *ih;
	struct tcphdr *th;
1410
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1411
	unsigned int data_len = skb->len - sh_len;
1412
	unsigned char *data = skb->data;
1413
	unsigned int ih_off, th_off, p_len;
1414 1415
	unsigned int isum_seed, tsum_seed, id, seq;
	long f_id = -1;    /* id of the current fragment */
1416 1417
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	long n;            /* size of the current piece of payload */
	int segment;

	/* Locate original headers and compute various lengths. */
	ih = ip_hdr(skb);
	th = tcp_hdr(skb);
	ih_off = skb_network_offset(skb);
	th_off = skb_transport_offset(skb);
	p_len = sh->gso_size;

	/* Set up seed values for IP and TCP csum and initialize id and seq. */
	isum_seed = ((0xFFFF - ih->check) +
		     (0xFFFF - ih->tot_len) +
		     (0xFFFF - ih->id));
1432
	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	id = ntohs(ih->id);
	seq = ntohl(th->seq);

	/* Prepare all the headers. */
	for (segment = 0; segment < sh->gso_segs; segment++) {
		unsigned char *buf;
		unsigned int p_used = 0;

		/* Copy to the header memory for this segment. */
		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
			NET_IP_ALIGN;
		memcpy(buf, data, sh_len);

		/* Update copied ip header. */
		ih = (struct iphdr *)(buf + ih_off);
		ih->tot_len = htons(sh_len + p_len - ih_off);
		ih->id = htons(id);
		ih->check = csum_long(isum_seed + ih->tot_len +
				      ih->id) ^ 0xffff;

		/* Update copied tcp header. */
		th = (struct tcphdr *)(buf + th_off);
		th->seq = htonl(seq);
		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
		if (segment != sh->gso_segs - 1) {
			th->fin = 0;
			th->psh = 0;
		}

		/* Skip past the header. */
		slot++;

		/* Skip past the payload. */
		while (p_used < p_len) {

			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
1471
				f_size = skb_frag_size(&sh->frags[f_id]);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
				f_used = 0;
			}

			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;

			slot++;
		}

		id++;
		seq += p_len;

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	/* Flush the headers so they are ready for hardware DMA. */
	wmb();
}

/* Pass all the data to mpipe for egress. */
static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
		       struct sk_buff *skb, unsigned char *headers, s64 slot)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
1503
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1504
	unsigned int data_len = skb->len - sh_len;
1505 1506 1507 1508
	unsigned int p_len = sh->gso_size;
	gxio_mpipe_edesc_t edesc_head = { { 0 } };
	gxio_mpipe_edesc_t edesc_body = { { 0 } };
	long f_id = -1;    /* id of the current fragment */
1509 1510 1511
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
	void *f_data = skb->data + sh_len;
1512 1513
	long n;            /* size of the current piece of payload */
	unsigned long tx_packets = 0, tx_bytes = 0;
1514
	unsigned int csum_start;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	int segment;

	/* Prepare to egress the headers: set up header edesc. */
	csum_start = skb_checksum_start_offset(skb);
	edesc_head.csum = 1;
	edesc_head.csum_start = csum_start;
	edesc_head.csum_dest = csum_start + skb->csum_offset;
	edesc_head.xfer_size = sh_len;

	/* This is only used to specify the TLB. */
1525 1526
	edesc_head.stack_idx = first_buffer_stack;
	edesc_body.stack_idx = first_buffer_stack;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	/* Egress all the edescs. */
	for (segment = 0; segment < sh->gso_segs; segment++) {
		unsigned char *buf;
		unsigned int p_used = 0;

		/* Egress the header. */
		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
			NET_IP_ALIGN;
		edesc_head.va = va_to_tile_io_addr(buf);
		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
		slot++;

		/* Egress the payload. */
		while (p_used < p_len) {
1542
			void *va;
1543 1544 1545 1546

			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
1547
				f_size = skb_frag_size(&sh->frags[f_id]);
1548
				f_data = tile_net_frag_buf(&sh->frags[f_id]);
1549
				f_used = 0;
1550 1551
			}

1552 1553
			va = f_data + f_used;

1554 1555 1556 1557 1558 1559 1560 1561
			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;

			/* Egress a piece of the payload. */
1562
			edesc_body.va = va_to_tile_io_addr(va);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
			edesc_body.xfer_size = n;
			edesc_body.bound = !(p_used < p_len);
			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
			slot++;
		}

		tx_packets++;
		tx_bytes += sh_len + p_len;

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	/* Update stats. */
1579 1580
	tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
	tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
}

/* Do "TSO" handling for egress.
 *
 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
 * otherwise the stack uses scatter-gather to implement GSO in software.
 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
 * performance down to around 7.5 Gbps on the 10G interfaces, although
 * also dropping cpu utilization way down, to under 8%.  But
 * implementing "TSO" in the driver brings performance back up to line
 * rate, while dropping cpu usage even further, to less than 4%.  In
 * practice, profiling of GSO shows that skb_segment() is what causes
 * the performance overheads; we benefit in the driver from using
 * preallocated memory to duplicate the TCP/IP headers.
 */
static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
	struct tile_net_priv *priv = netdev_priv(dev);
	int channel = priv->echannel;
	struct tile_net_egress *egress = &egress_for_echannel[channel];
	struct tile_net_comps *comps = info->comps_for_echannel[channel];
	gxio_mpipe_equeue_t *equeue = egress->equeue;
	unsigned long irqflags;
	int num_edescs;
	s64 slot;

	/* Determine how many mpipe edesc's are needed. */
	num_edescs = tso_count_edescs(skb);

	local_irq_save(irqflags);

	/* Try to acquire a completion entry and an egress slot. */
1614 1615
	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
					   equeue, num_edescs);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	if (slot < 0) {
		local_irq_restore(irqflags);
		return NETDEV_TX_BUSY;
	}

	/* Set up copies of header data properly. */
	tso_headers_prepare(skb, egress->headers, slot);

	/* Actually pass the data to the network hardware. */
	tso_egress(dev, equeue, skb, egress->headers, slot);

	/* Add a completion record. */
	add_comp(equeue, comps, slot + num_edescs - 1, skb);

	local_irq_restore(irqflags);

	/* Make sure the egress timer is scheduled. */
	tile_net_schedule_egress_timer();

	return NETDEV_TX_OK;
}

/* Analyze the body and frags for a transmit request. */
static unsigned int tile_net_tx_frags(struct frag *frags,
				       struct sk_buff *skb,
				       void *b_data, unsigned int b_len)
{
	unsigned int i, n = 0;

	struct skb_shared_info *sh = skb_shinfo(skb);

	if (b_len != 0) {
		frags[n].buf = b_data;
		frags[n++].length = b_len;
	}

	for (i = 0; i < sh->nr_frags; i++) {
		skb_frag_t *f = &sh->frags[i];
		frags[n].buf = tile_net_frag_buf(f);
		frags[n++].length = skb_frag_size(f);
	}

	return n;
}

/* Help the kernel transmit a packet. */
static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
	struct tile_net_priv *priv = netdev_priv(dev);
	struct tile_net_egress *egress = &egress_for_echannel[priv->echannel];
	gxio_mpipe_equeue_t *equeue = egress->equeue;
	struct tile_net_comps *comps =
		info->comps_for_echannel[priv->echannel];
	unsigned int len = skb->len;
	unsigned char *data = skb->data;
	unsigned int num_edescs;
	struct frag frags[MAX_FRAGS];
	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
	unsigned long irqflags;
	gxio_mpipe_edesc_t edesc = { { 0 } };
	unsigned int i;
	s64 slot;

	if (skb_is_gso(skb))
		return tile_net_tx_tso(skb, dev);

	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));

	/* This is only used to specify the TLB. */
1686
	edesc.stack_idx = first_buffer_stack;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

	/* Prepare the edescs. */
	for (i = 0; i < num_edescs; i++) {
		edesc.xfer_size = frags[i].length;
		edesc.va = va_to_tile_io_addr(frags[i].buf);
		edescs[i] = edesc;
	}

	/* Mark the final edesc. */
	edescs[num_edescs - 1].bound = 1;

	/* Add checksum info to the initial edesc, if needed. */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		unsigned int csum_start = skb_checksum_start_offset(skb);
		edescs[0].csum = 1;
		edescs[0].csum_start = csum_start;
		edescs[0].csum_dest = csum_start + skb->csum_offset;
	}

	local_irq_save(irqflags);

	/* Try to acquire a completion entry and an egress slot. */
1709 1710
	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
					   equeue, num_edescs);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	if (slot < 0) {
		local_irq_restore(irqflags);
		return NETDEV_TX_BUSY;
	}

	for (i = 0; i < num_edescs; i++)
		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);

	/* Add a completion record. */
	add_comp(equeue, comps, slot - 1, skb);

	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
1723
	tile_net_stats_add(1, &dev->stats.tx_packets);
1724
	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
1725
			   &dev->stats.tx_bytes);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	local_irq_restore(irqflags);

	/* Make sure the egress timer is scheduled. */
	tile_net_schedule_egress_timer();

	return NETDEV_TX_OK;
}

/* Return subqueue id on this core (one per core). */
static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb)
{
	return smp_processor_id();
}

/* Deal with a transmit timeout. */
static void tile_net_tx_timeout(struct net_device *dev)
{
	int cpu;

	for_each_online_cpu(cpu)
		netif_wake_subqueue(dev, cpu);
}

/* Ioctl commands. */
static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	return -EOPNOTSUPP;
}

/* Change the MTU. */
static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
{
1759 1760 1761
	if (new_mtu < 68)
		return -EINVAL;
	if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		return -EINVAL;
	dev->mtu = new_mtu;
	return 0;
}

/* Change the Ethernet address of the NIC.
 *
 * The hypervisor driver does not support changing MAC address.  However,
 * the hardware does not do anything with the MAC address, so the address
 * which gets used on outgoing packets, and which is accepted on incoming
 * packets, is completely up to us.
 *
 * Returns 0 on success, negative on failure.
 */
static int tile_net_set_mac_address(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EINVAL;
	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void tile_net_netpoll(struct net_device *dev)
{
	disable_percpu_irq(ingress_irq);
	tile_net_handle_ingress_irq(ingress_irq, NULL);
	enable_percpu_irq(ingress_irq, 0);
}
#endif

static const struct net_device_ops tile_net_ops = {
	.ndo_open = tile_net_open,
	.ndo_stop = tile_net_stop,
	.ndo_start_xmit = tile_net_tx,
	.ndo_select_queue = tile_net_select_queue,
	.ndo_do_ioctl = tile_net_ioctl,
	.ndo_change_mtu = tile_net_change_mtu,
	.ndo_tx_timeout = tile_net_tx_timeout,
	.ndo_set_mac_address = tile_net_set_mac_address,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = tile_net_netpoll,
#endif
};

/* The setup function.
 *
 * This uses ether_setup() to assign various fields in dev, including
 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
 */
static void tile_net_setup(struct net_device *dev)
{
1820 1821
	netdev_features_t features = 0;

1822 1823 1824 1825
	ether_setup(dev);
	dev->netdev_ops = &tile_net_ops;
	dev->watchdog_timeo = TILE_NET_TIMEOUT;
	dev->mtu = 1500;
1826 1827 1828 1829 1830 1831 1832 1833 1834

	features |= NETIF_F_LLTX;
	features |= NETIF_F_HW_CSUM;
	features |= NETIF_F_SG;
	features |= NETIF_F_TSO;

	dev->hw_features   |= features;
	dev->vlan_features |= features;
	dev->features      |= features;
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
}

/* Allocate the device structure, register the device, and obtain the
 * MAC address from the hypervisor.
 */
static void tile_net_dev_init(const char *name, const uint8_t *mac)
{
	int ret;
	int i;
	int nz_addr = 0;
	struct net_device *dev;
	struct tile_net_priv *priv;

	/* HACK: Ignore "loop" links. */
	if (strncmp(name, "loop", 4) == 0)
		return;

	/* Allocate the device structure.  Normally, "name" is a
	 * template, instantiated by register_netdev(), but not for us.
	 */
	dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup,
			       NR_CPUS, 1);
	if (!dev) {
		pr_err("alloc_netdev_mqs(%s) failed\n", name);
		return;
	}

	/* Initialize "priv". */
	priv = netdev_priv(dev);
	memset(priv, 0, sizeof(*priv));
	priv->dev = dev;
	priv->channel = -1;
	priv->loopify_channel = -1;
	priv->echannel = -1;

	/* Get the MAC address and set it in the device struct; this must
	 * be done before the device is opened.  If the MAC is all zeroes,
	 * we use a random address, since we're probably on the simulator.
	 */
	for (i = 0; i < 6; i++)
		nz_addr |= mac[i];

	if (nz_addr) {
		memcpy(dev->dev_addr, mac, 6);
		dev->addr_len = 6;
	} else {
1881
		eth_hw_addr_random(dev);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	}

	/* Register the network device. */
	ret = register_netdev(dev);
	if (ret) {
		netdev_err(dev, "register_netdev failed %d\n", ret);
		free_netdev(dev);
		return;
	}
}

/* Per-cpu module initialization. */
static void tile_net_init_module_percpu(void *unused)
{
	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
	int my_cpu = smp_processor_id();

	info->has_iqueue = false;

	info->my_cpu = my_cpu;

	/* Initialize the egress timer. */
	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	info->egress_timer.function = tile_net_handle_egress_timer;
}

/* Module initialization. */
static int __init tile_net_init_module(void)
{
	int i;
	char name[GXIO_MPIPE_LINK_NAME_LEN];
	uint8_t mac[6];

	pr_info("Tilera Network Driver\n");

	mutex_init(&tile_net_devs_for_channel_mutex);

	/* Initialize each CPU. */
	on_each_cpu(tile_net_init_module_percpu, NULL, 1);

	/* Find out what devices we have, and initialize them. */
	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
		tile_net_dev_init(name, mac);

	if (!network_cpus_init())
		network_cpus_map = *cpu_online_mask;

	return 0;
}

module_init(tile_net_init_module);