cpufeature.c 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21 22
#include <linux/bsearch.h>
#include <linux/sort.h>
23 24 25
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
26
#include <asm/cpu_ops.h>
27
#include <asm/mmu_context.h>
28
#include <asm/processor.h>
29
#include <asm/sysreg.h>
30
#include <asm/virt.h>
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);

49
#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50
	{						\
51
		.sign = SIGNED,				\
52 53 54 55 56 57 58
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

59
/* Define a feature with unsigned values */
60 61 62
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

63 64 65 66
/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

67 68 69 70 71
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

72 73
/* meta feature for alternatives */
static bool __maybe_unused
74 75
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

76

77
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78 79 80 81 82 83 84 85 86 87 88 89
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
	ARM64_FTR_END,
};

90
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91 92 93
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94 95
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96 97 98 99 100 101 102 103
	/* Linux doesn't care about the EL3 */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
	ARM64_FTR_END,
};

104
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106 107
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108 109 110 111 112 113 114 115 116 117
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
	/* Linux shouldn't care about secure memory */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
118
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119 120 121
	ARM64_FTR_END,
};

122
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123 124 125 126 127 128 129 130 131 132
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

133
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134 135 136
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
137
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
138
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
139 140 141
	ARM64_FTR_END,
};

142
static const struct arm64_ftr_bits ftr_ctr[] = {
143
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
144
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
145 146 147
	ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
148 149 150 151
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
	 * make use of *minLine
	 */
152
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
153
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
154
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
155 156 157
	ARM64_FTR_END,
};

158
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
159
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
160 161 162 163
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
164
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
165 166 167 168 169
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
	ARM64_FTR_END,
};

170
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
171
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
172 173 174 175 176 177
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
178 179 180
	ARM64_FTR_END,
};

181
static const struct arm64_ftr_bits ftr_mvfr2[] = {
182 183 184 185 186 187
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
	ARM64_FTR_END,
};

188
static const struct arm64_ftr_bits ftr_dczid[] = {
189 190 191 192 193 194 195
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
	ARM64_FTR_END,
};


196
static const struct arm64_ftr_bits ftr_id_isar5[] = {
197 198 199 200 201 202 203 204 205 206
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
	ARM64_FTR_END,
};

207
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
208 209 210 211 212 213
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
	ARM64_FTR_END,
};

214
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
215 216 217 218 219 220 221 222
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
	ARM64_FTR_END,
};

223
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
224
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
225
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
226 227 228 229 230 231 232 233 234
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

235 236 237 238 239 240
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
241
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
242 243 244 245 246 247 248 249 250 251 252
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

253
static const struct arm64_ftr_bits ftr_generic[] = {
254 255 256 257
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

258
static const struct arm64_ftr_bits ftr_generic32[] = {
259 260 261 262
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
	ARM64_FTR_END,
};

263
static const struct arm64_ftr_bits ftr_aa64raz[] = {
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

#define ARM64_FTR_REG(id, table)		\
	{					\
		.sys_id = id,			\
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
	}

static struct arm64_ftr_reg arm64_ftr_regs[] = {

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
280
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
315
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

	/* Op1 = 3, CRn = 0, CRm = 0 */
	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
	return bsearch((const void *)(unsigned long)sys_id,
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
}

349 350
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
351 352 353 354 355 356 357 358
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

359 360
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static int __init sort_cmp_ftr_regs(const void *a, const void *b)
{
	return ((const struct arm64_ftr_reg *)a)->sys_id -
		 ((const struct arm64_ftr_reg *)b)->sys_id;
}

static void __init swap_ftr_regs(void *a, void *b, int size)
{
	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
	*(struct arm64_ftr_reg *)b = tmp;
}

static void __init sort_ftr_regs(void)
{
	/* Keep the array sorted so that we can do the binary search */
	sort(arm64_ftr_regs,
		ARRAY_SIZE(arm64_ftr_regs),
		sizeof(arm64_ftr_regs[0]),
		sort_cmp_ftr_regs,
		swap_ftr_regs);
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
412
	const struct arm64_ftr_bits *ftrp;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
		if (!ftrp->strict)
			strict_mask &= ~arm64_ftr_mask(ftrp);
	}
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
442
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
443 444
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

465 466
}

467
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
468
{
469
	const struct arm64_ftr_bits *ftrp;
470 471 472 473 474 475 476 477 478 479 480 481 482 483

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

484
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
485
{
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
556 557
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
558 559 560 561 562 563 564 565 566 567 568

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	/*
569 570
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
571
	 */
572 573 574 575
	if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
576
					info->reg_id_dfr0, boot->reg_id_dfr0);
577
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
578
					info->reg_id_isar0, boot->reg_id_isar0);
579
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
580
					info->reg_id_isar1, boot->reg_id_isar1);
581
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
582
					info->reg_id_isar2, boot->reg_id_isar2);
583
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
584
					info->reg_id_isar3, boot->reg_id_isar3);
585
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
586
					info->reg_id_isar4, boot->reg_id_isar4);
587
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
588 589
					info->reg_id_isar5, boot->reg_id_isar5);

590 591 592 593 594 595
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
596
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
597
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
598
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
599
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
600
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
601
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
602
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
603
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
604
					info->reg_id_pfr0, boot->reg_id_pfr0);
605
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
606
					info->reg_id_pfr1, boot->reg_id_pfr1);
607
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
608
					info->reg_mvfr0, boot->reg_mvfr0);
609
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
610
					info->reg_mvfr1, boot->reg_mvfr1);
611
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
612
					info->reg_mvfr2, boot->reg_mvfr2);
613
	}
614 615 616 617 618 619 620

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
			"Unsupported CPU feature variation.\n");
621 622
}

623 624 625 626 627 628 629 630
u64 read_system_reg(u32 id)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
 * Read the system register on the current CPU
 */
static u64 __raw_read_system_reg(u32 sys_id)
{
	switch (sys_id) {
	case SYS_ID_PFR0_EL1:		return read_cpuid(ID_PFR0_EL1);
	case SYS_ID_PFR1_EL1:		return read_cpuid(ID_PFR1_EL1);
	case SYS_ID_DFR0_EL1:		return read_cpuid(ID_DFR0_EL1);
	case SYS_ID_MMFR0_EL1:		return read_cpuid(ID_MMFR0_EL1);
	case SYS_ID_MMFR1_EL1:		return read_cpuid(ID_MMFR1_EL1);
	case SYS_ID_MMFR2_EL1:		return read_cpuid(ID_MMFR2_EL1);
	case SYS_ID_MMFR3_EL1:		return read_cpuid(ID_MMFR3_EL1);
	case SYS_ID_ISAR0_EL1:		return read_cpuid(ID_ISAR0_EL1);
	case SYS_ID_ISAR1_EL1:		return read_cpuid(ID_ISAR1_EL1);
	case SYS_ID_ISAR2_EL1:		return read_cpuid(ID_ISAR2_EL1);
	case SYS_ID_ISAR3_EL1:		return read_cpuid(ID_ISAR3_EL1);
	case SYS_ID_ISAR4_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_ID_ISAR5_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_MVFR0_EL1:		return read_cpuid(MVFR0_EL1);
	case SYS_MVFR1_EL1:		return read_cpuid(MVFR1_EL1);
	case SYS_MVFR2_EL1:		return read_cpuid(MVFR2_EL1);

	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(ID_AA64MMFR0_EL1);
	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(ID_AA64MMFR1_EL1);
	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(ID_AA64MMFR2_EL1);
	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(ID_AA64ISAR0_EL1);
	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(ID_AA64ISAR1_EL1);

	case SYS_CNTFRQ_EL0:		return read_cpuid(CNTFRQ_EL0);
	case SYS_CTR_EL0:		return read_cpuid(CTR_EL0);
	case SYS_DCZID_EL0:		return read_cpuid(DCZID_EL0);
	default:
		BUG();
		return 0;
	}
}

675 676
#include <linux/irqchip/arm-gic-v3.h>

677 678 679
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
680
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
681 682 683 684

	return val >= entry->min_field_value;
}

685
static bool
686
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
687 688
{
	u64 val;
689

690 691 692 693 694 695
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
		val = read_system_reg(entry->sys_reg);
	else
		val = __raw_read_system_reg(entry->sys_reg);

696 697
	return feature_matches(val, entry);
}
698

699
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
700 701 702
{
	bool has_sre;

703
	if (!has_cpuid_feature(entry, scope))
704 705 706 707 708 709 710 711 712 713
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

714
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
715 716 717 718 719 720 721 722 723 724 725
{
	u32 midr = read_cpuid_id();
	u32 rv_min, rv_max;

	/* Cavium ThunderX pass 1.x and 2.x */
	rv_min = 0;
	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;

	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
}

726
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
727 728 729 730
{
	return is_kernel_in_hyp_mode();
}

731 732 733 734 735 736 737 738 739 740 741 742 743
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
			   int __unused)
{
	phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);

	/*
	 * Activate the lower HYP offset only if:
	 * - the idmap doesn't clash with it,
	 * - the kernel is not running at EL2.
	 */
	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}

744
static const struct arm64_cpu_capabilities arm64_features[] = {
745 746 747
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
748
		.def_scope = SCOPE_SYSTEM,
749
		.matches = has_useable_gicv3_cpuif,
750 751
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
752
		.sign = FTR_UNSIGNED,
753
		.min_field_value = 1,
754
	},
755 756 757 758
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
759
		.def_scope = SCOPE_SYSTEM,
760 761 762
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
763
		.sign = FTR_UNSIGNED,
764 765 766 767
		.min_field_value = 1,
		.enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
768 769 770 771
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
772
		.def_scope = SCOPE_SYSTEM,
773 774 775
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
776
		.sign = FTR_UNSIGNED,
777 778 779
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
780 781 782
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
783
		.def_scope = SCOPE_SYSTEM,
784 785
		.matches = has_no_hw_prefetch,
	},
786 787 788 789
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
790
		.def_scope = SCOPE_SYSTEM,
791 792 793 794 795 796 797
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
		.enable = cpu_enable_uao,
	},
#endif /* CONFIG_ARM64_UAO */
798 799 800
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
801
		.def_scope = SCOPE_SYSTEM,
802 803 804
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
805 806 807
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
808
		.def_scope = SCOPE_SYSTEM,
809 810
		.matches = runs_at_el2,
	},
811 812 813
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
814
		.def_scope = SCOPE_SYSTEM,
815 816 817 818 819 820
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
821 822 823 824 825 826
	{
		.desc = "Reduced HYP mapping offset",
		.capability = ARM64_HYP_OFFSET_LOW,
		.def_scope = SCOPE_SYSTEM,
		.matches = hyp_offset_low,
	},
827 828 829
	{},
};

830
#define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
831 832
	{							\
		.desc = #cap,					\
833
		.def_scope = SCOPE_SYSTEM,			\
834 835 836
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
837
		.sign = s,					\
838 839 840 841 842
		.min_field_value = min_value,			\
		.hwcap_type = type,				\
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
843
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
844 845 846 847 848 849 850
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
851
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
852
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
853
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
854 855 856 857
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
858
#ifdef CONFIG_COMPAT
859 860 861 862 863
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
864 865 866 867
#endif
	{},
};

S
Suzuki K Poulose 已提交
868
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
889
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

913
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
914
{
915
	for (; hwcaps->matches; hwcaps++)
916
		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
917
			cap_set_elf_hwcap(hwcaps);
918 919
}

920
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
921 922
			    const char *info)
{
923
	for (; caps->matches; caps++) {
924
		if (!caps->matches(caps, caps->def_scope))
925 926
			continue;

927 928 929
		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
930
	}
931 932 933
}

/*
934 935
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
936
 */
937
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
938
{
939 940 941
	for (; caps->matches; caps++)
		if (caps->enable && cpus_have_cap(caps->capability))
			on_each_cpu(caps->enable, NULL, true);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
}

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

/*
960 961
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
962
 */
963
static void check_early_cpu_features(void)
964
{
965
	verify_cpu_run_el();
966
	verify_cpu_asid_bits();
967
}
968

969 970 971 972
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

973 974
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
975 976 977 978 979 980 981 982 983 984
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
985
		if (!cpus_have_cap(caps->capability))
986 987 988 989 990
			continue;
		/*
		 * If the new CPU misses an advertised feature, we cannot proceed
		 * further, park the cpu.
		 */
991
		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
992 993 994 995 996 997 998 999 1000
			pr_crit("CPU%d: missing feature: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
		if (caps->enable)
			caps->enable(NULL);
	}
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
void verify_local_cpu_capabilities(void)
{

1012 1013
	check_early_cpu_features();

1014 1015 1016 1017 1018 1019 1020
	/*
	 * If we haven't computed the system capabilities, there is nothing
	 * to verify.
	 */
	if (!sys_caps_initialised)
		return;

1021
	verify_local_cpu_errata();
1022 1023
	verify_local_cpu_features(arm64_features);
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1024 1025
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
1026 1027
}

1028
static void __init setup_feature_capabilities(void)
1029
{
1030 1031
	update_cpu_capabilities(arm64_features, "detected feature:");
	enable_cpu_capabilities(arm64_features);
1032 1033
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
bool this_cpu_has_cap(unsigned int cap)
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

	for (caps = arm64_features; caps->desc; caps++)
		if (caps->capability == cap && caps->matches)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

	return false;
}

1052
void __init setup_cpu_features(void)
1053
{
1054 1055 1056
	u32 cwg;
	int cls;

1057 1058
	/* Set the CPU feature capabilies */
	setup_feature_capabilities();
1059
	enable_errata_workarounds();
1060
	setup_elf_hwcaps(arm64_elf_hwcaps);
1061 1062 1063

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1064 1065 1066 1067

	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	cls = cache_line_size();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
			cls);
	if (L1_CACHE_BYTES < cls)
		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
			L1_CACHE_BYTES, cls);
1079
}
1080 1081

static bool __maybe_unused
1082
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1083 1084 1085
{
	return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
}