uprobes.c 23.7 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33

34 35 36
#include <linux/uprobes.h>

static struct rb_root uprobes_tree = RB_ROOT;
37

38 39 40
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
41

42 43
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
44 45

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
46 47 48

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
49
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
50 51

/*
52
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
53 54 55 56 57 58 59 60 61 62 63
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

/*
 * Maintain a temporary per vma info that can be used to search if a vma
 * has already been handled. This structure is introduced since extending
 * vm_area_struct wasnt recommended.
 */
struct vma_info {
64 65 66
	struct list_head	probe_list;
	struct mm_struct	*mm;
	loff_t			vaddr;
67 68
};

69 70 71 72 73 74 75 76 77 78 79 80
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

97
	if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
98 99 100 101 102 103 104 105 106 107 108
		return true;

	return false;
}

static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
{
	loff_t vaddr;

	vaddr = vma->vm_start + offset;
	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
109

110 111 112 113 114 115 116 117 118 119 120 121 122
	return vaddr;
}

/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
123
static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
{
	struct mm_struct *mm = vma->vm_mm;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;
	spinlock_t *ptl;
	unsigned long addr;
	int err = -EFAULT;

	addr = page_address_in_vma(page, vma);
	if (addr == -EFAULT)
		goto out;

	pgd = pgd_offset(mm, addr);
	if (!pgd_present(*pgd))
		goto out;

	pud = pud_offset(pgd, addr);
	if (!pud_present(*pud))
		goto out;

	pmd = pmd_offset(pud, addr);
	if (!pmd_present(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
	if (!ptep)
		goto out;

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	put_page(page);
	pte_unmap_unlock(ptep, ptl);
	err = 0;

out:
	return err;
}

/**
173
 * is_swbp_insn - check if instruction is breakpoint instruction.
174
 * @insn: instruction to be checked.
175
 * Default implementation of is_swbp_insn
176 177
 * Returns true if @insn is a breakpoint instruction.
 */
178
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
179
{
180
	return *insn == UPROBE_SWBP_INSN;
181 182 183 184 185 186 187 188 189 190 191 192 193 194
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
195
 * @auprobe: arch breakpointing information.
196 197 198 199 200 201 202 203 204 205
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
206
static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
207 208 209 210 211 212
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	struct address_space *mapping;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
213
	struct uprobe *uprobe;
214 215 216 217 218 219 220
	loff_t addr;
	int ret;

	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;
221

222 223 224 225 226 227 228 229
	ret = -EINVAL;

	/*
	 * We are interested in text pages only. Our pages of interest
	 * should be mapped for read and execute only. We desist from
	 * adding probes in write mapped pages since the breakpoints
	 * might end up in the file copy.
	 */
230
	if (!valid_vma(vma, is_swbp_insn(&opcode)))
231 232
		goto put_out;

233
	uprobe = container_of(auprobe, struct uprobe, arch);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	mapping = uprobe->inode->i_mapping;
	if (mapping != vma->vm_file->f_mapping)
		goto put_out;

	addr = vma_address(vma, uprobe->offset);
	if (vaddr != (unsigned long)addr)
		goto put_out;

	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
		goto put_out;

	__SetPageUptodate(new_page);

	/*
	 * lock page will serialize against do_wp_page()'s
	 * PageAnon() handling
	 */
	lock_page(old_page);
	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
259

260 261
	/* poke the new insn in, ASSUMES we don't cross page boundary */
	vaddr &= ~PAGE_MASK;
262 263
	BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
	memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
		goto unlock_out;

	lock_page(new_page);
	ret = __replace_page(vma, old_page, new_page);
	unlock_page(new_page);

unlock_out:
	unlock_page(old_page);
	page_cache_release(new_page);

put_out:
281 282
	put_page(old_page);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
298
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
299 300 301 302 303 304 305 306 307 308 309 310
{
	struct page *page;
	void *vaddr_new;
	int ret;

	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
	if (ret <= 0)
		return ret;

	lock_page(page);
	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
311
	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
312 313
	kunmap_atomic(vaddr_new);
	unlock_page(page);
314 315 316

	put_page(page);

317 318 319
	return 0;
}

320
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
321 322
{
	uprobe_opcode_t opcode;
323
	int result;
324

325
	result = read_opcode(mm, vaddr, &opcode);
326 327 328
	if (result)
		return result;

329
	if (is_swbp_insn(&opcode))
330 331 332 333 334 335
		return 1;

	return 0;
}

/**
336
 * set_swbp - store breakpoint at a given address.
337
 * @auprobe: arch specific probepoint information.
338 339 340 341 342 343
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
344
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
345
{
346
	int result;
347

348
	result = is_swbp_at_addr(mm, vaddr);
349 350 351 352 353 354
	if (result == 1)
		return -EEXIST;

	if (result)
		return result;

355
	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
356 357 358 359 360
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
361
 * @auprobe: arch specific probepoint information.
362 363 364 365 366 367
 * @vaddr: the virtual address to insert the opcode.
 * @verify: if true, verify existance of breakpoint instruction.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
368
int __weak
369
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
370 371
{
	if (verify) {
372
		int result;
373

374
		result = is_swbp_at_addr(mm, vaddr);
375 376 377 378 379 380
		if (!result)
			return -EINVAL;

		if (result != 1)
			return result;
	}
381
	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
382 383 384 385 386 387
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
388

389 390 391
	if (l->inode > r->inode)
		return 1;

392 393 394 395 396
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	uprobe = __find_uprobe(inode, offset);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
462

463 464 465 466 467
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
468

469 470 471 472
	return u;
}

/*
473
 * Acquire uprobes_treelock.
474 475 476 477 478 479 480 481 482 483 484 485 486 487
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;
	struct uprobe *u;

	spin_lock_irqsave(&uprobes_treelock, flags);
	u = __insert_uprobe(uprobe);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);
	INIT_LIST_HEAD(&uprobe->pending_list);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
519
	} else {
520
		atomic_inc(&uprobe_events);
521 522
	}

523 524 525 526
	return uprobe;
}

/* Returns the previous consumer */
527
static struct uprobe_consumer *
528
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
529 530
{
	down_write(&uprobe->consumer_rwsem);
531 532
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
533
	up_write(&uprobe->consumer_rwsem);
534

535
	return uc->next;
536 537 538
}

/*
539 540
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
541 542
 * or return false.
 */
543
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
544 545 546 547 548 549
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
550 551
		if (*con == uc) {
			*con = uc->next;
552 553 554 555 556
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
557

558 559 560
	return ret;
}

561 562
static int
__copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
			unsigned long nbytes, unsigned long offset)
{
	struct file *filp = vma->vm_file;
	struct page *page;
	void *vaddr;
	unsigned long off1;
	unsigned long idx;

	if (!filp)
		return -EINVAL;

	idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
	off1 = offset &= ~PAGE_MASK;

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
	memcpy(insn, vaddr + off1, nbytes);
	kunmap_atomic(vaddr);
	page_cache_release(page);
589

590 591 592
	return 0;
}

593 594
static int
copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
595 596 597
{
	struct address_space *mapping;
	unsigned long nbytes;
598
	int bytes;
599 600 601 602 603 604 605 606 607 608 609 610 611

	addr &= ~PAGE_MASK;
	nbytes = PAGE_SIZE - addr;
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
612
		if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
613 614 615 616 617
				bytes - nbytes, uprobe->offset + nbytes))
			return -ENOMEM;

		bytes = nbytes;
	}
618
	return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
619 620
}

621 622 623
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
			struct vm_area_struct *vma, loff_t vaddr)
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
{
	unsigned long addr;
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
		return -EEXIST;

	addr = (unsigned long)vaddr;
639

640
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
641 642 643 644
		ret = copy_insn(uprobe, vma, addr);
		if (ret)
			return ret;

645
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
646 647
			return -EEXIST;

648
		ret = arch_uprobes_analyze_insn(&uprobe->arch, mm);
649 650 651
		if (ret)
			return ret;

652
		uprobe->flags |= UPROBE_COPY_INSN;
653
	}
654
	ret = set_swbp(&uprobe->arch, mm, addr);
655 656 657 658

	return ret;
}

659 660
static void
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
661
{
662
	set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true);
663 664 665 666 667 668 669 670 671 672 673 674 675 676
}

static void delete_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	rb_erase(&uprobe->rb_node, &uprobes_tree);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

677 678 679
static struct vma_info *
__find_next_vma_info(struct address_space *mapping, struct list_head *head,
			struct vma_info *vi, loff_t offset, bool is_register)
680 681 682 683
{
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
	struct vma_info *tmpvi;
684
	unsigned long pgoff;
685
	int existing_vma;
686 687 688
	loff_t vaddr;

	pgoff = offset >> PAGE_SHIFT;
689 690 691 692 693 694 695

	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

		existing_vma = 0;
		vaddr = vma_address(vma, offset);
696

697 698 699 700 701 702 703 704 705 706 707
		list_for_each_entry(tmpvi, head, probe_list) {
			if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
				existing_vma = 1;
				break;
			}
		}

		/*
		 * Another vma needs a probe to be installed. However skip
		 * installing the probe if the vma is about to be unlinked.
		 */
708
		if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
709 710 711
			vi->mm = vma->vm_mm;
			vi->vaddr = vaddr;
			list_add(&vi->probe_list, head);
712

713 714 715
			return vi;
		}
	}
716

717 718 719 720 721 722 723
	return NULL;
}

/*
 * Iterate in the rmap prio tree  and find a vma where a probe has not
 * yet been inserted.
 */
724
static struct vma_info *
725 726
find_next_vma_info(struct address_space *mapping, struct list_head *head,
		loff_t offset, bool is_register)
727 728
{
	struct vma_info *vi, *retvi;
729

730 731 732 733 734
	vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
	if (!vi)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&mapping->i_mmap_mutex);
735
	retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
736 737 738 739
	mutex_unlock(&mapping->i_mmap_mutex);

	if (!retvi)
		kfree(vi);
740

741 742 743 744 745 746 747 748 749 750 751
	return retvi;
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
	struct list_head try_list;
	struct vm_area_struct *vma;
	struct address_space *mapping;
	struct vma_info *vi, *tmpvi;
	struct mm_struct *mm;
	loff_t vaddr;
752
	int ret;
753 754 755

	mapping = uprobe->inode->i_mapping;
	INIT_LIST_HEAD(&try_list);
756 757 758 759

	ret = 0;

	for (;;) {
760
		vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
761 762 763
		if (!vi)
			break;

764 765 766 767
		if (IS_ERR(vi)) {
			ret = PTR_ERR(vi);
			break;
		}
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		mm = vi->mm;
		down_read(&mm->mmap_sem);
		vma = find_vma(mm, (unsigned long)vi->vaddr);
		if (!vma || !valid_vma(vma, is_register)) {
			list_del(&vi->probe_list);
			kfree(vi);
			up_read(&mm->mmap_sem);
			mmput(mm);
			continue;
		}
		vaddr = vma_address(vma, uprobe->offset);
		if (vma->vm_file->f_mapping->host != uprobe->inode ||
						vaddr != vi->vaddr) {
			list_del(&vi->probe_list);
			kfree(vi);
			up_read(&mm->mmap_sem);
			mmput(mm);
			continue;
		}

		if (is_register)
790
			ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
791
		else
792
			remove_breakpoint(uprobe, mm, vi->vaddr);
793 794 795 796 797 798 799 800 801 802

		up_read(&mm->mmap_sem);
		mmput(mm);
		if (is_register) {
			if (ret && ret == -EEXIST)
				ret = 0;
			if (ret)
				break;
		}
	}
803

804 805 806 807
	list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
		list_del(&vi->probe_list);
		kfree(vi);
	}
808

809 810 811
	return ret;
}

812
static int __uprobe_register(struct uprobe *uprobe)
813 814 815 816
{
	return register_for_each_vma(uprobe, true);
}

817
static void __uprobe_unregister(struct uprobe *uprobe)
818 819 820 821 822 823 824 825
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
826
 * uprobe_register - register a probe
827 828
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
829
 * @uc: information on howto handle the probe..
830
 *
831
 * Apart from the access refcount, uprobe_register() takes a creation
832 833
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
834
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
835
 * @uprobe even before the register operation is complete. Creation
836
 * refcount is released when the last @uc for the @uprobe
837 838 839 840 841
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
842
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
843 844
{
	struct uprobe *uprobe;
845
	int ret;
846

847
	if (!inode || !uc || uc->next)
848
		return -EINVAL;
849 850

	if (offset > i_size_read(inode))
851
		return -EINVAL;
852 853 854 855

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
856

857
	if (uprobe && !consumer_add(uprobe, uc)) {
858
		ret = __uprobe_register(uprobe);
859 860
		if (ret) {
			uprobe->consumers = NULL;
861 862
			__uprobe_unregister(uprobe);
		} else {
863
			uprobe->flags |= UPROBE_RUN_HANDLER;
864
		}
865 866 867 868 869 870 871 872 873
	}

	mutex_unlock(uprobes_hash(inode));
	put_uprobe(uprobe);

	return ret;
}

/*
874
 * uprobe_unregister - unregister a already registered probe.
875 876
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
877
 * @uc: identify which probe if multiple probes are colocated.
878
 */
879
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
880
{
881
	struct uprobe *uprobe;
882

883
	if (!inode || !uc)
884 885 886 887 888 889 890 891
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

892
	if (consumer_del(uprobe, uc)) {
893 894
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
895
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
896
		}
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

/*
 * Of all the nodes that correspond to the given inode, return the node
 * with the least offset.
 */
static struct rb_node *find_least_offset_node(struct inode *inode)
{
	struct uprobe u = { .inode = inode, .offset = 0};
	struct rb_node *n = uprobes_tree.rb_node;
	struct rb_node *close_node = NULL;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
919

920 921 922 923 924 925 926 927 928 929 930
		if (uprobe->inode == inode)
			close_node = n;

		if (!match)
			return close_node;

		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
931

932 933 934 935 936 937 938 939 940 941
	return close_node;
}

/*
 * For a given inode, build a list of probes that need to be inserted.
 */
static void build_probe_list(struct inode *inode, struct list_head *head)
{
	struct uprobe *uprobe;
	unsigned long flags;
942
	struct rb_node *n;
943 944

	spin_lock_irqsave(&uprobes_treelock, flags);
945

946
	n = find_least_offset_node(inode);
947

948 949 950 951 952 953 954 955
	for (; n; n = rb_next(n)) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		if (uprobe->inode != inode)
			break;

		list_add(&uprobe->pending_list, head);
		atomic_inc(&uprobe->ref);
	}
956

957 958 959 960 961 962 963 964 965
	spin_unlock_irqrestore(&uprobes_treelock, flags);
}

/*
 * Called from mmap_region.
 * called with mm->mmap_sem acquired.
 *
 * Return -ve no if we fail to insert probes and we cannot
 * bail-out.
966 967
 * Return 0 otherwise. i.e:
 *
968 969 970 971
 *	- successful insertion of probes
 *	- (or) no possible probes to be inserted.
 *	- (or) insertion of probes failed but we can bail-out.
 */
972
int uprobe_mmap(struct vm_area_struct *vma)
973 974 975 976
{
	struct list_head tmp_list;
	struct uprobe *uprobe, *u;
	struct inode *inode;
977
	int ret;
978 979

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
980
		return 0;
981 982 983

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
984
		return 0;
985 986 987 988

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);
989 990 991

	ret = 0;

992 993 994 995 996 997
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
		loff_t vaddr;

		list_del(&uprobe->pending_list);
		if (!ret) {
			vaddr = vma_address(vma, uprobe->offset);
998
			if (vaddr >= vma->vm_start && vaddr < vma->vm_end) {
999
				ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1000 1001 1002
				/* Ignore double add: */
				if (ret == -EEXIST)
					ret = 0;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			}
		}
		put_uprobe(uprobe);
	}

	mutex_unlock(uprobes_mmap_hash(inode));

	return ret;
}

static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
	return 0;
}

static void __exit exit_uprobes(void)
{
}

module_init(init_uprobes);
module_exit(exit_uprobes);