main.c 39.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * drivers/base/power/main.c - Where the driver meets power management.
 *
 * Copyright (c) 2003 Patrick Mochel
 * Copyright (c) 2003 Open Source Development Lab
 *
 * This file is released under the GPLv2
 *
 *
 * The driver model core calls device_pm_add() when a device is registered.
11
 * This will initialize the embedded device_pm_info object in the device
L
Linus Torvalds 已提交
12 13 14
 * and add it to the list of power-controlled devices. sysfs entries for
 * controlling device power management will also be added.
 *
15 16 17
 * A separate list is used for keeping track of power info, because the power
 * domain dependencies may differ from the ancestral dependencies that the
 * subsystem list maintains.
L
Linus Torvalds 已提交
18 19 20
 */

#include <linux/device.h>
21
#include <linux/kallsyms.h>
22
#include <linux/export.h>
23
#include <linux/mutex.h>
24
#include <linux/pm.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/resume-trace.h>
27
#include <linux/interrupt.h>
28
#include <linux/sched.h>
29
#include <linux/async.h>
30
#include <linux/suspend.h>
31
#include <trace/events/power.h>
32
#include <linux/cpufreq.h>
33
#include <linux/cpuidle.h>
34 35
#include <linux/timer.h>

36
#include "../base.h"
L
Linus Torvalds 已提交
37 38
#include "power.h"

39 40
typedef int (*pm_callback_t)(struct device *);

41
/*
42
 * The entries in the dpm_list list are in a depth first order, simply
43 44 45
 * because children are guaranteed to be discovered after parents, and
 * are inserted at the back of the list on discovery.
 *
46 47
 * Since device_pm_add() may be called with a device lock held,
 * we must never try to acquire a device lock while holding
48 49 50
 * dpm_list_mutex.
 */

51
LIST_HEAD(dpm_list);
52 53 54 55
static LIST_HEAD(dpm_prepared_list);
static LIST_HEAD(dpm_suspended_list);
static LIST_HEAD(dpm_late_early_list);
static LIST_HEAD(dpm_noirq_list);
L
Linus Torvalds 已提交
56

57
struct suspend_stats suspend_stats;
58
static DEFINE_MUTEX(dpm_list_mtx);
59
static pm_message_t pm_transition;
L
Linus Torvalds 已提交
60

61 62
static int async_error;

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static char *pm_verb(int event)
{
	switch (event) {
	case PM_EVENT_SUSPEND:
		return "suspend";
	case PM_EVENT_RESUME:
		return "resume";
	case PM_EVENT_FREEZE:
		return "freeze";
	case PM_EVENT_QUIESCE:
		return "quiesce";
	case PM_EVENT_HIBERNATE:
		return "hibernate";
	case PM_EVENT_THAW:
		return "thaw";
	case PM_EVENT_RESTORE:
		return "restore";
	case PM_EVENT_RECOVER:
		return "recover";
	default:
		return "(unknown PM event)";
	}
}

87
/**
88
 * device_pm_sleep_init - Initialize system suspend-related device fields.
89 90
 * @dev: Device object being initialized.
 */
91
void device_pm_sleep_init(struct device *dev)
92
{
93
	dev->power.is_prepared = false;
94
	dev->power.is_suspended = false;
95 96
	dev->power.is_noirq_suspended = false;
	dev->power.is_late_suspended = false;
97
	init_completion(&dev->power.completion);
98
	complete_all(&dev->power.completion);
99
	dev->power.wakeup = NULL;
100
	INIT_LIST_HEAD(&dev->power.entry);
101 102
}

103
/**
104
 * device_pm_lock - Lock the list of active devices used by the PM core.
105 106 107 108 109 110 111
 */
void device_pm_lock(void)
{
	mutex_lock(&dpm_list_mtx);
}

/**
112
 * device_pm_unlock - Unlock the list of active devices used by the PM core.
113 114 115 116 117
 */
void device_pm_unlock(void)
{
	mutex_unlock(&dpm_list_mtx);
}
118

119
/**
120 121
 * device_pm_add - Add a device to the PM core's list of active devices.
 * @dev: Device to add to the list.
122
 */
123
void device_pm_add(struct device *dev)
L
Linus Torvalds 已提交
124 125
{
	pr_debug("PM: Adding info for %s:%s\n",
126
		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127
	mutex_lock(&dpm_list_mtx);
128
	if (dev->parent && dev->parent->power.is_prepared)
129 130
		dev_warn(dev, "parent %s should not be sleeping\n",
			dev_name(dev->parent));
131
	list_add_tail(&dev->power.entry, &dpm_list);
132
	mutex_unlock(&dpm_list_mtx);
L
Linus Torvalds 已提交
133 134
}

135
/**
136 137
 * device_pm_remove - Remove a device from the PM core's list of active devices.
 * @dev: Device to be removed from the list.
138
 */
139
void device_pm_remove(struct device *dev)
L
Linus Torvalds 已提交
140 141
{
	pr_debug("PM: Removing info for %s:%s\n",
142
		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143
	complete_all(&dev->power.completion);
144
	mutex_lock(&dpm_list_mtx);
L
Linus Torvalds 已提交
145
	list_del_init(&dev->power.entry);
146
	mutex_unlock(&dpm_list_mtx);
147
	device_wakeup_disable(dev);
148
	pm_runtime_remove(dev);
149 150
}

151
/**
152 153 154
 * device_pm_move_before - Move device in the PM core's list of active devices.
 * @deva: Device to move in dpm_list.
 * @devb: Device @deva should come before.
155 156 157 158
 */
void device_pm_move_before(struct device *deva, struct device *devb)
{
	pr_debug("PM: Moving %s:%s before %s:%s\n",
159 160
		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 162 163 164 165
	/* Delete deva from dpm_list and reinsert before devb. */
	list_move_tail(&deva->power.entry, &devb->power.entry);
}

/**
166 167 168
 * device_pm_move_after - Move device in the PM core's list of active devices.
 * @deva: Device to move in dpm_list.
 * @devb: Device @deva should come after.
169 170 171 172
 */
void device_pm_move_after(struct device *deva, struct device *devb)
{
	pr_debug("PM: Moving %s:%s after %s:%s\n",
173 174
		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 176 177 178 179
	/* Delete deva from dpm_list and reinsert after devb. */
	list_move(&deva->power.entry, &devb->power.entry);
}

/**
180 181
 * device_pm_move_last - Move device to end of the PM core's list of devices.
 * @dev: Device to move in dpm_list.
182 183 184 185
 */
void device_pm_move_last(struct device *dev)
{
	pr_debug("PM: Moving %s:%s to end of list\n",
186
		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 188 189
	list_move_tail(&dev->power.entry, &dpm_list);
}

190 191 192 193
static ktime_t initcall_debug_start(struct device *dev)
{
	ktime_t calltime = ktime_set(0, 0);

194
	if (pm_print_times_enabled) {
195 196 197
		pr_info("calling  %s+ @ %i, parent: %s\n",
			dev_name(dev), task_pid_nr(current),
			dev->parent ? dev_name(dev->parent) : "none");
198 199 200 201 202 203 204
		calltime = ktime_get();
	}

	return calltime;
}

static void initcall_debug_report(struct device *dev, ktime_t calltime,
205
				  int error, pm_message_t state, char *info)
206
{
207 208 209 210 211
	ktime_t rettime;
	s64 nsecs;

	rettime = ktime_get();
	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212

213
	if (pm_print_times_enabled) {
214
		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215
			error, (unsigned long long)nsecs >> 10);
216
	}
217 218 219

	trace_device_pm_report_time(dev, info, nsecs, pm_verb(state.event),
				    error);
220 221
}

222 223 224 225 226 227 228 229 230 231
/**
 * dpm_wait - Wait for a PM operation to complete.
 * @dev: Device to wait for.
 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 */
static void dpm_wait(struct device *dev, bool async)
{
	if (!dev)
		return;

232
	if (async || (pm_async_enabled && dev->power.async_suspend))
233 234 235 236 237 238 239 240 241 242 243 244 245 246
		wait_for_completion(&dev->power.completion);
}

static int dpm_wait_fn(struct device *dev, void *async_ptr)
{
	dpm_wait(dev, *((bool *)async_ptr));
	return 0;
}

static void dpm_wait_for_children(struct device *dev, bool async)
{
       device_for_each_child(dev, &async, dpm_wait_fn);
}

247
/**
248
 * pm_op - Return the PM operation appropriate for given PM event.
249 250
 * @ops: PM operations to choose from.
 * @state: PM transition of the system being carried out.
251
 */
252
static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253 254 255 256
{
	switch (state.event) {
#ifdef CONFIG_SUSPEND
	case PM_EVENT_SUSPEND:
257
		return ops->suspend;
258
	case PM_EVENT_RESUME:
259
		return ops->resume;
260
#endif /* CONFIG_SUSPEND */
261
#ifdef CONFIG_HIBERNATE_CALLBACKS
262 263
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
264
		return ops->freeze;
265
	case PM_EVENT_HIBERNATE:
266
		return ops->poweroff;
267 268
	case PM_EVENT_THAW:
	case PM_EVENT_RECOVER:
269
		return ops->thaw;
270 271
		break;
	case PM_EVENT_RESTORE:
272
		return ops->restore;
273
#endif /* CONFIG_HIBERNATE_CALLBACKS */
274
	}
275

276
	return NULL;
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/**
 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 * @ops: PM operations to choose from.
 * @state: PM transition of the system being carried out.
 *
 * Runtime PM is disabled for @dev while this function is being executed.
 */
static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
				      pm_message_t state)
{
	switch (state.event) {
#ifdef CONFIG_SUSPEND
	case PM_EVENT_SUSPEND:
		return ops->suspend_late;
	case PM_EVENT_RESUME:
		return ops->resume_early;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
		return ops->freeze_late;
	case PM_EVENT_HIBERNATE:
		return ops->poweroff_late;
	case PM_EVENT_THAW:
	case PM_EVENT_RECOVER:
		return ops->thaw_early;
	case PM_EVENT_RESTORE:
		return ops->restore_early;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
	}

	return NULL;
}

313
/**
314
 * pm_noirq_op - Return the PM operation appropriate for given PM event.
315 316
 * @ops: PM operations to choose from.
 * @state: PM transition of the system being carried out.
317
 *
318 319
 * The driver of @dev will not receive interrupts while this function is being
 * executed.
320
 */
321
static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322 323 324 325
{
	switch (state.event) {
#ifdef CONFIG_SUSPEND
	case PM_EVENT_SUSPEND:
326
		return ops->suspend_noirq;
327
	case PM_EVENT_RESUME:
328
		return ops->resume_noirq;
329
#endif /* CONFIG_SUSPEND */
330
#ifdef CONFIG_HIBERNATE_CALLBACKS
331 332
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
333
		return ops->freeze_noirq;
334
	case PM_EVENT_HIBERNATE:
335
		return ops->poweroff_noirq;
336 337
	case PM_EVENT_THAW:
	case PM_EVENT_RECOVER:
338
		return ops->thaw_noirq;
339
	case PM_EVENT_RESTORE:
340
		return ops->restore_noirq;
341
#endif /* CONFIG_HIBERNATE_CALLBACKS */
342
	}
343

344
	return NULL;
345 346 347 348 349 350 351 352 353 354 355 356 357
}

static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
{
	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
		", may wakeup" : "");
}

static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
			int error)
{
	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358
		dev_name(dev), pm_verb(state.event), info, error);
359 360
}

361 362 363
static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
{
	ktime_t calltime;
364
	u64 usecs64;
365 366 367 368 369 370 371 372 373 374 375 376 377
	int usecs;

	calltime = ktime_get();
	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
	do_div(usecs64, NSEC_PER_USEC);
	usecs = usecs64;
	if (usecs == 0)
		usecs = 1;
	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
		info ?: "", info ? " " : "", pm_verb(state.event),
		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static int dpm_run_callback(pm_callback_t cb, struct device *dev,
			    pm_message_t state, char *info)
{
	ktime_t calltime;
	int error;

	if (!cb)
		return 0;

	calltime = initcall_debug_start(dev);

	pm_dev_dbg(dev, state, info);
	error = cb(dev);
	suspend_report_result(cb, error);

393
	initcall_debug_report(dev, calltime, error, state, info);
394 395 396 397

	return error;
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
#ifdef CONFIG_DPM_WATCHDOG
struct dpm_watchdog {
	struct device		*dev;
	struct task_struct	*tsk;
	struct timer_list	timer;
};

#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
	struct dpm_watchdog wd

/**
 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 * @data: Watchdog object address.
 *
 * Called when a driver has timed out suspending or resuming.
 * There's not much we can do here to recover so panic() to
 * capture a crash-dump in pstore.
 */
static void dpm_watchdog_handler(unsigned long data)
{
	struct dpm_watchdog *wd = (void *)data;

	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
	show_stack(wd->tsk, NULL);
	panic("%s %s: unrecoverable failure\n",
		dev_driver_string(wd->dev), dev_name(wd->dev));
}

/**
 * dpm_watchdog_set - Enable pm watchdog for given device.
 * @wd: Watchdog. Must be allocated on the stack.
 * @dev: Device to handle.
 */
static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
{
	struct timer_list *timer = &wd->timer;

	wd->dev = dev;
	wd->tsk = current;

	init_timer_on_stack(timer);
	/* use same timeout value for both suspend and resume */
	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
	timer->function = dpm_watchdog_handler;
	timer->data = (unsigned long)wd;
	add_timer(timer);
}

/**
 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 * @wd: Watchdog to disable.
 */
static void dpm_watchdog_clear(struct dpm_watchdog *wd)
{
	struct timer_list *timer = &wd->timer;

	del_timer_sync(timer);
	destroy_timer_on_stack(timer);
}
#else
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
#define dpm_watchdog_set(x, y)
#define dpm_watchdog_clear(x)
#endif

463 464 465
/*------------------------- Resume routines -------------------------*/

/**
466 467 468
 * device_resume_noirq - Execute an "early resume" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
469
 *
470 471
 * The driver of @dev will not receive interrupts while this function is being
 * executed.
472
 */
473
static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474
{
475 476
	pm_callback_t callback = NULL;
	char *info = NULL;
477 478 479 480 481
	int error = 0;

	TRACE_DEVICE(dev);
	TRACE_RESUME(0);

482 483 484
	if (dev->power.syscore)
		goto Out;

485 486 487
	if (!dev->power.is_noirq_suspended)
		goto Out;

488 489
	dpm_wait(dev->parent, async);

490
	if (dev->pm_domain) {
491
		info = "noirq power domain ";
492
		callback = pm_noirq_op(&dev->pm_domain->ops, state);
493
	} else if (dev->type && dev->type->pm) {
494
		info = "noirq type ";
495
		callback = pm_noirq_op(dev->type->pm, state);
496
	} else if (dev->class && dev->class->pm) {
497
		info = "noirq class ";
498
		callback = pm_noirq_op(dev->class->pm, state);
499
	} else if (dev->bus && dev->bus->pm) {
500
		info = "noirq bus ";
501
		callback = pm_noirq_op(dev->bus->pm, state);
502 503
	}

504
	if (!callback && dev->driver && dev->driver->pm) {
505
		info = "noirq driver ";
506 507 508
		callback = pm_noirq_op(dev->driver->pm, state);
	}

509
	error = dpm_run_callback(callback, dev, state, info);
510
	dev->power.is_noirq_suspended = false;
511

512
 Out:
513
	complete_all(&dev->power.completion);
514 515 516 517
	TRACE_RESUME(error);
	return error;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static bool is_async(struct device *dev)
{
	return dev->power.async_suspend && pm_async_enabled
		&& !pm_trace_is_enabled();
}

static void async_resume_noirq(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = device_resume_noirq(dev, pm_transition, true);
	if (error)
		pm_dev_err(dev, pm_transition, " async", error);

	put_device(dev);
}

536
/**
537
 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538
 * @state: PM transition of the system being carried out.
539
 *
540
 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541
 * enable device drivers to receive interrupts.
542
 */
543
static void dpm_resume_noirq(pm_message_t state)
544
{
545
	struct device *dev;
546
	ktime_t starttime = ktime_get();
547

548
	mutex_lock(&dpm_list_mtx);
549
	pm_transition = state;
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	/*
	 * Advanced the async threads upfront,
	 * in case the starting of async threads is
	 * delayed by non-async resuming devices.
	 */
	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
		reinit_completion(&dev->power.completion);
		if (is_async(dev)) {
			get_device(dev);
			async_schedule(async_resume_noirq, dev);
		}
	}

	while (!list_empty(&dpm_noirq_list)) {
		dev = to_device(dpm_noirq_list.next);
566
		get_device(dev);
567
		list_move_tail(&dev->power.entry, &dpm_late_early_list);
568
		mutex_unlock(&dpm_list_mtx);
569

570 571 572 573 574 575 576 577 578 579
		if (!is_async(dev)) {
			int error;

			error = device_resume_noirq(dev, state, false);
			if (error) {
				suspend_stats.failed_resume_noirq++;
				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
				dpm_save_failed_dev(dev_name(dev));
				pm_dev_err(dev, state, " noirq", error);
			}
580 581 582 583 584 585
		}

		mutex_lock(&dpm_list_mtx);
		put_device(dev);
	}
	mutex_unlock(&dpm_list_mtx);
586
	async_synchronize_full();
587 588
	dpm_show_time(starttime, state, "noirq");
	resume_device_irqs();
589
	cpuidle_resume();
590 591 592 593 594 595 596 597 598
}

/**
 * device_resume_early - Execute an "early resume" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
 *
 * Runtime PM is disabled for @dev while this function is being executed.
 */
599
static int device_resume_early(struct device *dev, pm_message_t state, bool async)
600 601 602 603 604 605 606 607
{
	pm_callback_t callback = NULL;
	char *info = NULL;
	int error = 0;

	TRACE_DEVICE(dev);
	TRACE_RESUME(0);

608 609 610
	if (dev->power.syscore)
		goto Out;

611 612 613
	if (!dev->power.is_late_suspended)
		goto Out;

614 615
	dpm_wait(dev->parent, async);

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	if (dev->pm_domain) {
		info = "early power domain ";
		callback = pm_late_early_op(&dev->pm_domain->ops, state);
	} else if (dev->type && dev->type->pm) {
		info = "early type ";
		callback = pm_late_early_op(dev->type->pm, state);
	} else if (dev->class && dev->class->pm) {
		info = "early class ";
		callback = pm_late_early_op(dev->class->pm, state);
	} else if (dev->bus && dev->bus->pm) {
		info = "early bus ";
		callback = pm_late_early_op(dev->bus->pm, state);
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "early driver ";
		callback = pm_late_early_op(dev->driver->pm, state);
	}

	error = dpm_run_callback(callback, dev, state, info);
636
	dev->power.is_late_suspended = false;
637

638
 Out:
639
	TRACE_RESUME(error);
640 641

	pm_runtime_enable(dev);
642
	complete_all(&dev->power.completion);
643 644 645
	return error;
}

646 647 648 649 650 651 652 653 654 655 656 657
static void async_resume_early(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = device_resume_early(dev, pm_transition, true);
	if (error)
		pm_dev_err(dev, pm_transition, " async", error);

	put_device(dev);
}

658 659 660 661 662 663
/**
 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 * @state: PM transition of the system being carried out.
 */
static void dpm_resume_early(pm_message_t state)
{
664
	struct device *dev;
665 666 667
	ktime_t starttime = ktime_get();

	mutex_lock(&dpm_list_mtx);
668 669 670 671 672 673 674 675 676 677 678 679 680 681
	pm_transition = state;

	/*
	 * Advanced the async threads upfront,
	 * in case the starting of async threads is
	 * delayed by non-async resuming devices.
	 */
	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
		reinit_completion(&dev->power.completion);
		if (is_async(dev)) {
			get_device(dev);
			async_schedule(async_resume_early, dev);
		}
	}
682

683 684
	while (!list_empty(&dpm_late_early_list)) {
		dev = to_device(dpm_late_early_list.next);
685 686 687 688
		get_device(dev);
		list_move_tail(&dev->power.entry, &dpm_suspended_list);
		mutex_unlock(&dpm_list_mtx);

689 690
		if (!is_async(dev)) {
			int error;
691

692 693 694 695 696 697 698 699
			error = device_resume_early(dev, state, false);
			if (error) {
				suspend_stats.failed_resume_early++;
				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
				dpm_save_failed_dev(dev_name(dev));
				pm_dev_err(dev, state, " early", error);
			}
		}
700
		mutex_lock(&dpm_list_mtx);
701 702
		put_device(dev);
	}
703
	mutex_unlock(&dpm_list_mtx);
704
	async_synchronize_full();
705
	dpm_show_time(starttime, state, "early");
706
}
707 708 709 710 711 712 713 714 715 716 717

/**
 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 * @state: PM transition of the system being carried out.
 */
void dpm_resume_start(pm_message_t state)
{
	dpm_resume_noirq(state);
	dpm_resume_early(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_start);
718 719

/**
720
 * device_resume - Execute "resume" callbacks for given device.
721 722
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
723
 * @async: If true, the device is being resumed asynchronously.
724
 */
725
static int device_resume(struct device *dev, pm_message_t state, bool async)
726
{
727 728
	pm_callback_t callback = NULL;
	char *info = NULL;
729
	int error = 0;
730
	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
731 732 733

	TRACE_DEVICE(dev);
	TRACE_RESUME(0);
734

735 736 737
	if (dev->power.syscore)
		goto Complete;

738
	dpm_wait(dev->parent, async);
739
	dpm_watchdog_set(&wd, dev);
740
	device_lock(dev);
741

742 743 744 745 746
	/*
	 * This is a fib.  But we'll allow new children to be added below
	 * a resumed device, even if the device hasn't been completed yet.
	 */
	dev->power.is_prepared = false;
747

748 749 750
	if (!dev->power.is_suspended)
		goto Unlock;

751
	if (dev->pm_domain) {
752 753
		info = "power domain ";
		callback = pm_op(&dev->pm_domain->ops, state);
754
		goto Driver;
755 756
	}

757
	if (dev->type && dev->type->pm) {
758 759
		info = "type ";
		callback = pm_op(dev->type->pm, state);
760
		goto Driver;
761 762
	}

763 764
	if (dev->class) {
		if (dev->class->pm) {
765 766
			info = "class ";
			callback = pm_op(dev->class->pm, state);
767
			goto Driver;
768
		} else if (dev->class->resume) {
769 770
			info = "legacy class ";
			callback = dev->class->resume;
771
			goto End;
772
		}
773
	}
774 775 776

	if (dev->bus) {
		if (dev->bus->pm) {
777
			info = "bus ";
778
			callback = pm_op(dev->bus->pm, state);
779
		} else if (dev->bus->resume) {
780
			info = "legacy bus ";
781
			callback = dev->bus->resume;
782
			goto End;
783 784 785
		}
	}

786 787 788 789 790 791
 Driver:
	if (!callback && dev->driver && dev->driver->pm) {
		info = "driver ";
		callback = pm_op(dev->driver->pm, state);
	}

792
 End:
793
	error = dpm_run_callback(callback, dev, state, info);
794 795 796
	dev->power.is_suspended = false;

 Unlock:
797
	device_unlock(dev);
798
	dpm_watchdog_clear(&wd);
799 800

 Complete:
801
	complete_all(&dev->power.completion);
802

803
	TRACE_RESUME(error);
804

805 806 807
	return error;
}

808 809 810 811 812
static void async_resume(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

813
	error = device_resume(dev, pm_transition, true);
814 815 816 817 818
	if (error)
		pm_dev_err(dev, pm_transition, " async", error);
	put_device(dev);
}

819
/**
820 821
 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 * @state: PM transition of the system being carried out.
822
 *
823 824
 * Execute the appropriate "resume" callback for all devices whose status
 * indicates that they are suspended.
825
 */
826
void dpm_resume(pm_message_t state)
827
{
828
	struct device *dev;
829
	ktime_t starttime = ktime_get();
830

831 832
	might_sleep();

833
	mutex_lock(&dpm_list_mtx);
834
	pm_transition = state;
835
	async_error = 0;
836

837
	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
838
		reinit_completion(&dev->power.completion);
839 840 841 842 843 844
		if (is_async(dev)) {
			get_device(dev);
			async_schedule(async_resume, dev);
		}
	}

845 846
	while (!list_empty(&dpm_suspended_list)) {
		dev = to_device(dpm_suspended_list.next);
847
		get_device(dev);
848
		if (!is_async(dev)) {
849 850 851 852
			int error;

			mutex_unlock(&dpm_list_mtx);

853
			error = device_resume(dev, state, false);
854 855 856 857
			if (error) {
				suspend_stats.failed_resume++;
				dpm_save_failed_step(SUSPEND_RESUME);
				dpm_save_failed_dev(dev_name(dev));
858
				pm_dev_err(dev, state, "", error);
859
			}
860 861

			mutex_lock(&dpm_list_mtx);
862 863
		}
		if (!list_empty(&dev->power.entry))
864
			list_move_tail(&dev->power.entry, &dpm_prepared_list);
865 866 867
		put_device(dev);
	}
	mutex_unlock(&dpm_list_mtx);
868
	async_synchronize_full();
869
	dpm_show_time(starttime, state, NULL);
870 871

	cpufreq_resume();
872 873 874
}

/**
875 876 877
 * device_complete - Complete a PM transition for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
878
 */
879
static void device_complete(struct device *dev, pm_message_t state)
880
{
881 882 883
	void (*callback)(struct device *) = NULL;
	char *info = NULL;

884 885 886
	if (dev->power.syscore)
		return;

887
	device_lock(dev);
888

889
	if (dev->pm_domain) {
890 891
		info = "completing power domain ";
		callback = dev->pm_domain->ops.complete;
892
	} else if (dev->type && dev->type->pm) {
893 894
		info = "completing type ";
		callback = dev->type->pm->complete;
895
	} else if (dev->class && dev->class->pm) {
896 897
		info = "completing class ";
		callback = dev->class->pm->complete;
898
	} else if (dev->bus && dev->bus->pm) {
899 900 901 902 903 904 905 906 907 908 909 910
		info = "completing bus ";
		callback = dev->bus->pm->complete;
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "completing driver ";
		callback = dev->driver->pm->complete;
	}

	if (callback) {
		pm_dev_dbg(dev, state, info);
		callback(dev);
911 912
	}

913
	device_unlock(dev);
914

915
	pm_runtime_put(dev);
916 917 918
}

/**
919 920
 * dpm_complete - Complete a PM transition for all non-sysdev devices.
 * @state: PM transition of the system being carried out.
921
 *
922 923
 * Execute the ->complete() callbacks for all devices whose PM status is not
 * DPM_ON (this allows new devices to be registered).
924
 */
925
void dpm_complete(pm_message_t state)
926
{
927 928
	struct list_head list;

929 930
	might_sleep();

931
	INIT_LIST_HEAD(&list);
932
	mutex_lock(&dpm_list_mtx);
933 934
	while (!list_empty(&dpm_prepared_list)) {
		struct device *dev = to_device(dpm_prepared_list.prev);
935

936
		get_device(dev);
937
		dev->power.is_prepared = false;
938 939
		list_move(&dev->power.entry, &list);
		mutex_unlock(&dpm_list_mtx);
940

941
		device_complete(dev, state);
942

943
		mutex_lock(&dpm_list_mtx);
944
		put_device(dev);
945
	}
946
	list_splice(&list, &dpm_list);
947 948 949 950
	mutex_unlock(&dpm_list_mtx);
}

/**
951 952
 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
 * @state: PM transition of the system being carried out.
953
 *
954 955
 * Execute "resume" callbacks for all devices and complete the PM transition of
 * the system.
956
 */
957
void dpm_resume_end(pm_message_t state)
958
{
959 960
	dpm_resume(state);
	dpm_complete(state);
961
}
962
EXPORT_SYMBOL_GPL(dpm_resume_end);
963 964 965 966


/*------------------------- Suspend routines -------------------------*/

967
/**
968 969 970 971 972
 * resume_event - Return a "resume" message for given "suspend" sleep state.
 * @sleep_state: PM message representing a sleep state.
 *
 * Return a PM message representing the resume event corresponding to given
 * sleep state.
973 974
 */
static pm_message_t resume_event(pm_message_t sleep_state)
975
{
976 977 978 979 980 981 982 983
	switch (sleep_state.event) {
	case PM_EVENT_SUSPEND:
		return PMSG_RESUME;
	case PM_EVENT_FREEZE:
	case PM_EVENT_QUIESCE:
		return PMSG_RECOVER;
	case PM_EVENT_HIBERNATE:
		return PMSG_RESTORE;
984
	}
985
	return PMSG_ON;
986 987 988
}

/**
989 990 991
 * device_suspend_noirq - Execute a "late suspend" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
992
 *
993 994
 * The driver of @dev will not receive interrupts while this function is being
 * executed.
995
 */
996
static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
997
{
998 999
	pm_callback_t callback = NULL;
	char *info = NULL;
1000 1001 1002 1003 1004 1005 1006 1007 1008
	int error = 0;

	if (async_error)
		goto Complete;

	if (pm_wakeup_pending()) {
		async_error = -EBUSY;
		goto Complete;
	}
1009

1010
	if (dev->power.syscore)
1011 1012 1013
		goto Complete;

	dpm_wait_for_children(dev, async);
1014

1015
	if (dev->pm_domain) {
1016
		info = "noirq power domain ";
1017
		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1018
	} else if (dev->type && dev->type->pm) {
1019
		info = "noirq type ";
1020
		callback = pm_noirq_op(dev->type->pm, state);
1021
	} else if (dev->class && dev->class->pm) {
1022
		info = "noirq class ";
1023
		callback = pm_noirq_op(dev->class->pm, state);
1024
	} else if (dev->bus && dev->bus->pm) {
1025
		info = "noirq bus ";
1026
		callback = pm_noirq_op(dev->bus->pm, state);
1027 1028
	}

1029
	if (!callback && dev->driver && dev->driver->pm) {
1030
		info = "noirq driver ";
1031 1032 1033
		callback = pm_noirq_op(dev->driver->pm, state);
	}

1034 1035 1036
	error = dpm_run_callback(callback, dev, state, info);
	if (!error)
		dev->power.is_noirq_suspended = true;
1037 1038
	else
		async_error = error;
1039

1040 1041
Complete:
	complete_all(&dev->power.completion);
1042
	return error;
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static void async_suspend_noirq(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = __device_suspend_noirq(dev, pm_transition, true);
	if (error) {
		dpm_save_failed_dev(dev_name(dev));
		pm_dev_err(dev, pm_transition, " async", error);
	}

	put_device(dev);
}

static int device_suspend_noirq(struct device *dev)
{
	reinit_completion(&dev->power.completion);

	if (pm_async_enabled && dev->power.async_suspend) {
		get_device(dev);
		async_schedule(async_suspend_noirq, dev);
		return 0;
	}
	return __device_suspend_noirq(dev, pm_transition, false);
}

1071
/**
1072
 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1073
 * @state: PM transition of the system being carried out.
1074
 *
1075 1076
 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
 * handlers for all non-sysdev devices.
1077
 */
1078
static int dpm_suspend_noirq(pm_message_t state)
1079
{
1080
	ktime_t starttime = ktime_get();
1081 1082
	int error = 0;

1083
	cpuidle_pause();
1084
	suspend_device_irqs();
1085
	mutex_lock(&dpm_list_mtx);
1086 1087 1088
	pm_transition = state;
	async_error = 0;

1089 1090
	while (!list_empty(&dpm_late_early_list)) {
		struct device *dev = to_device(dpm_late_early_list.prev);
1091 1092 1093 1094

		get_device(dev);
		mutex_unlock(&dpm_list_mtx);

1095
		error = device_suspend_noirq(dev);
1096 1097

		mutex_lock(&dpm_list_mtx);
1098
		if (error) {
1099
			pm_dev_err(dev, state, " noirq", error);
1100
			dpm_save_failed_dev(dev_name(dev));
1101
			put_device(dev);
1102 1103
			break;
		}
1104
		if (!list_empty(&dev->power.entry))
1105
			list_move(&dev->power.entry, &dpm_noirq_list);
1106
		put_device(dev);
1107

1108
		if (async_error)
1109
			break;
1110
	}
1111
	mutex_unlock(&dpm_list_mtx);
1112 1113 1114 1115 1116 1117 1118
	async_synchronize_full();
	if (!error)
		error = async_error;

	if (error) {
		suspend_stats.failed_suspend_noirq++;
		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1119
		dpm_resume_noirq(resume_event(state));
1120
	} else {
1121
		dpm_show_time(starttime, state, "noirq");
1122
	}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	return error;
}

/**
 * device_suspend_late - Execute a "late suspend" callback for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
 *
 * Runtime PM is disabled for @dev while this function is being executed.
 */
1133
static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1134 1135 1136
{
	pm_callback_t callback = NULL;
	char *info = NULL;
1137
	int error = 0;
1138

1139 1140
	__pm_runtime_disable(dev, false);

1141 1142 1143 1144 1145 1146 1147 1148
	if (async_error)
		goto Complete;

	if (pm_wakeup_pending()) {
		async_error = -EBUSY;
		goto Complete;
	}

1149
	if (dev->power.syscore)
1150 1151 1152
		goto Complete;

	dpm_wait_for_children(dev, async);
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	if (dev->pm_domain) {
		info = "late power domain ";
		callback = pm_late_early_op(&dev->pm_domain->ops, state);
	} else if (dev->type && dev->type->pm) {
		info = "late type ";
		callback = pm_late_early_op(dev->type->pm, state);
	} else if (dev->class && dev->class->pm) {
		info = "late class ";
		callback = pm_late_early_op(dev->class->pm, state);
	} else if (dev->bus && dev->bus->pm) {
		info = "late bus ";
		callback = pm_late_early_op(dev->bus->pm, state);
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "late driver ";
		callback = pm_late_early_op(dev->driver->pm, state);
	}

1173 1174 1175
	error = dpm_run_callback(callback, dev, state, info);
	if (!error)
		dev->power.is_late_suspended = true;
1176 1177
	else
		async_error = error;
1178

1179 1180
Complete:
	complete_all(&dev->power.completion);
1181
	return error;
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
static void async_suspend_late(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = __device_suspend_late(dev, pm_transition, true);
	if (error) {
		dpm_save_failed_dev(dev_name(dev));
		pm_dev_err(dev, pm_transition, " async", error);
	}
	put_device(dev);
}

static int device_suspend_late(struct device *dev)
{
	reinit_completion(&dev->power.completion);

	if (pm_async_enabled && dev->power.async_suspend) {
		get_device(dev);
		async_schedule(async_suspend_late, dev);
		return 0;
	}

	return __device_suspend_late(dev, pm_transition, false);
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
 * @state: PM transition of the system being carried out.
 */
static int dpm_suspend_late(pm_message_t state)
{
	ktime_t starttime = ktime_get();
	int error = 0;

	mutex_lock(&dpm_list_mtx);
1220 1221 1222
	pm_transition = state;
	async_error = 0;

1223 1224 1225 1226 1227 1228
	while (!list_empty(&dpm_suspended_list)) {
		struct device *dev = to_device(dpm_suspended_list.prev);

		get_device(dev);
		mutex_unlock(&dpm_list_mtx);

1229
		error = device_suspend_late(dev);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

		mutex_lock(&dpm_list_mtx);
		if (error) {
			pm_dev_err(dev, state, " late", error);
			dpm_save_failed_dev(dev_name(dev));
			put_device(dev);
			break;
		}
		if (!list_empty(&dev->power.entry))
			list_move(&dev->power.entry, &dpm_late_early_list);
		put_device(dev);
1241

1242
		if (async_error)
1243
			break;
1244 1245
	}
	mutex_unlock(&dpm_list_mtx);
1246 1247 1248 1249
	async_synchronize_full();
	if (error) {
		suspend_stats.failed_suspend_late++;
		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1250
		dpm_resume_early(resume_event(state));
1251
	} else {
1252
		dpm_show_time(starttime, state, "late");
1253
	}
1254 1255
	return error;
}
1256 1257 1258 1259 1260 1261 1262 1263

/**
 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
 * @state: PM transition of the system being carried out.
 */
int dpm_suspend_end(pm_message_t state)
{
	int error = dpm_suspend_late(state);
1264 1265 1266 1267 1268
	if (error)
		return error;

	error = dpm_suspend_noirq(state);
	if (error) {
1269
		dpm_resume_early(resume_event(state));
1270 1271
		return error;
	}
1272

1273
	return 0;
1274 1275
}
EXPORT_SYMBOL_GPL(dpm_suspend_end);
1276

1277 1278
/**
 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
R
Randy Dunlap 已提交
1279 1280 1281
 * @dev: Device to suspend.
 * @state: PM transition of the system being carried out.
 * @cb: Suspend callback to execute.
1282 1283
 */
static int legacy_suspend(struct device *dev, pm_message_t state,
1284 1285
			  int (*cb)(struct device *dev, pm_message_t state),
			  char *info)
1286 1287 1288 1289 1290 1291 1292 1293 1294
{
	int error;
	ktime_t calltime;

	calltime = initcall_debug_start(dev);

	error = cb(dev, state);
	suspend_report_result(cb, error);

1295
	initcall_debug_report(dev, calltime, error, state, info);
1296 1297 1298 1299

	return error;
}

1300
/**
1301 1302 1303
 * device_suspend - Execute "suspend" callbacks for given device.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
1304
 * @async: If true, the device is being suspended asynchronously.
1305
 */
1306
static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1307
{
1308 1309
	pm_callback_t callback = NULL;
	char *info = NULL;
1310
	int error = 0;
1311
	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1312

1313
	dpm_wait_for_children(dev, async);
1314

1315
	if (async_error)
1316
		goto Complete;
1317

1318 1319 1320 1321 1322 1323
	/*
	 * If a device configured to wake up the system from sleep states
	 * has been suspended at run time and there's a resume request pending
	 * for it, this is equivalent to the device signaling wakeup, so the
	 * system suspend operation should be aborted.
	 */
1324 1325
	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
		pm_wakeup_event(dev, 0);
1326

1327 1328
	if (pm_wakeup_pending()) {
		async_error = -EBUSY;
1329
		goto Complete;
1330 1331
	}

1332 1333 1334
	if (dev->power.syscore)
		goto Complete;

1335
	dpm_watchdog_set(&wd, dev);
1336 1337
	device_lock(dev);

1338
	if (dev->pm_domain) {
1339 1340 1341
		info = "power domain ";
		callback = pm_op(&dev->pm_domain->ops, state);
		goto Run;
1342 1343
	}

1344
	if (dev->type && dev->type->pm) {
1345 1346 1347
		info = "type ";
		callback = pm_op(dev->type->pm, state);
		goto Run;
1348 1349
	}

1350 1351
	if (dev->class) {
		if (dev->class->pm) {
1352 1353 1354
			info = "class ";
			callback = pm_op(dev->class->pm, state);
			goto Run;
1355 1356
		} else if (dev->class->suspend) {
			pm_dev_dbg(dev, state, "legacy class ");
1357 1358
			error = legacy_suspend(dev, state, dev->class->suspend,
						"legacy class ");
1359
			goto End;
1360
		}
1361 1362
	}

1363 1364
	if (dev->bus) {
		if (dev->bus->pm) {
1365
			info = "bus ";
1366
			callback = pm_op(dev->bus->pm, state);
1367
		} else if (dev->bus->suspend) {
1368
			pm_dev_dbg(dev, state, "legacy bus ");
1369 1370
			error = legacy_suspend(dev, state, dev->bus->suspend,
						"legacy bus ");
1371
			goto End;
1372
		}
1373 1374
	}

1375
 Run:
1376 1377 1378 1379 1380
	if (!callback && dev->driver && dev->driver->pm) {
		info = "driver ";
		callback = pm_op(dev->driver->pm, state);
	}

1381 1382
	error = dpm_run_callback(callback, dev, state, info);

1383
 End:
1384 1385
	if (!error) {
		dev->power.is_suspended = true;
1386 1387
		if (dev->power.wakeup_path
		    && dev->parent && !dev->parent->power.ignore_children)
1388 1389
			dev->parent->power.wakeup_path = true;
	}
1390

1391
	device_unlock(dev);
1392
	dpm_watchdog_clear(&wd);
1393 1394

 Complete:
1395
	complete_all(&dev->power.completion);
1396
	if (error)
1397 1398
		async_error = error;

1399 1400 1401
	return error;
}

1402 1403 1404 1405 1406 1407
static void async_suspend(void *data, async_cookie_t cookie)
{
	struct device *dev = (struct device *)data;
	int error;

	error = __device_suspend(dev, pm_transition, true);
1408 1409
	if (error) {
		dpm_save_failed_dev(dev_name(dev));
1410
		pm_dev_err(dev, pm_transition, " async", error);
1411
	}
1412 1413 1414 1415 1416 1417

	put_device(dev);
}

static int device_suspend(struct device *dev)
{
1418
	reinit_completion(&dev->power.completion);
1419

1420
	if (pm_async_enabled && dev->power.async_suspend) {
1421 1422 1423 1424 1425 1426 1427 1428
		get_device(dev);
		async_schedule(async_suspend, dev);
		return 0;
	}

	return __device_suspend(dev, pm_transition, false);
}

1429
/**
1430 1431
 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
 * @state: PM transition of the system being carried out.
1432
 */
1433
int dpm_suspend(pm_message_t state)
1434
{
1435
	ktime_t starttime = ktime_get();
1436 1437
	int error = 0;

1438 1439
	might_sleep();

1440 1441
	cpufreq_suspend();

1442
	mutex_lock(&dpm_list_mtx);
1443 1444
	pm_transition = state;
	async_error = 0;
1445 1446
	while (!list_empty(&dpm_prepared_list)) {
		struct device *dev = to_device(dpm_prepared_list.prev);
1447

1448
		get_device(dev);
1449
		mutex_unlock(&dpm_list_mtx);
1450

1451
		error = device_suspend(dev);
1452

1453
		mutex_lock(&dpm_list_mtx);
1454
		if (error) {
1455
			pm_dev_err(dev, state, "", error);
1456
			dpm_save_failed_dev(dev_name(dev));
1457
			put_device(dev);
1458 1459
			break;
		}
1460
		if (!list_empty(&dev->power.entry))
1461
			list_move(&dev->power.entry, &dpm_suspended_list);
1462
		put_device(dev);
1463 1464
		if (async_error)
			break;
1465 1466
	}
	mutex_unlock(&dpm_list_mtx);
1467 1468 1469
	async_synchronize_full();
	if (!error)
		error = async_error;
1470 1471 1472 1473
	if (error) {
		suspend_stats.failed_suspend++;
		dpm_save_failed_step(SUSPEND_SUSPEND);
	} else
1474
		dpm_show_time(starttime, state, NULL);
1475 1476 1477 1478
	return error;
}

/**
1479 1480 1481 1482 1483 1484
 * device_prepare - Prepare a device for system power transition.
 * @dev: Device to handle.
 * @state: PM transition of the system being carried out.
 *
 * Execute the ->prepare() callback(s) for given device.  No new children of the
 * device may be registered after this function has returned.
1485
 */
1486
static int device_prepare(struct device *dev, pm_message_t state)
1487
{
1488 1489
	int (*callback)(struct device *) = NULL;
	char *info = NULL;
1490 1491
	int error = 0;

1492 1493 1494
	if (dev->power.syscore)
		return 0;

1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * If a device's parent goes into runtime suspend at the wrong time,
	 * it won't be possible to resume the device.  To prevent this we
	 * block runtime suspend here, during the prepare phase, and allow
	 * it again during the complete phase.
	 */
	pm_runtime_get_noresume(dev);

1503
	device_lock(dev);
1504

1505 1506
	dev->power.wakeup_path = device_may_wakeup(dev);

1507
	if (dev->pm_domain) {
1508 1509
		info = "preparing power domain ";
		callback = dev->pm_domain->ops.prepare;
1510
	} else if (dev->type && dev->type->pm) {
1511 1512
		info = "preparing type ";
		callback = dev->type->pm->prepare;
1513
	} else if (dev->class && dev->class->pm) {
1514 1515
		info = "preparing class ";
		callback = dev->class->pm->prepare;
1516
	} else if (dev->bus && dev->bus->pm) {
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		info = "preparing bus ";
		callback = dev->bus->pm->prepare;
	}

	if (!callback && dev->driver && dev->driver->pm) {
		info = "preparing driver ";
		callback = dev->driver->pm->prepare;
	}

	if (callback) {
		error = callback(dev);
		suspend_report_result(callback, error);
1529
	}
1530

1531
	device_unlock(dev);
1532

1533 1534 1535
	if (error)
		pm_runtime_put(dev);

1536 1537
	return error;
}
1538

1539
/**
1540 1541
 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
 * @state: PM transition of the system being carried out.
1542
 *
1543
 * Execute the ->prepare() callback(s) for all devices.
1544
 */
1545
int dpm_prepare(pm_message_t state)
1546 1547 1548
{
	int error = 0;

1549 1550
	might_sleep();

1551 1552 1553 1554 1555 1556 1557
	mutex_lock(&dpm_list_mtx);
	while (!list_empty(&dpm_list)) {
		struct device *dev = to_device(dpm_list.next);

		get_device(dev);
		mutex_unlock(&dpm_list_mtx);

1558
		error = device_prepare(dev, state);
1559 1560 1561 1562 1563

		mutex_lock(&dpm_list_mtx);
		if (error) {
			if (error == -EAGAIN) {
				put_device(dev);
S
Sebastian Ott 已提交
1564
				error = 0;
1565 1566
				continue;
			}
1567 1568
			printk(KERN_INFO "PM: Device %s not prepared "
				"for power transition: code %d\n",
1569
				dev_name(dev), error);
1570 1571 1572
			put_device(dev);
			break;
		}
1573
		dev->power.is_prepared = true;
1574
		if (!list_empty(&dev->power.entry))
1575
			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1576 1577 1578
		put_device(dev);
	}
	mutex_unlock(&dpm_list_mtx);
1579 1580 1581
	return error;
}

1582
/**
1583 1584
 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
 * @state: PM transition of the system being carried out.
1585
 *
1586 1587
 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
 * callbacks for them.
1588
 */
1589
int dpm_suspend_start(pm_message_t state)
1590 1591
{
	int error;
1592

1593
	error = dpm_prepare(state);
1594 1595 1596 1597
	if (error) {
		suspend_stats.failed_prepare++;
		dpm_save_failed_step(SUSPEND_PREPARE);
	} else
1598
		error = dpm_suspend(state);
1599 1600
	return error;
}
1601
EXPORT_SYMBOL_GPL(dpm_suspend_start);
1602 1603 1604

void __suspend_report_result(const char *function, void *fn, int ret)
{
1605 1606
	if (ret)
		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1607 1608
}
EXPORT_SYMBOL_GPL(__suspend_report_result);
1609 1610 1611 1612 1613 1614

/**
 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
 * @dev: Device to wait for.
 * @subordinate: Device that needs to wait for @dev.
 */
1615
int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1616 1617
{
	dpm_wait(dev, subordinate->power.async_suspend);
1618
	return async_error;
1619 1620
}
EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

/**
 * dpm_for_each_dev - device iterator.
 * @data: data for the callback.
 * @fn: function to be called for each device.
 *
 * Iterate over devices in dpm_list, and call @fn for each device,
 * passing it @data.
 */
void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
{
	struct device *dev;

	if (!fn)
		return;

	device_pm_lock();
	list_for_each_entry(dev, &dpm_list, power.entry)
		fn(dev, data);
	device_pm_unlock();
}
EXPORT_SYMBOL_GPL(dpm_for_each_dev);