spi-mxs.c 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*
 * Freescale MXS SPI master driver
 *
 * Copyright 2012 DENX Software Engineering, GmbH.
 * Copyright 2012 Freescale Semiconductor, Inc.
 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
 *
 * Rework and transition to new API by:
 * Marek Vasut <marex@denx.de>
 *
 * Based on previous attempt by:
 * Fabio Estevam <fabio.estevam@freescale.com>
 *
 * Based on code from U-Boot bootloader by:
 * Marek Vasut <marex@denx.de>
 *
 * Based on spi-stmp.c, which is:
 * Author: Dmitry Pervushin <dimka@embeddedalley.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/highmem.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>
#include <linux/stmp_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/mxs-spi.h>

#define DRIVER_NAME		"mxs-spi"

55 56
/* Use 10S timeout for very long transfers, it should suffice. */
#define SSP_TIMEOUT		10000
57

58 59
#define SG_MAXLEN		0xff00

60 61
struct mxs_spi {
	struct mxs_ssp		ssp;
62
	struct completion	c;
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static int mxs_spi_setup_transfer(struct spi_device *dev,
				struct spi_transfer *t)
{
	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
	struct mxs_ssp *ssp = &spi->ssp;
	uint32_t hz = 0;

	hz = dev->max_speed_hz;
	if (t && t->speed_hz)
		hz = min(hz, t->speed_hz);
	if (hz == 0) {
		dev_err(&dev->dev, "Cannot continue with zero clock\n");
		return -EINVAL;
	}

	mxs_ssp_set_clk_rate(ssp, hz);

T
Trent Piepho 已提交
82 83
	writel(BM_SSP_CTRL0_LOCK_CS,
		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
		     BF_SSP_CTRL1_WORD_LENGTH
		     (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
		     ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
		     ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
		     ssp->base + HW_SSP_CTRL1(ssp));

	writel(0x0, ssp->base + HW_SSP_CMD0);
	writel(0x0, ssp->base + HW_SSP_CMD1);

	return 0;
}

static int mxs_spi_setup(struct spi_device *dev)
{
	int err = 0;

	if (!dev->bits_per_word)
		dev->bits_per_word = 8;

	if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
		return -EINVAL;

	err = mxs_spi_setup_transfer(dev, NULL);
	if (err) {
		dev_err(&dev->dev,
			"Failed to setup transfer, error = %d\n", err);
	}

	return err;
}

static uint32_t mxs_spi_cs_to_reg(unsigned cs)
{
	uint32_t select = 0;

	/*
	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
	 *
	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
	 * the datasheet for further details. In SPI mode, they are used to
	 * toggle the chip-select lines (nCS pins).
	 */
	if (cs & 1)
		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
	if (cs & 2)
		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;

	return select;
}

static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
{
	const uint32_t mask =
		BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
	uint32_t select;
	struct mxs_ssp *ssp = &spi->ssp;

	writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
	select = mxs_spi_cs_to_reg(cs);
	writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
}

static inline void mxs_spi_enable(struct mxs_spi *spi)
{
	struct mxs_ssp *ssp = &spi->ssp;

	writel(BM_SSP_CTRL0_IGNORE_CRC,
		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
}

static inline void mxs_spi_disable(struct mxs_spi *spi)
{
	struct mxs_ssp *ssp = &spi->ssp;

	writel(BM_SSP_CTRL0_IGNORE_CRC,
		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
}

static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
{
166
	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
167 168 169
	struct mxs_ssp *ssp = &spi->ssp;
	uint32_t reg;

170
	do {
171 172
		reg = readl_relaxed(ssp->base + offset);

173 174
		if (!set)
			reg = ~reg;
175

176
		reg &= mask;
177

178 179 180
		if (reg == mask)
			return 0;
	} while (time_before(jiffies, timeout));
181

182
	return -ETIMEDOUT;
183 184
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static void mxs_ssp_dma_irq_callback(void *param)
{
	struct mxs_spi *spi = param;
	complete(&spi->c);
}

static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
{
	struct mxs_ssp *ssp = dev_id;
	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
		__func__, __LINE__,
		readl(ssp->base + HW_SSP_CTRL1(ssp)),
		readl(ssp->base + HW_SSP_STATUS(ssp)));
	return IRQ_HANDLED;
}

static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
			    unsigned char *buf, int len,
			    int *first, int *last, int write)
{
	struct mxs_ssp *ssp = &spi->ssp;
206 207 208 209
	struct dma_async_tx_descriptor *desc = NULL;
	const bool vmalloced_buf = is_vmalloc_addr(buf);
	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
	const int sgs = DIV_ROUND_UP(len, desc_len);
210
	int sg_count;
211 212 213 214 215 216 217 218 219 220
	int min, ret;
	uint32_t ctrl0;
	struct page *vm_page;
	void *sg_buf;
	struct {
		uint32_t		pio[4];
		struct scatterlist	sg;
	} *dma_xfer;

	if (!len)
221
		return -EINVAL;
222 223 224 225

	dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
	if (!dma_xfer)
		return -ENOMEM;
226

227
	INIT_COMPLETION(spi->c);
228

229
	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
230
	ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
231 232
	ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);

233
	if (!write)
234
		ctrl0 |= BM_SSP_CTRL0_READ;
235 236

	/* Queue the DMA data transfer. */
237 238 239 240 241 242 243
	for (sg_count = 0; sg_count < sgs; sg_count++) {
		min = min(len, desc_len);

		/* Prepare the transfer descriptor. */
		if ((sg_count + 1 == sgs) && *last)
			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;

244 245
		if (ssp->devid == IMX23_SSP) {
			ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
246
			ctrl0 |= min;
247
		}
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

		dma_xfer[sg_count].pio[0] = ctrl0;
		dma_xfer[sg_count].pio[3] = min;

		if (vmalloced_buf) {
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				ret = -ENOMEM;
				goto err_vmalloc;
			}
			sg_buf = page_address(vm_page) +
				((size_t)buf & ~PAGE_MASK);
		} else {
			sg_buf = buf;
		}

		sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

		len -= min;
		buf += min;

		/* Queue the PIO register write transfer. */
		desc = dmaengine_prep_slave_sg(ssp->dmach,
				(struct scatterlist *)dma_xfer[sg_count].pio,
				(ssp->devid == IMX23_SSP) ? 1 : 4,
				DMA_TRANS_NONE,
				sg_count ? DMA_PREP_INTERRUPT : 0);
		if (!desc) {
			dev_err(ssp->dev,
				"Failed to get PIO reg. write descriptor.\n");
			ret = -EINVAL;
			goto err_mapped;
		}

		desc = dmaengine_prep_slave_sg(ssp->dmach,
				&dma_xfer[sg_count].sg, 1,
				write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);

		if (!desc) {
			dev_err(ssp->dev,
				"Failed to get DMA data write descriptor.\n");
			ret = -EINVAL;
			goto err_mapped;
		}
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	}

	/*
	 * The last descriptor must have this callback,
	 * to finish the DMA transaction.
	 */
	desc->callback = mxs_ssp_dma_irq_callback;
	desc->callback_param = spi;

	/* Start the transfer. */
	dmaengine_submit(desc);
	dma_async_issue_pending(ssp->dmach);

	ret = wait_for_completion_timeout(&spi->c,
				msecs_to_jiffies(SSP_TIMEOUT));
	if (!ret) {
		dev_err(ssp->dev, "DMA transfer timeout\n");
		ret = -ETIMEDOUT;
313
		dmaengine_terminate_all(ssp->dmach);
314
		goto err_vmalloc;
315 316 317 318
	}

	ret = 0;

319 320 321 322
err_vmalloc:
	while (--sg_count >= 0) {
err_mapped:
		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
323 324 325
			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	}

326 327
	kfree(dma_xfer);

328 329 330
	return ret;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
			    unsigned char *buf, int len,
			    int *first, int *last, int write)
{
	struct mxs_ssp *ssp = &spi->ssp;

	if (*first)
		mxs_spi_enable(spi);

	mxs_spi_set_cs(spi, cs);

	while (len--) {
		if (*last && len == 0)
			mxs_spi_disable(spi);

		if (ssp->devid == IMX23_SSP) {
			writel(BM_SSP_CTRL0_XFER_COUNT,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
			writel(1,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
		} else {
			writel(1, ssp->base + HW_SSP_XFER_SIZE);
		}

		if (write)
			writel(BM_SSP_CTRL0_READ,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
		else
			writel(BM_SSP_CTRL0_READ,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);

		writel(BM_SSP_CTRL0_RUN,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);

		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
			return -ETIMEDOUT;

		if (write)
			writel(*buf, ssp->base + HW_SSP_DATA(ssp));

		writel(BM_SSP_CTRL0_DATA_XFER,
			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);

		if (!write) {
			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
						BM_SSP_STATUS_FIFO_EMPTY, 0))
				return -ETIMEDOUT;

			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
		}

		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
			return -ETIMEDOUT;

		buf++;
	}

	if (len <= 0)
		return 0;

	return -ETIMEDOUT;
}

static int mxs_spi_transfer_one(struct spi_master *master,
				struct spi_message *m)
{
	struct mxs_spi *spi = spi_master_get_devdata(master);
	struct mxs_ssp *ssp = &spi->ssp;
	int first, last;
	struct spi_transfer *t, *tmp_t;
	int status = 0;
	int cs;

	first = last = 0;

	cs = m->spi->chip_select;

	list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {

		status = mxs_spi_setup_transfer(m->spi, t);
		if (status)
			break;

		if (&t->transfer_list == m->transfers.next)
			first = 1;
		if (&t->transfer_list == m->transfers.prev)
			last = 1;
418
		if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
419 420 421 422 423 424
			dev_err(ssp->dev,
				"Cannot send and receive simultaneously\n");
			status = -EINVAL;
			break;
		}

425 426 427 428 429 430 431 432 433
		/*
		 * Small blocks can be transfered via PIO.
		 * Measured by empiric means:
		 *
		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
		 *
		 * DMA only: 2.164808 seconds, 473.0KB/s
		 * Combined: 1.676276 seconds, 610.9KB/s
		 */
434
		if (t->len < 32) {
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
			writel(BM_SSP_CTRL1_DMA_ENABLE,
				ssp->base + HW_SSP_CTRL1(ssp) +
				STMP_OFFSET_REG_CLR);

			if (t->tx_buf)
				status = mxs_spi_txrx_pio(spi, cs,
						(void *)t->tx_buf,
						t->len, &first, &last, 1);
			if (t->rx_buf)
				status = mxs_spi_txrx_pio(spi, cs,
						t->rx_buf, t->len,
						&first, &last, 0);
		} else {
			writel(BM_SSP_CTRL1_DMA_ENABLE,
				ssp->base + HW_SSP_CTRL1(ssp) +
				STMP_OFFSET_REG_SET);

			if (t->tx_buf)
				status = mxs_spi_txrx_dma(spi, cs,
						(void *)t->tx_buf, t->len,
						&first, &last, 1);
			if (t->rx_buf)
				status = mxs_spi_txrx_dma(spi, cs,
						t->rx_buf, t->len,
						&first, &last, 0);
		}
461

462 463
		if (status) {
			stmp_reset_block(ssp->base);
464
			break;
465
		}
466

467
		m->actual_length += t->len;
468 469 470
		first = last = 0;
	}

471
	m->status = status;
472 473 474 475 476 477 478 479 480 481 482 483
	spi_finalize_current_message(master);

	return status;
}

static const struct of_device_id mxs_spi_dt_ids[] = {
	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);

484
static int mxs_spi_probe(struct platform_device *pdev)
485 486 487 488 489 490 491
{
	const struct of_device_id *of_id =
			of_match_device(mxs_spi_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
	struct spi_master *master;
	struct mxs_spi *spi;
	struct mxs_ssp *ssp;
492
	struct resource *iores;
493 494
	struct clk *clk;
	void __iomem *base;
495 496
	int devid, clk_freq;
	int ret = 0, irq_err;
497

498 499 500 501 502 503 504
	/*
	 * Default clock speed for the SPI core. 160MHz seems to
	 * work reasonably well with most SPI flashes, so use this
	 * as a default. Override with "clock-frequency" DT prop.
	 */
	const int clk_freq_default = 160000000;

505
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
506
	irq_err = platform_get_irq(pdev, 0);
507
	if (irq_err < 0)
508 509
		return -EINVAL;

510 511 512
	base = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(base))
		return PTR_ERR(base);
513 514 515 516 517

	clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk))
		return PTR_ERR(clk);

518 519 520 521
	devid = (enum mxs_ssp_id) of_id->data;
	ret = of_property_read_u32(np, "clock-frequency",
				   &clk_freq);
	if (ret)
522
		clk_freq = clk_freq_default;
523 524 525 526 527 528 529

	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
	if (!master)
		return -ENOMEM;

	master->transfer_one_message = mxs_spi_transfer_one;
	master->setup = mxs_spi_setup;
530
	master->bits_per_word_mask = SPI_BPW_MASK(8);
531 532 533 534 535 536 537 538 539 540 541
	master->mode_bits = SPI_CPOL | SPI_CPHA;
	master->num_chipselect = 3;
	master->dev.of_node = np;
	master->flags = SPI_MASTER_HALF_DUPLEX;

	spi = spi_master_get_devdata(master);
	ssp = &spi->ssp;
	ssp->dev = &pdev->dev;
	ssp->clk = clk;
	ssp->base = base;
	ssp->devid = devid;
542

543 544
	init_completion(&spi->c);

545 546 547 548 549
	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
			       DRIVER_NAME, ssp);
	if (ret)
		goto out_master_free;

550
	ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
551 552
	if (!ssp->dmach) {
		dev_err(ssp->dev, "Failed to request DMA\n");
553
		ret = -ENODEV;
554 555
		goto out_master_free;
	}
556

557 558 559 560
	ret = clk_prepare_enable(ssp->clk);
	if (ret)
		goto out_dma_release;

561
	clk_set_rate(ssp->clk, clk_freq);
562 563
	ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;

564 565 566
	ret = stmp_reset_block(ssp->base);
	if (ret)
		goto out_disable_clk;
567 568 569 570 571 572

	platform_set_drvdata(pdev, master);

	ret = spi_register_master(master);
	if (ret) {
		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
573
		goto out_disable_clk;
574 575 576 577
	}

	return 0;

578
out_disable_clk:
579
	clk_disable_unprepare(ssp->clk);
580
out_dma_release:
581
	dma_release_channel(ssp->dmach);
582
out_master_free:
583 584 585 586
	spi_master_put(master);
	return ret;
}

587
static int mxs_spi_remove(struct platform_device *pdev)
588 589 590 591 592
{
	struct spi_master *master;
	struct mxs_spi *spi;
	struct mxs_ssp *ssp;

593
	master = spi_master_get(platform_get_drvdata(pdev));
594 595 596 597 598
	spi = spi_master_get_devdata(master);
	ssp = &spi->ssp;

	spi_unregister_master(master);
	clk_disable_unprepare(ssp->clk);
599
	dma_release_channel(ssp->dmach);
600 601 602 603 604 605 606
	spi_master_put(master);

	return 0;
}

static struct platform_driver mxs_spi_driver = {
	.probe	= mxs_spi_probe,
607
	.remove	= mxs_spi_remove,
608 609 610 611 612 613 614 615 616 617 618 619 620
	.driver	= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
		.of_match_table = mxs_spi_dt_ids,
	},
};

module_platform_driver(mxs_spi_driver);

MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_DESCRIPTION("MXS SPI master driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mxs-spi");