xfs_sync.c 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"

47 48 49
#include <linux/kthread.h>
#include <linux/freezer.h>

50
/*
51 52
 * Sync all the inodes in the given AG according to the
 * direction given by the flags.
53
 */
54 55
STATIC int
xfs_sync_inodes_ag(
56
	xfs_mount_t	*mp,
57
	int		ag,
58
	int		flags)
59
{
60 61
	xfs_perag_t	*pag = &mp->m_perag[ag];
	int		nr_found;
62
	uint32_t	first_index = 0;
63 64
	int		error = 0;
	int		last_error = 0;
65 66

	do {
67 68
		struct inode	*inode;
		xfs_inode_t	*ip = NULL;
69
		int		lock_flags = XFS_ILOCK_SHARED;
70

71
		/*
72 73 74
		 * use a gang lookup to find the next inode in the tree
		 * as the tree is sparse and a gang lookup walks to find
		 * the number of objects requested.
75
		 */
76 77 78
		read_lock(&pag->pag_ici_lock);
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void**)&ip, first_index, 1);
79

80 81 82
		if (!nr_found) {
			read_unlock(&pag->pag_ici_lock);
			break;
83 84
		}

85 86 87 88 89 90
		/*
		 * Update the index for the next lookup. Catch overflows
		 * into the next AG range which can occur if we have inodes
		 * in the last block of the AG and we are currently
		 * pointing to the last inode.
		 */
91
		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
92 93 94 95
		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}
96

97
		/* nothing to sync during shutdown */
D
David Chinner 已提交
98
		if (XFS_FORCED_SHUTDOWN(mp)) {
99
			read_unlock(&pag->pag_ici_lock);
100 101 102 103
			return 0;
		}

		/*
104 105
		 * If we can't get a reference on the inode, it must be
		 * in reclaim. Leave it for the reclaim code to flush.
106
		 */
107 108
		inode = VFS_I(ip);
		if (!igrab(inode)) {
109
			read_unlock(&pag->pag_ici_lock);
110 111 112 113
			continue;
		}
		read_unlock(&pag->pag_ici_lock);

114 115 116
		/* avoid new or bad inodes */
		if (is_bad_inode(inode) ||
		    xfs_iflags_test(ip, XFS_INEW)) {
117 118
			IRELE(ip);
			continue;
119
		}
120

121 122
		/*
		 * If we have to flush data or wait for I/O completion
123
		 * we need to hold the iolock.
124
		 */
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
		if (flags & SYNC_DELWRI) {
			if (VN_DIRTY(inode)) {
				if (flags & SYNC_TRYLOCK) {
					if (xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
						lock_flags |= XFS_IOLOCK_SHARED;
				} else {
					xfs_ilock(ip, XFS_IOLOCK_SHARED);
					lock_flags |= XFS_IOLOCK_SHARED;
				}
				if (lock_flags & XFS_IOLOCK_SHARED) {
					error = xfs_flush_pages(ip, 0, -1,
							(flags & SYNC_WAIT) ? 0
								: XFS_B_ASYNC,
							FI_NONE);
				}
			}
			if (VN_CACHED(inode) && (flags & SYNC_IOWAIT))
142
				xfs_ioend_wait(ip);
143
		}
144
		xfs_ilock(ip, XFS_ILOCK_SHARED);
145

146
		if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
147 148
			if (flags & SYNC_WAIT) {
				xfs_iflock(ip);
149 150 151 152
				if (!xfs_inode_clean(ip))
					error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
				else
					xfs_ifunlock(ip);
153
			} else if (xfs_iflock_nowait(ip)) {
154 155 156 157
				if (!xfs_inode_clean(ip))
					error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
				else
					xfs_ifunlock(ip);
158 159
			}
		}
160
		xfs_iput(ip, lock_flags);
161

162
		if (error)
163 164 165 166
			last_error = error;
		/*
		 * bail out if the filesystem is corrupted.
		 */
167
		if (error == EFSCORRUPTED)
168 169
			return XFS_ERROR(error);

170
	} while (nr_found);
171

172 173
	return last_error;
}
174

175 176 177
int
xfs_sync_inodes(
	xfs_mount_t	*mp,
178
	int		flags)
179 180 181 182
{
	int		error;
	int		last_error;
	int		i;
183
	int		lflags = XFS_LOG_FORCE;
184

185 186 187 188
	if (mp->m_flags & XFS_MOUNT_RDONLY)
		return 0;
	error = 0;
	last_error = 0;
189

190 191 192
	if (flags & SYNC_WAIT)
		lflags |= XFS_LOG_SYNC;

193 194 195
	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
		if (!mp->m_perag[i].pag_ici_init)
			continue;
196
		error = xfs_sync_inodes_ag(mp, i, flags);
197 198 199 200 201
		if (error)
			last_error = error;
		if (error == EFSCORRUPTED)
			break;
	}
202 203 204
	if (flags & SYNC_DELWRI)
		xfs_log_force(mp, 0, lflags);

205 206 207
	return XFS_ERROR(last_error);
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
	uint			log_flags)
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	/* XXX(hch): ignoring the error here.. */
	error = xfs_trans_commit(tp, 0);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	xfs_log_force(mp, 0, log_flags);
	return 0;
}

242
int
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
	if (flags & SYNC_BDFLUSH) {
		ASSERT(!(flags & SYNC_WAIT));

		bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
			xfs_log_force(mp, 0, XFS_LOG_FORCE);
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

	return xfs_bwrite(mp, bp);

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
293 294 295
}

/*
D
David Chinner 已提交
296 297 298 299 300 301 302 303 304 305 306
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
307 308
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
309 310
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
	XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
	xfs_filestream_flush(mp);

	/* push and block */
	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
	XFS_QM_DQSYNC(mp, SYNC_WAIT);

D
David Chinner 已提交
327
	/* write superblock and hoover up shutdown errors */
328 329
	error = xfs_sync_fsdata(mp, 0);

D
David Chinner 已提交
330
	/* flush data-only devices */
331 332 333 334
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
335 336
}

D
David Chinner 已提交
337 338 339 340 341 342 343
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

	xfs_flush_buftarg(mp->m_ddev_targp, 0);
344
	xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
D
David Chinner 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
	 * logged before we can write the unmount record.
	 */
	do {
		xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

380 381 382 383 384
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
385 386 387 388 389 390 391 392 393 394 395

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

396 397 398 399 400 401 402 403 404 405 406 407 408
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
	void		(*syncer)(struct xfs_mount *, void *))
{
409
	struct xfs_sync_work *work;
410

411
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
429
xfs_flush_inodes_work(
430 431 432 433
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
434 435
	xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK);
	xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT);
436 437 438 439
	iput(inode);
}

void
440
xfs_flush_inodes(
441 442 443 444 445
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);

	igrab(inode);
446
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work);
447 448 449 450
	delay(msecs_to_jiffies(500));
	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

451 452 453 454 455
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
456 457 458 459 460 461 462
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

463 464
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
465
		xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
466 467 468 469 470 471
		/* dgc: errors ignored here */
		error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
		error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
		if (xfs_log_need_covered(mp))
			error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
	}
472 473 474 475 476 477 478 479 480 481
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
482
	xfs_sync_work_t		*work, *n;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
		timeleft = schedule_timeout_interruptible(timeleft);
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
		list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
			list_move(&work->w_list, &tmp);
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

543
int
544
xfs_reclaim_inode(
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	xfs_inode_t	*ip,
	int		locked,
	int		sync_mode)
{
	xfs_perag_t	*pag = xfs_get_perag(ip->i_mount, ip->i_ino);

	/* The hash lock here protects a thread in xfs_iget_core from
	 * racing with us on linking the inode back with a vnode.
	 * Once we have the XFS_IRECLAIM flag set it will not touch
	 * us.
	 */
	write_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
	    !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
		if (locked) {
			xfs_ifunlock(ip);
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
		}
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);
	xfs_put_perag(ip->i_mount, pag);

	/*
	 * If the inode is still dirty, then flush it out.  If the inode
	 * is not in the AIL, then it will be OK to flush it delwri as
	 * long as xfs_iflush() does not keep any references to the inode.
	 * We leave that decision up to xfs_iflush() since it has the
	 * knowledge of whether it's OK to simply do a delwri flush of
	 * the inode or whether we need to wait until the inode is
	 * pulled from the AIL.
	 * We get the flush lock regardless, though, just to make sure
	 * we don't free it while it is being flushed.
	 */
	if (!locked) {
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		xfs_iflock(ip);
	}

	/*
	 * In the case of a forced shutdown we rely on xfs_iflush() to
	 * wait for the inode to be unpinned before returning an error.
	 */
	if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
		/* synchronize with xfs_iflush_done */
		xfs_iflock(ip);
		xfs_ifunlock(ip);
	}

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
	return 0;
}

D
David Chinner 已提交
604 605 606 607 608
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
609 610 611 612 613 614 615 616 617 618 619
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	radix_tree_tag_set(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
D
David Chinner 已提交
620
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}

void
xfs_inode_clear_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	__xfs_inode_clear_reclaim_tag(mp, pag, ip);
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

651 652 653

STATIC void
xfs_reclaim_inodes_ag(
654
	xfs_mount_t	*mp,
655 656
	int		ag,
	int		noblock,
657 658
	int		mode)
{
659 660 661
	xfs_inode_t	*ip = NULL;
	xfs_perag_t	*pag = &mp->m_perag[ag];
	int		nr_found;
662
	uint32_t	first_index;
663
	int		skipped;
664 665

restart:
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	first_index = 0;
	skipped = 0;
	do {
		/*
		 * use a gang lookup to find the next inode in the tree
		 * as the tree is sparse and a gang lookup walks to find
		 * the number of objects requested.
		 */
		read_lock(&pag->pag_ici_lock);
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
					(void**)&ip, first_index, 1,
					XFS_ICI_RECLAIM_TAG);

		if (!nr_found) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}

684 685 686 687 688 689
		/*
		 * Update the index for the next lookup. Catch overflows
		 * into the next AG range which can occur if we have inodes
		 * in the last block of the AG and we are currently
		 * pointing to the last inode.
		 */
690
		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
691 692 693 694
		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}
695 696 697 698 699 700 701

		/* ignore if already under reclaim */
		if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
			read_unlock(&pag->pag_ici_lock);
			continue;
		}

702
		if (noblock) {
703 704
			if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
				read_unlock(&pag->pag_ici_lock);
705
				continue;
706
			}
707 708 709
			if (xfs_ipincount(ip) ||
			    !xfs_iflock_nowait(ip)) {
				xfs_iunlock(ip, XFS_ILOCK_EXCL);
710
				read_unlock(&pag->pag_ici_lock);
711 712 713
				continue;
			}
		}
714 715 716 717 718 719
		read_unlock(&pag->pag_ici_lock);

		/*
		 * hmmm - this is an inode already in reclaim. Do
		 * we even bother catching it here?
		 */
720
		if (xfs_reclaim_inode(ip, noblock, mode))
721 722 723 724 725
			skipped++;
	} while (nr_found);

	if (skipped) {
		delay(1);
726 727
		goto restart;
	}
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	return;

}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		 noblock,
	int		mode)
{
	int		i;

	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
		if (!mp->m_perag[i].pag_ici_init)
			continue;
		xfs_reclaim_inodes_ag(mp, i, noblock, mode);
	}
745 746 747 748
	return 0;
}