node.h 11.9 KB
Newer Older
J
Jaegeuk Kim 已提交
1
/*
2 3 4 5 6 7 8 9 10 11
 * fs/f2fs/node.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
/* start node id of a node block dedicated to the given node id */
12
#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 14

/* node block offset on the NAT area dedicated to the given start node id */
15
#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16

C
Chao Yu 已提交
17
/* # of pages to perform synchronous readahead before building free nids */
18 19
#define FREE_NID_PAGES	8
#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20

21
#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
C
Chao Yu 已提交
22

23 24 25
/* maximum readahead size for node during getting data blocks */
#define MAX_RA_NODE		128

26
/* control the memory footprint threshold (10MB per 1GB ram) */
J
Jaegeuk Kim 已提交
27
#define DEF_RAM_THRESHOLD	1
28

29 30
/* control dirty nats ratio threshold (default: 10% over max nid count) */
#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 32
/* control total # of nats */
#define DEF_NAT_CACHE_THRESHOLD			100000
33

34 35
/* vector size for gang look-up from nat cache that consists of radix tree */
#define NATVEC_SIZE	64
36
#define SETVEC_SIZE	32
37

38 39 40
/* return value for read_node_page */
#define LOCKED_PAGE	1

41 42 43 44 45 46 47 48
/* For flag in struct node_info */
enum {
	IS_CHECKPOINTED,	/* is it checkpointed before? */
	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
	IS_DIRTY,		/* this nat entry is dirty? */
};

49 50 51 52 53 54 55 56
/*
 * For node information
 */
struct node_info {
	nid_t nid;		/* node id */
	nid_t ino;		/* inode number of the node's owner */
	block_t	blk_addr;	/* block address of the node */
	unsigned char version;	/* version of the node */
57
	unsigned char flag;	/* for node information bits */
58 59
};

60 61 62 63 64
struct nat_entry {
	struct list_head list;	/* for clean or dirty nat list */
	struct node_info ni;	/* in-memory node information */
};

65 66 67 68 69 70 71 72
#define nat_get_nid(nat)		((nat)->ni.nid)
#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
#define nat_get_ino(nat)		((nat)->ni.ino)
#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
#define nat_get_version(nat)		((nat)->ni.version)
#define nat_set_version(nat, v)		((nat)->ni.version = (v))
73

74
#define inc_node_version(version)	(++(version))
75

76 77 78 79 80 81 82 83 84 85
static inline void copy_node_info(struct node_info *dst,
						struct node_info *src)
{
	dst->nid = src->nid;
	dst->ino = src->ino;
	dst->blk_addr = src->blk_addr;
	dst->version = src->version;
	/* should not copy flag here */
}

86 87 88 89 90
static inline void set_nat_flag(struct nat_entry *ne,
				unsigned int type, bool set)
{
	unsigned char mask = 0x01 << type;
	if (set)
91
		ne->ni.flag |= mask;
92
	else
93
		ne->ni.flag &= ~mask;
94 95 96 97 98
}

static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
{
	unsigned char mask = 0x01 << type;
99
	return ne->ni.flag & mask;
100 101
}

102 103 104 105 106 107 108 109
static inline void nat_reset_flag(struct nat_entry *ne)
{
	/* these states can be set only after checkpoint was done */
	set_nat_flag(ne, IS_CHECKPOINTED, true);
	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
	set_nat_flag(ne, HAS_LAST_FSYNC, true);
}

110 111 112 113 114 115 116 117
static inline void node_info_from_raw_nat(struct node_info *ni,
						struct f2fs_nat_entry *raw_ne)
{
	ni->ino = le32_to_cpu(raw_ne->ino);
	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
	ni->version = raw_ne->version;
}

118 119 120 121 122 123 124 125
static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
						struct node_info *ni)
{
	raw_ne->ino = cpu_to_le32(ni->ino);
	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
	raw_ne->version = ni->version;
}

126 127 128
static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
{
	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
C
Chao Yu 已提交
129
					NM_I(sbi)->dirty_nats_ratio / 100;
130 131
}

132 133 134 135 136
static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
{
	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
}

137
enum mem_type {
138
	FREE_NIDS,	/* indicates the free nid list */
139
	NAT_ENTRIES,	/* indicates the cached nat entry */
140
	DIRTY_DENTS,	/* indicates dirty dentry pages */
141
	INO_ENTRIES,	/* indicates inode entries */
142
	EXTENT_CACHE,	/* indicates extent cache */
J
Jaegeuk Kim 已提交
143
	INMEM_PAGES,	/* indicates inmemory pages */
144
	BASE_CHECK,	/* check kernel status */
145 146
};

147
struct nat_entry_set {
148
	struct list_head set_list;	/* link with other nat sets */
149
	struct list_head entry_list;	/* link with dirty nat entries */
150
	nid_t set;			/* set number*/
151 152 153
	unsigned int entry_cnt;		/* the # of nat entries in set */
};

154 155 156
struct free_nid {
	struct list_head list;	/* for free node id list */
	nid_t nid;		/* node id */
C
Chao Yu 已提交
157
	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
158 159
};

J
Jaegeuk Kim 已提交
160
static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
161 162 163 164
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);
	struct free_nid *fnid;

C
Chao Yu 已提交
165
	spin_lock(&nm_i->nid_list_lock);
C
Chao Yu 已提交
166
	if (nm_i->nid_cnt[FREE_NID] <= 0) {
C
Chao Yu 已提交
167
		spin_unlock(&nm_i->nid_list_lock);
J
Jaegeuk Kim 已提交
168
		return;
169
	}
C
Chao Yu 已提交
170
	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
171
	*nid = fnid->nid;
C
Chao Yu 已提交
172
	spin_unlock(&nm_i->nid_list_lock);
173 174 175 176 177 178 179 180
}

/*
 * inline functions
 */
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);
181 182 183 184 185 186

#ifdef CONFIG_F2FS_CHECK_FS
	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
						nm_i->bitmap_size))
		f2fs_bug_on(sbi, 1);
#endif
187 188 189 190 191 192 193 194 195
	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
}

static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);
	pgoff_t block_off;
	pgoff_t block_addr;

196 197 198 199 200
	/*
	 * block_off = segment_off * 512 + off_in_segment
	 * OLD = (segment_off * 512) * 2 + off_in_segment
	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
	 */
201 202 203
	block_off = NAT_BLOCK_OFFSET(start);

	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
204
		(block_off << 1) -
205
		(block_off & (sbi->blocks_per_seg - 1)));
206 207 208 209 210 211 212 213 214 215 216 217 218

	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
		block_addr += sbi->blocks_per_seg;

	return block_addr;
}

static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
						pgoff_t block_addr)
{
	struct f2fs_nm_info *nm_i = NM_I(sbi);

	block_addr -= nm_i->nat_blkaddr;
219
	block_addr ^= 1 << sbi->log_blocks_per_seg;
220 221 222 223 224 225 226
	return block_addr + nm_i->nat_blkaddr;
}

static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
{
	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);

227
	f2fs_change_bit(block_off, nm_i->nat_bitmap);
228 229 230
#ifdef CONFIG_F2FS_CHECK_FS
	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
#endif
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
static inline nid_t ino_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le32_to_cpu(rn->footer.ino);
}

static inline nid_t nid_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le32_to_cpu(rn->footer.nid);
}

static inline unsigned int ofs_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	unsigned flag = le32_to_cpu(rn->footer.flag);
	return flag >> OFFSET_BIT_SHIFT;
}

static inline __u64 cpver_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le64_to_cpu(rn->footer.cp_ver);
}

static inline block_t next_blkaddr_of_node(struct page *node_page)
{
	struct f2fs_node *rn = F2FS_NODE(node_page);
	return le32_to_cpu(rn->footer.next_blkaddr);
}

264 265 266
static inline void fill_node_footer(struct page *page, nid_t nid,
				nid_t ino, unsigned int ofs, bool reset)
{
267
	struct f2fs_node *rn = F2FS_NODE(page);
268 269
	unsigned int old_flag = 0;

270 271
	if (reset)
		memset(rn, 0, sizeof(*rn));
272 273 274
	else
		old_flag = le32_to_cpu(rn->footer.flag);

275 276
	rn->footer.nid = cpu_to_le32(nid);
	rn->footer.ino = cpu_to_le32(ino);
277 278 279 280

	/* should remain old flag bits such as COLD_BIT_SHIFT */
	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
					(old_flag & OFFSET_BIT_MASK));
281 282 283 284
}

static inline void copy_node_footer(struct page *dst, struct page *src)
{
285 286
	struct f2fs_node *src_rn = F2FS_NODE(src);
	struct f2fs_node *dst_rn = F2FS_NODE(dst);
287 288 289 290 291
	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
}

static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
{
292
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293
	struct f2fs_node *rn = F2FS_NODE(page);
294 295 296 297
	__u64 cp_ver = cur_cp_version(ckpt);

	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
		cp_ver |= (cur_cp_crc(ckpt) << 32);
298

299
	rn->footer.cp_ver = cpu_to_le64(cp_ver);
300
	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
301 302
}

303
static inline bool is_recoverable_dnode(struct page *page)
304
{
305 306
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
	__u64 cp_ver = cur_cp_version(ckpt);
307

308 309 310
	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
		cp_ver |= (cur_cp_crc(ckpt) << 32);

E
Eric Biggers 已提交
311
	return cp_ver == cpver_of_node(page);
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
}

/*
 * f2fs assigns the following node offsets described as (num).
 * N = NIDS_PER_BLOCK
 *
 *  Inode block (0)
 *    |- direct node (1)
 *    |- direct node (2)
 *    |- indirect node (3)
 *    |            `- direct node (4 => 4 + N - 1)
 *    |- indirect node (4 + N)
 *    |            `- direct node (5 + N => 5 + 2N - 1)
 *    `- double indirect node (5 + 2N)
 *                 `- indirect node (6 + 2N)
C
Chao Yu 已提交
327 328 329 330 331 332 333
 *                       `- direct node
 *                 ......
 *                 `- indirect node ((6 + 2N) + x(N + 1))
 *                       `- direct node
 *                 ......
 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 *                       `- direct node
334 335 336 337
 */
static inline bool IS_DNODE(struct page *node_page)
{
	unsigned int ofs = ofs_of_node(node_page);
338

339
	if (f2fs_has_xattr_block(ofs))
340
		return true;
341

342 343 344 345 346
	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
			ofs == 5 + 2 * NIDS_PER_BLOCK)
		return false;
	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
		ofs -= 6 + 2 * NIDS_PER_BLOCK;
Z
Zhihui Zhang 已提交
347
		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
348 349 350 351 352
			return false;
	}
	return true;
}

353
static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
354
{
355
	struct f2fs_node *rn = F2FS_NODE(p);
356

357
	f2fs_wait_on_page_writeback(p, NODE, true);
358 359 360 361 362

	if (i)
		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
	else
		rn->in.nid[off] = cpu_to_le32(nid);
363
	return set_page_dirty(p);
364 365 366 367
}

static inline nid_t get_nid(struct page *p, int off, bool i)
{
368 369
	struct f2fs_node *rn = F2FS_NODE(p);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (i)
		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
	return le32_to_cpu(rn->in.nid[off]);
}

/*
 * Coldness identification:
 *  - Mark cold files in f2fs_inode_info
 *  - Mark cold node blocks in their node footer
 *  - Mark cold data pages in page cache
 */
static inline int is_cold_data(struct page *page)
{
	return PageChecked(page);
}

static inline void set_cold_data(struct page *page)
{
	SetPageChecked(page);
}

static inline void clear_cold_data(struct page *page)
{
	ClearPageChecked(page);
}

396
static inline int is_node(struct page *page, int type)
397
{
398
	struct f2fs_node *rn = F2FS_NODE(page);
399
	return le32_to_cpu(rn->footer.flag) & (1 << type);
400 401
}

402 403 404
#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline int is_inline_node(struct page *page)
{
	return PageChecked(page);
}

static inline void set_inline_node(struct page *page)
{
	SetPageChecked(page);
}

static inline void clear_inline_node(struct page *page)
{
	ClearPageChecked(page);
}

421 422
static inline void set_cold_node(struct inode *inode, struct page *page)
{
423
	struct f2fs_node *rn = F2FS_NODE(page);
424 425 426 427 428 429 430 431 432
	unsigned int flag = le32_to_cpu(rn->footer.flag);

	if (S_ISDIR(inode->i_mode))
		flag &= ~(0x1 << COLD_BIT_SHIFT);
	else
		flag |= (0x1 << COLD_BIT_SHIFT);
	rn->footer.flag = cpu_to_le32(flag);
}

433
static inline void set_mark(struct page *page, int mark, int type)
434
{
435
	struct f2fs_node *rn = F2FS_NODE(page);
436 437
	unsigned int flag = le32_to_cpu(rn->footer.flag);
	if (mark)
438
		flag |= (0x1 << type);
439
	else
440
		flag &= ~(0x1 << type);
441 442
	rn->footer.flag = cpu_to_le32(flag);
}
443 444
#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)