at_xdmac.c 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
 *
 * Copyright (C) 2014 Atmel Corporation
 *
 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <asm/barrier.h>
#include <dt-bindings/dma/at91.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm.h>

#include "dmaengine.h"

/* Global registers */
#define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
#define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
#define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
#define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
#define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
#define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
#define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
#define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
#define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
#define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
#define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
#define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
#define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
#define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
#define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
#define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
#define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
#define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
#define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
#define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
#define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */

/* Channel relative registers offsets */
#define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
#define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
#define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
#define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
#define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
#define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
#define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
#define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
#define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
#define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
#define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
#define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
#define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
#define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
#define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
#define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
#define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
#define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
#define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
#define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
#define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
#define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
#define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
#define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
#define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
#define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
#define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
#define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
#define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
#define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
#define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
#define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
#define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
#define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
#define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
#define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
#define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
#define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
#define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
#define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
#define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
#define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
#define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
#define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
#define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
#define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
#define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
#define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
#define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
#define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
#define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
#define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
#define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
#define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
#define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
#define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
#define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
#define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
#define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
#define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
#define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
#define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
#define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
#define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
#define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
#define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
#define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
#define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
#define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
#define		AT_XDMAC_CC_DWIDTH_OFFSET	11
#define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
#define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
#define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
#define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
#define			AT_XDMAC_CC_DWIDTH_WORD		0x2
#define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
#define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
#define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
#define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
#define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
#define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
#define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
#define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
#define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
#define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
#define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
#define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
#define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
#define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
#define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
#define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
#define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
#define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
#define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
#define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
#define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
#define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
#define		AT_XDMAC_CC_PERID(i)	(0x7f & (h) << 24)	/* Channel Peripheral Identifier */
#define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
#define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
#define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */

#define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */

/* Microblock control members */
#define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
#define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
#define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
#define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
#define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
#define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
#define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
#define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */

#define AT_XDMAC_MAX_CHAN	0x20

enum atc_status {
	AT_XDMAC_CHAN_IS_CYCLIC = 0,
	AT_XDMAC_CHAN_IS_PAUSED,
};

/* ----- Channels ----- */
struct at_xdmac_chan {
	struct dma_chan			chan;
	void __iomem			*ch_regs;
	u32				mask;		/* Channel Mask */
	u32				cfg[3];		/* Channel Configuration Register */
	#define	AT_XDMAC_CUR_CFG	0		/* Current channel conf */
	#define	AT_XDMAC_DEV_TO_MEM_CFG	1		/* Predifined dev to mem channel conf */
	#define	AT_XDMAC_MEM_TO_DEV_CFG	2		/* Predifined mem to dev channel conf */
	u8				perid;		/* Peripheral ID */
	u8				perif;		/* Peripheral Interface */
	u8				memif;		/* Memory Interface */
	u32				per_src_addr;
	u32				per_dst_addr;
	u32				save_cim;
	u32				save_cnda;
	u32				save_cndc;
	unsigned long			status;
	struct tasklet_struct		tasklet;

	spinlock_t			lock;

	struct list_head		xfers_list;
	struct list_head		free_descs_list;
};


/* ----- Controller ----- */
struct at_xdmac {
	struct dma_device	dma;
	void __iomem		*regs;
	int			irq;
	struct clk		*clk;
	u32			save_gim;
	u32			save_gs;
	struct dma_pool		*at_xdmac_desc_pool;
	struct at_xdmac_chan	chan[0];
};


/* ----- Descriptors ----- */

/* Linked List Descriptor */
struct at_xdmac_lld {
	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
	u32		mbr_ubc;	/* Microblock Control Member */
	dma_addr_t	mbr_sa;		/* Source Address Member */
	dma_addr_t	mbr_da;		/* Destination Address Member */
	u32		mbr_cfg;	/* Configuration Register */
};


struct at_xdmac_desc {
	struct at_xdmac_lld		lld;
	enum dma_transfer_direction	direction;
	struct dma_async_tx_descriptor	tx_dma_desc;
	struct list_head		desc_node;
	/* Following members are only used by the first descriptor */
	bool				active_xfer;
	unsigned int			xfer_size;
	struct list_head		descs_list;
	struct list_head		xfer_node;
};

static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
{
	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
}

251
#define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
252
#define at_xdmac_write(atxdmac, reg, value) \
253
	writel_relaxed((value), (atxdmac)->regs + (reg))
254

255 256
#define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
#define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
{
	return container_of(dchan, struct at_xdmac_chan, chan);
}

static struct device *chan2dev(struct dma_chan *chan)
{
	return &chan->dev->device;
}

static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
{
	return container_of(ddev, struct at_xdmac, dma);
}

static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
{
	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
}

static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
{
	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
}

static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
{
	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
}

static inline int at_xdmac_csize(u32 maxburst)
{
	int csize;

	csize = ffs(maxburst) - 1;
	if (csize > 4)
		csize = -EINVAL;

	return csize;
};

static inline u8 at_xdmac_get_dwidth(u32 cfg)
{
	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
};

static unsigned int init_nr_desc_per_channel = 64;
module_param(init_nr_desc_per_channel, uint, 0644);
MODULE_PARM_DESC(init_nr_desc_per_channel,
		 "initial descriptors per channel (default: 64)");


static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
{
	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
}

static void at_xdmac_off(struct at_xdmac *atxdmac)
{
	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);

	/* Wait that all chans are disabled. */
	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
		cpu_relax();

	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
}

/* Call with lock hold. */
static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
				struct at_xdmac_desc *first)
{
	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
	u32		reg;

	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);

	if (at_xdmac_chan_is_enabled(atchan))
		return;

	/* Set transfer as active to not try to start it again. */
	first->active_xfer = true;

	/* Tell xdmac where to get the first descriptor. */
	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);

	/*
	 * When doing memory to memory transfer we need to use the next
	 * descriptor view 2 since some fields of the configuration register
	 * depend on transfer size and src/dest addresses.
	 */
	if (is_slave_direction(first->direction)) {
		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
		if (first->direction == DMA_MEM_TO_DEV)
			atchan->cfg[AT_XDMAC_CUR_CFG] =
				atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG];
		else
			atchan->cfg[AT_XDMAC_CUR_CFG] =
				atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG];
		at_xdmac_chan_write(atchan, AT_XDMAC_CC,
				    atchan->cfg[AT_XDMAC_CUR_CFG]);
	} else {
		/*
		 * No need to write AT_XDMAC_CC reg, it will be done when the
		 * descriptor is fecthed.
		 */
		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
	}

	reg |= AT_XDMAC_CNDC_NDDUP
	       | AT_XDMAC_CNDC_NDSUP
	       | AT_XDMAC_CNDC_NDE;
	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);

	dev_vdbg(chan2dev(&atchan->chan),
		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));

	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
	/*
	 * There is no end of list when doing cyclic dma, we need to get
	 * an interrupt after each periods.
	 */
	if (at_xdmac_chan_is_cyclic(atchan))
		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
				    reg | AT_XDMAC_CIE_BIE);
	else
		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
				    reg | AT_XDMAC_CIE_LIE);
	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
	dev_vdbg(chan2dev(&atchan->chan),
		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
	wmb();
	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);

	dev_vdbg(chan2dev(&atchan->chan),
		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));

}

static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
	dma_cookie_t		cookie;

	spin_lock_bh(&atchan->lock);
	cookie = dma_cookie_assign(tx);

	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
		 __func__, atchan, desc);
	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
	if (list_is_singular(&atchan->xfers_list))
		at_xdmac_start_xfer(atchan, desc);

	spin_unlock_bh(&atchan->lock);
	return cookie;
}

static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
						 gfp_t gfp_flags)
{
	struct at_xdmac_desc	*desc;
	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
	dma_addr_t		phys;

	desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
	if (desc) {
		memset(desc, 0, sizeof(*desc));
		INIT_LIST_HEAD(&desc->descs_list);
		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
		desc->tx_dma_desc.phys = phys;
	}

	return desc;
}

/* Call must be protected by lock. */
static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
{
	struct at_xdmac_desc *desc;

	if (list_empty(&atchan->free_descs_list)) {
		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
	} else {
		desc = list_first_entry(&atchan->free_descs_list,
					struct at_xdmac_desc, desc_node);
		list_del(&desc->desc_node);
		desc->active_xfer = false;
	}

	return desc;
}

static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
				       struct of_dma *of_dma)
{
	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
	struct at_xdmac_chan	*atchan;
	struct dma_chan		*chan;
	struct device		*dev = atxdmac->dma.dev;

	if (dma_spec->args_count != 1) {
		dev_err(dev, "dma phandler args: bad number of args\n");
		return NULL;
	}

	chan = dma_get_any_slave_channel(&atxdmac->dma);
	if (!chan) {
		dev_err(dev, "can't get a dma channel\n");
		return NULL;
	}

	atchan = to_at_xdmac_chan(chan);
	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
		 atchan->memif, atchan->perif, atchan->perid);

	return chan;
}

static int at_xdmac_set_slave_config(struct dma_chan *chan,
				      struct dma_slave_config *sconfig)
{
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	u8 dwidth;
	int csize;

	atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG] =
		AT91_XDMAC_DT_PERID(atchan->perid)
		| AT_XDMAC_CC_DAM_INCREMENTED_AM
		| AT_XDMAC_CC_SAM_FIXED_AM
		| AT_XDMAC_CC_DIF(atchan->memif)
		| AT_XDMAC_CC_SIF(atchan->perif)
		| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
		| AT_XDMAC_CC_DSYNC_PER2MEM
		| AT_XDMAC_CC_MBSIZE_SIXTEEN
		| AT_XDMAC_CC_TYPE_PER_TRAN;
	csize = at_xdmac_csize(sconfig->src_maxburst);
	if (csize < 0) {
		dev_err(chan2dev(chan), "invalid src maxburst value\n");
		return -EINVAL;
	}
	atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG] |= AT_XDMAC_CC_CSIZE(csize);
	dwidth = ffs(sconfig->src_addr_width) - 1;
	atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG] |= AT_XDMAC_CC_DWIDTH(dwidth);


	atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG] =
		AT91_XDMAC_DT_PERID(atchan->perid)
		| AT_XDMAC_CC_DAM_FIXED_AM
		| AT_XDMAC_CC_SAM_INCREMENTED_AM
		| AT_XDMAC_CC_DIF(atchan->perif)
		| AT_XDMAC_CC_SIF(atchan->memif)
		| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
		| AT_XDMAC_CC_DSYNC_MEM2PER
		| AT_XDMAC_CC_MBSIZE_SIXTEEN
		| AT_XDMAC_CC_TYPE_PER_TRAN;
	csize = at_xdmac_csize(sconfig->dst_maxburst);
	if (csize < 0) {
		dev_err(chan2dev(chan), "invalid src maxburst value\n");
		return -EINVAL;
	}
	atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG] |= AT_XDMAC_CC_CSIZE(csize);
	dwidth = ffs(sconfig->dst_addr_width) - 1;
	atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG] |= AT_XDMAC_CC_DWIDTH(dwidth);

	/* Src and dst addr are needed to configure the link list descriptor. */
	atchan->per_src_addr = sconfig->src_addr;
	atchan->per_dst_addr = sconfig->dst_addr;

	dev_dbg(chan2dev(chan),
		"%s: cfg[dev2mem]=0x%08x, cfg[mem2dev]=0x%08x, per_src_addr=0x%08x, per_dst_addr=0x%08x\n",
		__func__, atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG],
		atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG],
		atchan->per_src_addr, atchan->per_dst_addr);

	return 0;
}

static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		       unsigned int sg_len, enum dma_transfer_direction direction,
		       unsigned long flags, void *context)
{
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	struct at_xdmac_desc	*first = NULL, *prev = NULL;
	struct scatterlist	*sg;
	int			i;
	u32			cfg;
565
	unsigned int		xfer_size = 0;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

	if (!sgl)
		return NULL;

	if (!is_slave_direction(direction)) {
		dev_err(chan2dev(chan), "invalid DMA direction\n");
		return NULL;
	}

	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
		 __func__, sg_len,
		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
		 flags);

	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
	spin_lock_bh(&atchan->lock);

	/* Prepare descriptors. */
	for_each_sg(sgl, sg, sg_len, i) {
		struct at_xdmac_desc	*desc = NULL;
		u32			len, mem;

		len = sg_dma_len(sg);
		mem = sg_dma_address(sg);
		if (unlikely(!len)) {
			dev_err(chan2dev(chan), "sg data length is zero\n");
			spin_unlock_bh(&atchan->lock);
			return NULL;
		}
		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
			 __func__, i, len, mem);

		desc = at_xdmac_get_desc(atchan);
		if (!desc) {
			dev_err(chan2dev(chan), "can't get descriptor\n");
			if (first)
				list_splice_init(&first->descs_list, &atchan->free_descs_list);
			spin_unlock_bh(&atchan->lock);
			return NULL;
		}

		/* Linked list descriptor setup. */
		if (direction == DMA_DEV_TO_MEM) {
			desc->lld.mbr_sa = atchan->per_src_addr;
			desc->lld.mbr_da = mem;
			cfg = atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG];
		} else {
			desc->lld.mbr_sa = mem;
			desc->lld.mbr_da = atchan->per_dst_addr;
			cfg = atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG];
		}
		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1		/* next descriptor view */
			| AT_XDMAC_MBR_UBC_NDEN				/* next descriptor dst parameter update */
			| AT_XDMAC_MBR_UBC_NSEN				/* next descriptor src parameter update */
			| (i == sg_len - 1 ? 0 : AT_XDMAC_MBR_UBC_NDE)	/* descriptor fetch */
			| len / (1 << at_xdmac_get_dwidth(cfg));	/* microblock length */
		dev_dbg(chan2dev(chan),
623 624
			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
625 626 627 628 629

		/* Chain lld. */
		if (prev) {
			prev->lld.mbr_nda = desc->tx_dma_desc.phys;
			dev_dbg(chan2dev(chan),
630 631
				 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
				 __func__, prev, &prev->lld.mbr_nda);
632 633 634 635 636 637 638 639 640
		}

		prev = desc;
		if (!first)
			first = desc;

		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
			 __func__, desc, first);
		list_add_tail(&desc->desc_node, &first->descs_list);
641
		xfer_size += len;
642 643 644 645 646
	}

	spin_unlock_bh(&atchan->lock);

	first->tx_dma_desc.flags = flags;
647
	first->xfer_size = xfer_size;
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	first->direction = direction;

	return &first->tx_dma_desc;
}

static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
			 size_t buf_len, size_t period_len,
			 enum dma_transfer_direction direction,
			 unsigned long flags)
{
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	struct at_xdmac_desc	*first = NULL, *prev = NULL;
	unsigned int		periods = buf_len / period_len;
	int			i;
	u32			cfg;

665 666
	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
		__func__, &buf_addr, buf_len, period_len,
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);

	if (!is_slave_direction(direction)) {
		dev_err(chan2dev(chan), "invalid DMA direction\n");
		return NULL;
	}

	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
		dev_err(chan2dev(chan), "channel currently used\n");
		return NULL;
	}

	for (i = 0; i < periods; i++) {
		struct at_xdmac_desc	*desc = NULL;

		spin_lock_bh(&atchan->lock);
		desc = at_xdmac_get_desc(atchan);
		if (!desc) {
			dev_err(chan2dev(chan), "can't get descriptor\n");
			if (first)
				list_splice_init(&first->descs_list, &atchan->free_descs_list);
			spin_unlock_bh(&atchan->lock);
			return NULL;
		}
		spin_unlock_bh(&atchan->lock);
		dev_dbg(chan2dev(chan),
693 694
			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
			__func__, desc, &desc->tx_dma_desc.phys);
695 696 697 698 699 700 701 702 703

		if (direction == DMA_DEV_TO_MEM) {
			desc->lld.mbr_sa = atchan->per_src_addr;
			desc->lld.mbr_da = buf_addr + i * period_len;
			cfg = atchan->cfg[AT_XDMAC_DEV_TO_MEM_CFG];
		} else {
			desc->lld.mbr_sa = buf_addr + i * period_len;
			desc->lld.mbr_da = atchan->per_dst_addr;
			cfg = atchan->cfg[AT_XDMAC_MEM_TO_DEV_CFG];
704
		}
705 706 707 708 709 710 711
		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
			| AT_XDMAC_MBR_UBC_NDEN
			| AT_XDMAC_MBR_UBC_NSEN
			| AT_XDMAC_MBR_UBC_NDE
			| period_len >> at_xdmac_get_dwidth(cfg);

		dev_dbg(chan2dev(chan),
712 713
			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
714 715 716 717 718

		/* Chain lld. */
		if (prev) {
			prev->lld.mbr_nda = desc->tx_dma_desc.phys;
			dev_dbg(chan2dev(chan),
719 720
				 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
				 __func__, prev, &prev->lld.mbr_nda);
721 722 723 724 725 726 727 728 729 730 731 732 733
		}

		prev = desc;
		if (!first)
			first = desc;

		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
			 __func__, desc, first);
		list_add_tail(&desc->desc_node, &first->descs_list);
	}

	prev->lld.mbr_nda = first->tx_dma_desc.phys;
	dev_dbg(chan2dev(chan),
734 735
		"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
		__func__, prev, &prev->lld.mbr_nda);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	first->tx_dma_desc.flags = flags;
	first->xfer_size = buf_len;
	first->direction = direction;

	return &first->tx_dma_desc;
}

static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
			 size_t len, unsigned long flags)
{
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	struct at_xdmac_desc	*first = NULL, *prev = NULL;
	size_t			remaining_size = len, xfer_size = 0, ublen;
	dma_addr_t		src_addr = src, dst_addr = dest;
	u32			dwidth;
	/*
	 * WARNING: We don't know the direction, it involves we can't
	 * dynamically set the source and dest interface so we have to use the
	 * same one. Only interface 0 allows EBI access. Hopefully we can
	 * access DDR through both ports (at least on SAMA5D4x), so we can use
	 * the same interface for source and dest, that solves the fact we
	 * don't know the direction.
	 */
	u32			chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM
					| AT_XDMAC_CC_SAM_INCREMENTED_AM
					| AT_XDMAC_CC_DIF(0)
					| AT_XDMAC_CC_SIF(0)
					| AT_XDMAC_CC_MBSIZE_SIXTEEN
					| AT_XDMAC_CC_TYPE_MEM_TRAN;

767 768
	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
		__func__, &src, &dest, len, flags);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

	if (unlikely(!len))
		return NULL;

	/*
	 * Check address alignment to select the greater data width we can use.
	 * Some XDMAC implementations don't provide dword transfer, in this
	 * case selecting dword has the same behavior as selecting word transfers.
	 */
	if (!((src_addr | dst_addr) & 7)) {
		dwidth = AT_XDMAC_CC_DWIDTH_DWORD;
		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
	} else if (!((src_addr | dst_addr)  & 3)) {
		dwidth = AT_XDMAC_CC_DWIDTH_WORD;
		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
	} else if (!((src_addr | dst_addr) & 1)) {
		dwidth = AT_XDMAC_CC_DWIDTH_HALFWORD;
		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
	} else {
		dwidth = AT_XDMAC_CC_DWIDTH_BYTE;
		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
	}

	/* Prepare descriptors. */
	while (remaining_size) {
		struct at_xdmac_desc	*desc = NULL;

796
		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

		spin_lock_bh(&atchan->lock);
		desc = at_xdmac_get_desc(atchan);
		spin_unlock_bh(&atchan->lock);
		if (!desc) {
			dev_err(chan2dev(chan), "can't get descriptor\n");
			if (first)
				list_splice_init(&first->descs_list, &atchan->free_descs_list);
			return NULL;
		}

		/* Update src and dest addresses. */
		src_addr += xfer_size;
		dst_addr += xfer_size;

		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
		else
			xfer_size = remaining_size;

817
		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

		/* Check remaining length and change data width if needed. */
		if (!((src_addr | dst_addr | xfer_size) & 7)) {
			dwidth = AT_XDMAC_CC_DWIDTH_DWORD;
			dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
		} else if (!((src_addr | dst_addr | xfer_size)  & 3)) {
			dwidth = AT_XDMAC_CC_DWIDTH_WORD;
			dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
		} else if (!((src_addr | dst_addr | xfer_size) & 1)) {
			dwidth = AT_XDMAC_CC_DWIDTH_HALFWORD;
			dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
		} else if ((src_addr | dst_addr | xfer_size) & 1) {
			dwidth = AT_XDMAC_CC_DWIDTH_BYTE;
			dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
		}
		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);

		ublen = xfer_size >> dwidth;
		remaining_size -= xfer_size;

		desc->lld.mbr_sa = src_addr;
		desc->lld.mbr_da = dst_addr;
		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
			| AT_XDMAC_MBR_UBC_NDEN
			| AT_XDMAC_MBR_UBC_NSEN
			| (remaining_size ? AT_XDMAC_MBR_UBC_NDE : 0)
			| ublen;
		desc->lld.mbr_cfg = chan_cc;

		dev_dbg(chan2dev(chan),
848 849
			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

		/* Chain lld. */
		if (prev) {
			prev->lld.mbr_nda = desc->tx_dma_desc.phys;
			dev_dbg(chan2dev(chan),
				 "%s: chain lld: prev=0x%p, mbr_nda=0x%08x\n",
				 __func__, prev, prev->lld.mbr_nda);
		}

		prev = desc;
		if (!first)
			first = desc;

		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
			 __func__, desc, first);
		list_add_tail(&desc->desc_node, &first->descs_list);
	}

	first->tx_dma_desc.flags = flags;
	first->xfer_size = len;

	return &first->tx_dma_desc;
}

static enum dma_status
at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
		struct dma_tx_state *txstate)
{
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
	struct at_xdmac_desc	*desc, *_desc;
	struct list_head	*descs_list;
	enum dma_status		ret;
	int			residue;
884
	u32			cur_nda, mask, value;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	u8			dwidth = at_xdmac_get_dwidth(atchan->cfg[AT_XDMAC_CUR_CFG]);

	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_COMPLETE)
		return ret;

	if (!txstate)
		return ret;

	spin_lock_bh(&atchan->lock);

	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);

	/*
	 * If the transfer has not been started yet, don't need to compute the
	 * residue, it's the transfer length.
	 */
	if (!desc->active_xfer) {
		dma_set_residue(txstate, desc->xfer_size);
		return ret;
	}

	residue = desc->xfer_size;
908 909 910 911 912 913 914 915 916 917 918
	/*
	 * Flush FIFO: only relevant when the transfer is source peripheral
	 * synchronized.
	 */
	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
	if ((atchan->cfg[AT_XDMAC_CUR_CFG] & mask) == value) {
		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
			cpu_relax();
	}
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

	cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
	/*
	 * Remove size of all microblocks already transferred and the current
	 * one. Then add the remaining size to transfer of the current
	 * microblock.
	 */
	descs_list = &desc->descs_list;
	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
			break;
	}
	residue += at_xdmac_chan_read(atchan, AT_XDMAC_CUBC) << dwidth;

	spin_unlock_bh(&atchan->lock);

	dma_set_residue(txstate, residue);

	dev_dbg(chan2dev(chan),
939 940
		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	return ret;
}

/* Call must be protected by lock. */
static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
				    struct at_xdmac_desc *desc)
{
	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);

	/*
	 * Remove the transfer from the transfer list then move the transfer
	 * descriptors into the free descriptors list.
	 */
	list_del(&desc->xfer_node);
	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
}

static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
{
	struct at_xdmac_desc	*desc;

	spin_lock_bh(&atchan->lock);

	/*
	 * If channel is enabled, do nothing, advance_work will be triggered
	 * after the interruption.
	 */
	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
		desc = list_first_entry(&atchan->xfers_list,
					struct at_xdmac_desc,
					xfer_node);
		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
		if (!desc->active_xfer)
			at_xdmac_start_xfer(atchan, desc);
	}

	spin_unlock_bh(&atchan->lock);
}

static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
{
	struct at_xdmac_desc		*desc;
	struct dma_async_tx_descriptor	*txd;

	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
	txd = &desc->tx_dma_desc;

	if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
		txd->callback(txd->callback_param);
}

static void at_xdmac_tasklet(unsigned long data)
{
	struct at_xdmac_chan	*atchan = (struct at_xdmac_chan *)data;
	struct at_xdmac_desc	*desc;
	u32			error_mask;

	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
		 __func__, atchan->status);

	error_mask = AT_XDMAC_CIS_RBEIS
		     | AT_XDMAC_CIS_WBEIS
		     | AT_XDMAC_CIS_ROIS;

	if (at_xdmac_chan_is_cyclic(atchan)) {
		at_xdmac_handle_cyclic(atchan);
	} else if ((atchan->status & AT_XDMAC_CIS_LIS)
		   || (atchan->status & error_mask)) {
		struct dma_async_tx_descriptor  *txd;

		if (atchan->status & AT_XDMAC_CIS_RBEIS)
			dev_err(chan2dev(&atchan->chan), "read bus error!!!");
		if (atchan->status & AT_XDMAC_CIS_WBEIS)
			dev_err(chan2dev(&atchan->chan), "write bus error!!!");
		if (atchan->status & AT_XDMAC_CIS_ROIS)
			dev_err(chan2dev(&atchan->chan), "request overflow error!!!");

		spin_lock_bh(&atchan->lock);
		desc = list_first_entry(&atchan->xfers_list,
					struct at_xdmac_desc,
					xfer_node);
		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
		BUG_ON(!desc->active_xfer);

		txd = &desc->tx_dma_desc;

		at_xdmac_remove_xfer(atchan, desc);
		spin_unlock_bh(&atchan->lock);

		if (!at_xdmac_chan_is_cyclic(atchan)) {
			dma_cookie_complete(txd);
			if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
				txd->callback(txd->callback_param);
		}

		dma_run_dependencies(txd);

		at_xdmac_advance_work(atchan);
	}
}

static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
{
	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
	struct at_xdmac_chan	*atchan;
	u32			imr, status, pending;
	u32			chan_imr, chan_status;
	int			i, ret = IRQ_NONE;

	do {
		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
		pending = status & imr;

		dev_vdbg(atxdmac->dma.dev,
			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
			 __func__, status, imr, pending);

		if (!pending)
			break;

		/* We have to find which channel has generated the interrupt. */
		for (i = 0; i < atxdmac->dma.chancnt; i++) {
			if (!((1 << i) & pending))
				continue;

			atchan = &atxdmac->chan[i];
			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
			atchan->status = chan_status & chan_imr;
			dev_vdbg(atxdmac->dma.dev,
				 "%s: chan%d: imr=0x%x, status=0x%x\n",
				 __func__, i, chan_imr, chan_status);
			dev_vdbg(chan2dev(&atchan->chan),
				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
				 __func__,
				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));

			if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);

			tasklet_schedule(&atchan->tasklet);
			ret = IRQ_HANDLED;
		}

	} while (pending);

	return ret;
}

static void at_xdmac_issue_pending(struct dma_chan *chan)
{
	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);

	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);

	if (!at_xdmac_chan_is_cyclic(atchan))
		at_xdmac_advance_work(atchan);

	return;
}

static int at_xdmac_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			    unsigned long arg)
{
	struct at_xdmac_desc	*desc, *_desc;
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
	int			ret = 0;

	dev_dbg(chan2dev(chan), "%s: cmd=%d\n", __func__, cmd);

	spin_lock_bh(&atchan->lock);

	switch (cmd) {
	case DMA_PAUSE:
		at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
		set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
		break;

	case DMA_RESUME:
		if (!at_xdmac_chan_is_paused(atchan))
			break;

		at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
		clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
		break;

	case DMA_TERMINATE_ALL:
		at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
		while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
			cpu_relax();

		/* Cancel all pending transfers. */
		list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
			at_xdmac_remove_xfer(atchan, desc);

		clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
		break;

	case DMA_SLAVE_CONFIG:
		ret = at_xdmac_set_slave_config(chan,
				(struct dma_slave_config *)arg);
		break;

	default:
		dev_err(chan2dev(chan),
			"unmanaged or unknown dma control cmd: %d\n", cmd);
		ret = -ENXIO;
	}

	spin_unlock_bh(&atchan->lock);

	return ret;
}

static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
{
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	struct at_xdmac_desc	*desc;
	int			i;

	spin_lock_bh(&atchan->lock);

	if (at_xdmac_chan_is_enabled(atchan)) {
		dev_err(chan2dev(chan),
			"can't allocate channel resources (channel enabled)\n");
		i = -EIO;
		goto spin_unlock;
	}

	if (!list_empty(&atchan->free_descs_list)) {
		dev_err(chan2dev(chan),
			"can't allocate channel resources (channel not free from a previous use)\n");
		i = -EIO;
		goto spin_unlock;
	}

	for (i = 0; i < init_nr_desc_per_channel; i++) {
		desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
		if (!desc) {
			dev_warn(chan2dev(chan),
				"only %d descriptors have been allocated\n", i);
			break;
		}
		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
	}

	dma_cookie_init(chan);

	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);

spin_unlock:
	spin_unlock_bh(&atchan->lock);
	return i;
}

static void at_xdmac_free_chan_resources(struct dma_chan *chan)
{
	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
	struct at_xdmac_desc	*desc, *_desc;

	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
		list_del(&desc->desc_node);
		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
	}

	return;
}

#define AT_XDMAC_DMA_BUSWIDTHS\
	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))

static int at_xdmac_device_slave_caps(struct dma_chan *dchan,
				      struct dma_slave_caps *caps)
{

	caps->src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
	caps->dstn_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	caps->cmd_pause = true;
	caps->cmd_terminate = true;
	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	return 0;
}

#ifdef CONFIG_PM
static int atmel_xdmac_prepare(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
	struct dma_chan		*chan, *_chan;

	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);

		/* Wait for transfer completion, except in cyclic case. */
		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
			return -EAGAIN;
	}
	return 0;
}
#else
#	define atmel_xdmac_prepare NULL
#endif

#ifdef CONFIG_PM_SLEEP
static int atmel_xdmac_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
	struct dma_chan		*chan, *_chan;

	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);

		if (at_xdmac_chan_is_cyclic(atchan)) {
			if (!at_xdmac_chan_is_paused(atchan))
				at_xdmac_control(chan, DMA_PAUSE, 0);
			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
		}
	}
	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);

	at_xdmac_off(atxdmac);
	clk_disable_unprepare(atxdmac->clk);
	return 0;
}

static int atmel_xdmac_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
	struct at_xdmac_chan	*atchan;
	struct dma_chan		*chan, *_chan;
	int			i;
	u32			cfg;

	clk_prepare_enable(atxdmac->clk);

	/* Clear pending interrupts. */
	for (i = 0; i < atxdmac->dma.chancnt; i++) {
		atchan = &atxdmac->chan[i];
		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
			cpu_relax();
	}

	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
	at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs);
	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
		atchan = to_at_xdmac_chan(chan);
		cfg = atchan->cfg[AT_XDMAC_CUR_CFG];
		at_xdmac_chan_write(atchan, AT_XDMAC_CC, cfg);
		if (at_xdmac_chan_is_cyclic(atchan)) {
			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
			wmb();
			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
		}
	}
	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static int at_xdmac_probe(struct platform_device *pdev)
{
	struct resource	*res;
	struct at_xdmac	*atxdmac;
	int		irq, size, nr_channels, i, ret;
	void __iomem	*base;
	u32		reg;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -EINVAL;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	/*
	 * Read number of xdmac channels, read helper function can't be used
	 * since atxdmac is not yet allocated and we need to know the number
	 * of channels to do the allocation.
	 */
	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
	nr_channels = AT_XDMAC_NB_CH(reg);
	if (nr_channels > AT_XDMAC_MAX_CHAN) {
		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
			nr_channels);
		return -EINVAL;
	}

	size = sizeof(*atxdmac);
	size += nr_channels * sizeof(struct at_xdmac_chan);
	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
	if (!atxdmac) {
		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
		return -ENOMEM;
	}

	atxdmac->regs = base;
	atxdmac->irq = irq;

	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
	if (IS_ERR(atxdmac->clk)) {
		dev_err(&pdev->dev, "can't get dma_clk\n");
		return PTR_ERR(atxdmac->clk);
	}

	/* Do not use dev res to prevent races with tasklet */
	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
	if (ret) {
		dev_err(&pdev->dev, "can't request irq\n");
		return ret;
	}

	ret = clk_prepare_enable(atxdmac->clk);
	if (ret) {
		dev_err(&pdev->dev, "can't prepare or enable clock\n");
		goto err_free_irq;
	}

	atxdmac->at_xdmac_desc_pool =
		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
				sizeof(struct at_xdmac_desc), 4, 0);
	if (!atxdmac->at_xdmac_desc_pool) {
		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
		ret = -ENOMEM;
		goto err_clk_disable;
	}

	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
	atxdmac->dma.dev				= &pdev->dev;
	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
	atxdmac->dma.device_control			= at_xdmac_control;
	atxdmac->dma.device_slave_caps			= at_xdmac_device_slave_caps;

	/* Disable all chans and interrupts. */
	at_xdmac_off(atxdmac);

	/* Init channels. */
	INIT_LIST_HEAD(&atxdmac->dma.channels);
	for (i = 0; i < nr_channels; i++) {
		struct at_xdmac_chan *atchan = &atxdmac->chan[i];

		atchan->chan.device = &atxdmac->dma;
		list_add_tail(&atchan->chan.device_node,
			      &atxdmac->dma.channels);

		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
		atchan->mask = 1 << i;

		spin_lock_init(&atchan->lock);
		INIT_LIST_HEAD(&atchan->xfers_list);
		INIT_LIST_HEAD(&atchan->free_descs_list);
		tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
			     (unsigned long)atchan);

		/* Clear pending interrupts. */
		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
			cpu_relax();
	}
	platform_set_drvdata(pdev, atxdmac);

	ret = dma_async_device_register(&atxdmac->dma);
	if (ret) {
		dev_err(&pdev->dev, "fail to register DMA engine device\n");
		goto err_clk_disable;
	}

	ret = of_dma_controller_register(pdev->dev.of_node,
					 at_xdmac_xlate, atxdmac);
	if (ret) {
		dev_err(&pdev->dev, "could not register of dma controller\n");
		goto err_dma_unregister;
	}

	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
		 nr_channels, atxdmac->regs);

	return 0;

err_dma_unregister:
	dma_async_device_unregister(&atxdmac->dma);
err_clk_disable:
	clk_disable_unprepare(atxdmac->clk);
err_free_irq:
	free_irq(atxdmac->irq, atxdmac->dma.dev);
	return ret;
}

static int at_xdmac_remove(struct platform_device *pdev)
{
	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
	int		i;

	at_xdmac_off(atxdmac);
	of_dma_controller_free(pdev->dev.of_node);
	dma_async_device_unregister(&atxdmac->dma);
	clk_disable_unprepare(atxdmac->clk);

	synchronize_irq(atxdmac->irq);

	free_irq(atxdmac->irq, atxdmac->dma.dev);

	for (i = 0; i < atxdmac->dma.chancnt; i++) {
		struct at_xdmac_chan *atchan = &atxdmac->chan[i];

		tasklet_kill(&atchan->tasklet);
		at_xdmac_free_chan_resources(&atchan->chan);
	}

	return 0;
}

static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
	.prepare	= atmel_xdmac_prepare,
	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
};

static const struct of_device_id atmel_xdmac_dt_ids[] = {
	{
		.compatible = "atmel,sama5d4-dma",
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);

static struct platform_driver at_xdmac_driver = {
	.probe		= at_xdmac_probe,
	.remove		= at_xdmac_remove,
	.driver = {
		.name		= "at_xdmac",
		.owner		= THIS_MODULE,
		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
		.pm		= &atmel_xdmac_dev_pm_ops,
	}
};

static int __init at_xdmac_init(void)
{
	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
}
subsys_initcall(at_xdmac_init);

MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
MODULE_LICENSE("GPL");