sa11x0-dma.c 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * SA11x0 DMAengine support
 *
 * Copyright (C) 2012 Russell King
 *   Derived in part from arch/arm/mach-sa1100/dma.c,
 *   Copyright (C) 2000, 2001 by Nicolas Pitre
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sa11x0-dma.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

24 25
#include "virt-dma.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#define NR_PHY_CHAN	6
#define DMA_ALIGN	3
#define DMA_MAX_SIZE	0x1fff
#define DMA_CHUNK_SIZE	0x1000

#define DMA_DDAR	0x00
#define DMA_DCSR_S	0x04
#define DMA_DCSR_C	0x08
#define DMA_DCSR_R	0x0c
#define DMA_DBSA	0x10
#define DMA_DBTA	0x14
#define DMA_DBSB	0x18
#define DMA_DBTB	0x1c
#define DMA_SIZE	0x20

#define DCSR_RUN	(1 << 0)
#define DCSR_IE		(1 << 1)
#define DCSR_ERROR	(1 << 2)
#define DCSR_DONEA	(1 << 3)
#define DCSR_STRTA	(1 << 4)
#define DCSR_DONEB	(1 << 5)
#define DCSR_STRTB	(1 << 6)
#define DCSR_BIU	(1 << 7)

#define DDAR_RW		(1 << 0)	/* 0 = W, 1 = R */
#define DDAR_E		(1 << 1)	/* 0 = LE, 1 = BE */
#define DDAR_BS		(1 << 2)	/* 0 = BS4, 1 = BS8 */
#define DDAR_DW		(1 << 3)	/* 0 = 8b, 1 = 16b */
#define DDAR_Ser0UDCTr	(0x0 << 4)
#define DDAR_Ser0UDCRc	(0x1 << 4)
#define DDAR_Ser1SDLCTr	(0x2 << 4)
#define DDAR_Ser1SDLCRc	(0x3 << 4)
#define DDAR_Ser1UARTTr	(0x4 << 4)
#define DDAR_Ser1UARTRc	(0x5 << 4)
#define DDAR_Ser2ICPTr	(0x6 << 4)
#define DDAR_Ser2ICPRc	(0x7 << 4)
#define DDAR_Ser3UARTTr	(0x8 << 4)
#define DDAR_Ser3UARTRc	(0x9 << 4)
#define DDAR_Ser4MCP0Tr	(0xa << 4)
#define DDAR_Ser4MCP0Rc	(0xb << 4)
#define DDAR_Ser4MCP1Tr	(0xc << 4)
#define DDAR_Ser4MCP1Rc	(0xd << 4)
#define DDAR_Ser4SSPTr	(0xe << 4)
#define DDAR_Ser4SSPRc	(0xf << 4)

struct sa11x0_dma_sg {
	u32			addr;
	u32			len;
};

struct sa11x0_dma_desc {
77 78
	struct virt_dma_desc	vd;

79 80 81 82 83 84 85 86 87 88
	u32			ddar;
	size_t			size;

	unsigned		sglen;
	struct sa11x0_dma_sg	sg[0];
};

struct sa11x0_dma_phy;

struct sa11x0_dma_chan {
89
	struct virt_dma_chan	vc;
90

91
	/* protected by c->vc.lock */
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	struct sa11x0_dma_phy	*phy;
	enum dma_status		status;

	/* protected by d->lock */
	struct list_head	node;

	u32			ddar;
	const char		*name;
};

struct sa11x0_dma_phy {
	void __iomem		*base;
	struct sa11x0_dma_dev	*dev;
	unsigned		num;

	struct sa11x0_dma_chan	*vchan;

109
	/* Protected by c->vc.lock */
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	unsigned		sg_load;
	struct sa11x0_dma_desc	*txd_load;
	unsigned		sg_done;
	struct sa11x0_dma_desc	*txd_done;
#ifdef CONFIG_PM_SLEEP
	u32			dbs[2];
	u32			dbt[2];
	u32			dcsr;
#endif
};

struct sa11x0_dma_dev {
	struct dma_device	slave;
	void __iomem		*base;
	spinlock_t		lock;
	struct tasklet_struct	task;
	struct list_head	chan_pending;
	struct sa11x0_dma_phy	phy[NR_PHY_CHAN];
};

static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
{
132
	return container_of(chan, struct sa11x0_dma_chan, vc.chan);
133 134 135 136 137 138 139
}

static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
{
	return container_of(dmadev, struct sa11x0_dma_dev, slave);
}

140
static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
141
{
142 143 144
	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);

	return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL;
145 146
}

147
static void sa11x0_dma_free_desc(struct virt_dma_desc *vd)
148
{
149
	kfree(container_of(vd, struct sa11x0_dma_desc, vd));
150 151 152 153
}

static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
{
154
	list_del(&txd->vd.node);
155 156 157 158
	p->txd_load = txd;
	p->sg_load = 0;

	dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
159
		p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar);
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
}

static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
	struct sa11x0_dma_chan *c)
{
	struct sa11x0_dma_desc *txd = p->txd_load;
	struct sa11x0_dma_sg *sg;
	void __iomem *base = p->base;
	unsigned dbsx, dbtx;
	u32 dcsr;

	if (!txd)
		return;

	dcsr = readl_relaxed(base + DMA_DCSR_R);

	/* Don't try to load the next transfer if both buffers are started */
	if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
		return;

	if (p->sg_load == txd->sglen) {
		struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);

		/*
		 * We have reached the end of the current descriptor.
		 * Peek at the next descriptor, and if compatible with
		 * the current, start processing it.
		 */
		if (txn && txn->ddar == txd->ddar) {
			txd = txn;
			sa11x0_dma_start_desc(p, txn);
		} else {
			p->txd_load = NULL;
			return;
		}
	}

	sg = &txd->sg[p->sg_load++];

	/* Select buffer to load according to channel status */
	if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
	    ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
		dbsx = DMA_DBSA;
		dbtx = DMA_DBTA;
		dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
	} else {
		dbsx = DMA_DBSB;
		dbtx = DMA_DBTB;
		dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
	}

	writel_relaxed(sg->addr, base + dbsx);
	writel_relaxed(sg->len, base + dbtx);
	writel(dcsr, base + DMA_DCSR_S);

	dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
		p->num, dcsr,
		'A' + (dbsx == DMA_DBSB), sg->addr,
		'A' + (dbtx == DMA_DBTB), sg->len);
}

static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
	struct sa11x0_dma_chan *c)
{
	struct sa11x0_dma_desc *txd = p->txd_done;

	if (++p->sg_done == txd->sglen) {
227
		vchan_cookie_complete(&txd->vd);
228 229 230 231

		p->sg_done = 0;
		p->txd_done = p->txd_load;

232 233
		if (!p->txd_done)
			tasklet_schedule(&p->dev->task);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	}

	sa11x0_dma_start_sg(p, c);
}

static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
{
	struct sa11x0_dma_phy *p = dev_id;
	struct sa11x0_dma_dev *d = p->dev;
	struct sa11x0_dma_chan *c;
	u32 dcsr;

	dcsr = readl_relaxed(p->base + DMA_DCSR_R);
	if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
		return IRQ_NONE;

	/* Clear reported status bits */
	writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
		p->base + DMA_DCSR_C);

	dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);

	if (dcsr & DCSR_ERROR) {
		dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
			p->num, dcsr,
			readl_relaxed(p->base + DMA_DDAR),
			readl_relaxed(p->base + DMA_DBSA),
			readl_relaxed(p->base + DMA_DBTA),
			readl_relaxed(p->base + DMA_DBSB),
			readl_relaxed(p->base + DMA_DBTB));
	}

	c = p->vchan;
	if (c) {
		unsigned long flags;

270
		spin_lock_irqsave(&c->vc.lock, flags);
271 272 273 274 275 276 277 278 279 280 281 282 283
		/*
		 * Now that we're holding the lock, check that the vchan
		 * really is associated with this pchan before touching the
		 * hardware.  This should always succeed, because we won't
		 * change p->vchan or c->phy while the channel is actively
		 * transferring.
		 */
		if (c->phy == p) {
			if (dcsr & DCSR_DONEA)
				sa11x0_dma_complete(p, c);
			if (dcsr & DCSR_DONEB)
				sa11x0_dma_complete(p, c);
		}
284
		spin_unlock_irqrestore(&c->vc.lock, flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	}

	return IRQ_HANDLED;
}

static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
{
	struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);

	/* If the issued list is empty, we have no further txds to process */
	if (txd) {
		struct sa11x0_dma_phy *p = c->phy;

		sa11x0_dma_start_desc(p, txd);
		p->txd_done = txd;
		p->sg_done = 0;

		/* The channel should not have any transfers started */
		WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
				      (DCSR_STRTA | DCSR_STRTB));

		/* Clear the run and start bits before changing DDAR */
		writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
			       p->base + DMA_DCSR_C);
		writel_relaxed(txd->ddar, p->base + DMA_DDAR);

		/* Try to start both buffers */
		sa11x0_dma_start_sg(p, c);
		sa11x0_dma_start_sg(p, c);
	}
}

static void sa11x0_dma_tasklet(unsigned long arg)
{
	struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
	struct sa11x0_dma_phy *p;
	struct sa11x0_dma_chan *c;
	unsigned pch, pch_alloc = 0;

	dev_dbg(d->slave.dev, "tasklet enter\n");

326 327
	list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) {
		spin_lock_irq(&c->vc.lock);
328
		p = c->phy;
329 330
		if (p && !p->txd_done) {
			sa11x0_dma_start_txd(c);
331 332 333 334 335 336 337 338 339
			if (!p->txd_done) {
				/* No current txd associated with this channel */
				dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);

				/* Mark this channel free */
				c->phy = NULL;
				p->vchan = NULL;
			}
		}
340
		spin_unlock_irq(&c->vc.lock);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	}

	spin_lock_irq(&d->lock);
	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
		p = &d->phy[pch];

		if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
			c = list_first_entry(&d->chan_pending,
				struct sa11x0_dma_chan, node);
			list_del_init(&c->node);

			pch_alloc |= 1 << pch;

			/* Mark this channel allocated */
			p->vchan = c;

357
			dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
358 359 360 361 362 363 364 365 366
		}
	}
	spin_unlock_irq(&d->lock);

	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
		if (pch_alloc & (1 << pch)) {
			p = &d->phy[pch];
			c = p->vchan;

367
			spin_lock_irq(&c->vc.lock);
368 369 370
			c->phy = p;

			sa11x0_dma_start_txd(c);
371
			spin_unlock_irq(&c->vc.lock);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
		}
	}

	dev_dbg(d->slave.dev, "tasklet exit\n");
}


static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
{
	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
	unsigned long flags;

390
	spin_lock_irqsave(&d->lock, flags);
391
	list_del_init(&c->node);
392
	spin_unlock_irqrestore(&d->lock, flags);
393

394
	vchan_free_chan_resources(&c->vc);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
}

static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
{
	unsigned reg;
	u32 dcsr;

	dcsr = readl_relaxed(p->base + DMA_DCSR_R);

	if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
	    (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
		reg = DMA_DBSA;
	else
		reg = DMA_DBSB;

	return readl_relaxed(p->base + reg);
}

static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
	dma_cookie_t cookie, struct dma_tx_state *state)
{
	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
	struct sa11x0_dma_phy *p;
	struct sa11x0_dma_desc *txd;
	unsigned long flags;
	enum dma_status ret;
	size_t bytes = 0;

424 425
	ret = dma_cookie_status(&c->vc.chan, cookie, state);
	if (ret == DMA_SUCCESS)
426 427
		return ret;

428
	spin_lock_irqsave(&c->vc.lock, flags);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	p = c->phy;
	ret = c->status;
	if (p) {
		dma_addr_t addr = sa11x0_dma_pos(p);

		dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);

		txd = p->txd_done;
		if (txd) {
			unsigned i;

			for (i = 0; i < txd->sglen; i++) {
				dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
					i, txd->sg[i].addr, txd->sg[i].len);
				if (addr >= txd->sg[i].addr &&
				    addr < txd->sg[i].addr + txd->sg[i].len) {
					unsigned len;

					len = txd->sg[i].len -
						(addr - txd->sg[i].addr);
					dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
						i, len);
					bytes += len;
					i++;
					break;
				}
			}
			for (; i < txd->sglen; i++) {
				dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
					i, txd->sg[i].addr, txd->sg[i].len);
				bytes += txd->sg[i].len;
			}
		}
		if (txd != p->txd_load && p->txd_load)
			bytes += p->txd_load->size;
	}
465
	list_for_each_entry(txd, &c->vc.desc_issued, vd.node) {
466 467
		bytes += txd->size;
	}
468
	spin_unlock_irqrestore(&c->vc.lock, flags);
469

470 471
	if (state)
		state->residue = bytes;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

	dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", bytes);

	return ret;
}

/*
 * Move pending txds to the issued list, and re-init pending list.
 * If not already pending, add this channel to the list of pending
 * channels and trigger the tasklet to run.
 */
static void sa11x0_dma_issue_pending(struct dma_chan *chan)
{
	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
	unsigned long flags;

489 490 491 492 493 494 495 496 497 498
	spin_lock_irqsave(&c->vc.lock, flags);
	if (vchan_issue_pending(&c->vc)) {
		if (!c->phy) {
			spin_lock(&d->lock);
			if (list_empty(&c->node)) {
				list_add_tail(&c->node, &d->chan_pending);
				tasklet_schedule(&d->task);
				dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
			}
			spin_unlock(&d->lock);
499 500
		}
	} else
501 502
		dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
	spin_unlock_irqrestore(&c->vc.lock, flags);
503 504 505 506
}

static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
507
	enum dma_transfer_direction dir, unsigned long flags, void *context)
508 509 510 511 512 513 514 515 516 517
{
	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
	struct sa11x0_dma_desc *txd;
	struct scatterlist *sgent;
	unsigned i, j = sglen;
	size_t size = 0;

	/* SA11x0 channels can only operate in their native direction */
	if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
		dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
518
			&c->vc, c->ddar, dir);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		return NULL;
	}

	/* Do not allow zero-sized txds */
	if (sglen == 0)
		return NULL;

	for_each_sg(sg, sgent, sglen, i) {
		dma_addr_t addr = sg_dma_address(sgent);
		unsigned int len = sg_dma_len(sgent);

		if (len > DMA_MAX_SIZE)
			j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
		if (addr & DMA_ALIGN) {
			dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
534
				&c->vc, addr);
535 536 537 538 539 540
			return NULL;
		}
	}

	txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
	if (!txd) {
541
		dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		return NULL;
	}

	j = 0;
	for_each_sg(sg, sgent, sglen, i) {
		dma_addr_t addr = sg_dma_address(sgent);
		unsigned len = sg_dma_len(sgent);

		size += len;

		do {
			unsigned tlen = len;

			/*
			 * Check whether the transfer will fit.  If not, try
			 * to split the transfer up such that we end up with
			 * equal chunks - but make sure that we preserve the
			 * alignment.  This avoids small segments.
			 */
			if (tlen > DMA_MAX_SIZE) {
				unsigned mult = DIV_ROUND_UP(tlen,
					DMA_MAX_SIZE & ~DMA_ALIGN);

				tlen = (tlen / mult) & ~DMA_ALIGN;
			}

			txd->sg[j].addr = addr;
			txd->sg[j].len = tlen;

			addr += tlen;
			len -= tlen;
			j++;
		} while (len);
	}

	txd->ddar = c->ddar;
	txd->size = size;
	txd->sglen = j;

	dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
582
		&c->vc, &txd->vd, txd->size, txd->sglen);
583

584
	return vchan_tx_prep(&c->vc, &txd->vd, flags);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
}

static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
{
	u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
	dma_addr_t addr;
	enum dma_slave_buswidth width;
	u32 maxburst;

	if (ddar & DDAR_RW) {
		addr = cfg->src_addr;
		width = cfg->src_addr_width;
		maxburst = cfg->src_maxburst;
	} else {
		addr = cfg->dst_addr;
		width = cfg->dst_addr_width;
		maxburst = cfg->dst_maxburst;
	}

	if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
	     width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
	    (maxburst != 4 && maxburst != 8))
		return -EINVAL;

	if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
		ddar |= DDAR_DW;
	if (maxburst == 8)
		ddar |= DDAR_BS;

614 615
	dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
		&c->vc, addr, width, maxburst);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

	c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;

	return 0;
}

static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
	unsigned long arg)
{
	struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
	struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
	struct sa11x0_dma_phy *p;
	LIST_HEAD(head);
	unsigned long flags;
	int ret;

	switch (cmd) {
	case DMA_SLAVE_CONFIG:
		return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);

	case DMA_TERMINATE_ALL:
637
		dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
638
		/* Clear the tx descriptor lists */
639 640
		spin_lock_irqsave(&c->vc.lock, flags);
		vchan_get_all_descriptors(&c->vc, &head);
641 642 643 644 645 646 647 648 649 650 651 652

		p = c->phy;
		if (p) {
			dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
			/* vchan is assigned to a pchan - stop the channel */
			writel(DCSR_RUN | DCSR_IE |
				DCSR_STRTA | DCSR_DONEA |
				DCSR_STRTB | DCSR_DONEB,
				p->base + DMA_DCSR_C);

			if (p->txd_load) {
				if (p->txd_load != p->txd_done)
653
					list_add_tail(&p->txd_load->vd.node, &head);
654 655 656
				p->txd_load = NULL;
			}
			if (p->txd_done) {
657
				list_add_tail(&p->txd_done->vd.node, &head);
658 659 660 661 662 663 664 665
				p->txd_done = NULL;
			}
			c->phy = NULL;
			spin_lock(&d->lock);
			p->vchan = NULL;
			spin_unlock(&d->lock);
			tasklet_schedule(&d->task);
		}
666 667
		spin_unlock_irqrestore(&c->vc.lock, flags);
		vchan_dma_desc_free_list(&c->vc, &head);
668 669 670 671
		ret = 0;
		break;

	case DMA_PAUSE:
672 673
		dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
		spin_lock_irqsave(&c->vc.lock, flags);
674 675 676 677 678 679 680 681 682 683 684 685
		if (c->status == DMA_IN_PROGRESS) {
			c->status = DMA_PAUSED;

			p = c->phy;
			if (p) {
				writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
			} else {
				spin_lock(&d->lock);
				list_del_init(&c->node);
				spin_unlock(&d->lock);
			}
		}
686
		spin_unlock_irqrestore(&c->vc.lock, flags);
687 688 689 690
		ret = 0;
		break;

	case DMA_RESUME:
691 692
		dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
		spin_lock_irqsave(&c->vc.lock, flags);
693 694 695 696 697 698
		if (c->status == DMA_PAUSED) {
			c->status = DMA_IN_PROGRESS;

			p = c->phy;
			if (p) {
				writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
699
			} else if (!list_empty(&c->vc.desc_issued)) {
700 701 702 703 704
				spin_lock(&d->lock);
				list_add_tail(&c->node, &d->chan_pending);
				spin_unlock(&d->lock);
			}
		}
705
		spin_unlock_irqrestore(&c->vc.lock, flags);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		ret = 0;
		break;

	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

struct sa11x0_dma_channel_desc {
	u32 ddar;
	const char *name;
};

#define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
static const struct sa11x0_dma_channel_desc chan_desc[] = {
	CD(Ser0UDCTr, 0),
	CD(Ser0UDCRc, DDAR_RW),
	CD(Ser1SDLCTr, 0),
	CD(Ser1SDLCRc, DDAR_RW),
	CD(Ser1UARTTr, 0),
	CD(Ser1UARTRc, DDAR_RW),
	CD(Ser2ICPTr, 0),
	CD(Ser2ICPRc, DDAR_RW),
	CD(Ser3UARTTr, 0),
	CD(Ser3UARTRc, DDAR_RW),
	CD(Ser4MCP0Tr, 0),
	CD(Ser4MCP0Rc, DDAR_RW),
	CD(Ser4MCP1Tr, 0),
	CD(Ser4MCP1Rc, DDAR_RW),
	CD(Ser4SSPTr, 0),
	CD(Ser4SSPRc, DDAR_RW),
};

static int __devinit sa11x0_dma_init_dmadev(struct dma_device *dmadev,
	struct device *dev)
{
	unsigned i;

	dmadev->chancnt = ARRAY_SIZE(chan_desc);
	INIT_LIST_HEAD(&dmadev->channels);
	dmadev->dev = dev;
	dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
	dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
	dmadev->device_control = sa11x0_dma_control;
	dmadev->device_tx_status = sa11x0_dma_tx_status;
	dmadev->device_issue_pending = sa11x0_dma_issue_pending;

	for (i = 0; i < dmadev->chancnt; i++) {
		struct sa11x0_dma_chan *c;

		c = kzalloc(sizeof(*c), GFP_KERNEL);
		if (!c) {
			dev_err(dev, "no memory for channel %u\n", i);
			return -ENOMEM;
		}

		c->status = DMA_IN_PROGRESS;
		c->ddar = chan_desc[i].ddar;
		c->name = chan_desc[i].name;
		INIT_LIST_HEAD(&c->node);
769 770 771

		c->vc.desc_free = sa11x0_dma_free_desc;
		vchan_init(&c->vc, dmadev);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	}

	return dma_async_device_register(dmadev);
}

static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
	void *data)
{
	int irq = platform_get_irq(pdev, nr);

	if (irq <= 0)
		return -ENXIO;

	return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
}

static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
	void *data)
{
	int irq = platform_get_irq(pdev, nr);
	if (irq > 0)
		free_irq(irq, data);
}

static void sa11x0_dma_free_channels(struct dma_device *dmadev)
{
	struct sa11x0_dma_chan *c, *cn;

800 801 802
	list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) {
		list_del(&c->vc.chan.device_node);
		tasklet_kill(&c->vc.task);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		kfree(c);
	}
}

static int __devinit sa11x0_dma_probe(struct platform_device *pdev)
{
	struct sa11x0_dma_dev *d;
	struct resource *res;
	unsigned i;
	int ret;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	d = kzalloc(sizeof(*d), GFP_KERNEL);
	if (!d) {
		ret = -ENOMEM;
		goto err_alloc;
	}

	spin_lock_init(&d->lock);
	INIT_LIST_HEAD(&d->chan_pending);

	d->base = ioremap(res->start, resource_size(res));
	if (!d->base) {
		ret = -ENOMEM;
		goto err_ioremap;
	}

	tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);

	for (i = 0; i < NR_PHY_CHAN; i++) {
		struct sa11x0_dma_phy *p = &d->phy[i];

		p->dev = d;
		p->num = i;
		p->base = d->base + i * DMA_SIZE;
		writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
			DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
			p->base + DMA_DCSR_C);
		writel_relaxed(0, p->base + DMA_DDAR);

		ret = sa11x0_dma_request_irq(pdev, i, p);
		if (ret) {
			while (i) {
				i--;
				sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
			}
			goto err_irq;
		}
	}

	dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
	d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
	ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
	if (ret) {
		dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
			ret);
		goto err_slave_reg;
	}

	platform_set_drvdata(pdev, d);
	return 0;

 err_slave_reg:
	sa11x0_dma_free_channels(&d->slave);
	for (i = 0; i < NR_PHY_CHAN; i++)
		sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
 err_irq:
	tasklet_kill(&d->task);
	iounmap(d->base);
 err_ioremap:
	kfree(d);
 err_alloc:
	return ret;
}

static int __devexit sa11x0_dma_remove(struct platform_device *pdev)
{
	struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
	unsigned pch;

	dma_async_device_unregister(&d->slave);

	sa11x0_dma_free_channels(&d->slave);
	for (pch = 0; pch < NR_PHY_CHAN; pch++)
		sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
	tasklet_kill(&d->task);
	iounmap(d->base);
	kfree(d);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int sa11x0_dma_suspend(struct device *dev)
{
	struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
	unsigned pch;

	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
		struct sa11x0_dma_phy *p = &d->phy[pch];
		u32 dcsr, saved_dcsr;

		dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
		if (dcsr & DCSR_RUN) {
			writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
			dcsr = readl_relaxed(p->base + DMA_DCSR_R);
		}

		saved_dcsr &= DCSR_RUN | DCSR_IE;
		if (dcsr & DCSR_BIU) {
			p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
			p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
			p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
			p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
			saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
				      (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
		} else {
			p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
			p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
			p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
			p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
			saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
		}
		p->dcsr = saved_dcsr;

		writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
	}

	return 0;
}

static int sa11x0_dma_resume(struct device *dev)
{
	struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
	unsigned pch;

	for (pch = 0; pch < NR_PHY_CHAN; pch++) {
		struct sa11x0_dma_phy *p = &d->phy[pch];
		struct sa11x0_dma_desc *txd = NULL;
		u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);

		WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));

		if (p->txd_done)
			txd = p->txd_done;
		else if (p->txd_load)
			txd = p->txd_load;

		if (!txd)
			continue;

		writel_relaxed(txd->ddar, p->base + DMA_DDAR);

		writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
		writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
		writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
		writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
		writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
	}

	return 0;
}
#endif

static const struct dev_pm_ops sa11x0_dma_pm_ops = {
	.suspend_noirq = sa11x0_dma_suspend,
	.resume_noirq = sa11x0_dma_resume,
	.freeze_noirq = sa11x0_dma_suspend,
	.thaw_noirq = sa11x0_dma_resume,
	.poweroff_noirq = sa11x0_dma_suspend,
	.restore_noirq = sa11x0_dma_resume,
};

static struct platform_driver sa11x0_dma_driver = {
	.driver = {
		.name	= "sa11x0-dma",
		.owner	= THIS_MODULE,
		.pm	= &sa11x0_dma_pm_ops,
	},
	.probe		= sa11x0_dma_probe,
	.remove		= __devexit_p(sa11x0_dma_remove),
};

bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
		struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
		const char *p = param;

		return !strcmp(c->name, p);
	}
	return false;
}
EXPORT_SYMBOL(sa11x0_dma_filter_fn);

static int __init sa11x0_dma_init(void)
{
	return platform_driver_register(&sa11x0_dma_driver);
}
subsys_initcall(sa11x0_dma_init);

static void __exit sa11x0_dma_exit(void)
{
	platform_driver_unregister(&sa11x0_dma_driver);
}
module_exit(sa11x0_dma_exit);

MODULE_AUTHOR("Russell King");
MODULE_DESCRIPTION("SA-11x0 DMA driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:sa11x0-dma");