spi.c 9.7 KB
Newer Older
K
Kalle Valo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * This file is part of wl12xx
 *
 * Copyright (C) 2008 Nokia Corporation
 *
 * Contact: Kalle Valo <kalle.valo@nokia.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA
 *
 */

#include <linux/module.h>
#include <linux/crc7.h>
#include <linux/spi/spi.h>

#include "wl12xx.h"
#include "wl12xx_80211.h"
#include "reg.h"
#include "spi.h"
#include "ps.h"

static int wl12xx_translate_reg_addr(struct wl12xx *wl, int addr)
{
	/* If the address is lower than REGISTERS_BASE, it means that this is
	 * a chip-specific register address, so look it up in the registers
	 * table */
	if (addr < REGISTERS_BASE) {
		/* Make sure we don't go over the table */
		if (addr >= ACX_REG_TABLE_LEN) {
			wl12xx_error("address out of range (%d)", addr);
			return -EINVAL;
		}
		addr = wl->chip.acx_reg_table[addr];
	}

	return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
}

static int wl12xx_translate_mem_addr(struct wl12xx *wl, int addr)
{
	return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
}


void wl12xx_spi_reset(struct wl12xx *wl)
{
	u8 *cmd;
	struct spi_transfer t;
	struct spi_message m;

	cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
	if (!cmd) {
		wl12xx_error("could not allocate cmd for spi reset");
		return;
	}

	memset(&t, 0, sizeof(t));
	spi_message_init(&m);

	memset(cmd, 0xff, WSPI_INIT_CMD_LEN);

	t.tx_buf = cmd;
	t.len = WSPI_INIT_CMD_LEN;
	spi_message_add_tail(&t, &m);

	spi_sync(wl->spi, &m);

	wl12xx_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
}

void wl12xx_spi_init(struct wl12xx *wl)
{
	u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
	struct spi_transfer t;
	struct spi_message m;

	cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
	if (!cmd) {
		wl12xx_error("could not allocate cmd for spi init");
		return;
	}

	memset(crc, 0, sizeof(crc));
	memset(&t, 0, sizeof(t));
	spi_message_init(&m);

	/*
	 * Set WSPI_INIT_COMMAND
	 * the data is being send from the MSB to LSB
	 */
	cmd[2] = 0xff;
	cmd[3] = 0xff;
	cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
	cmd[0] = 0;
	cmd[7] = 0;
	cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
	cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;

	if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
		cmd[5] |=  WSPI_INIT_CMD_DIS_FIXEDBUSY;
	else
		cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;

	cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
		| WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;

	crc[0] = cmd[1];
	crc[1] = cmd[0];
	crc[2] = cmd[7];
	crc[3] = cmd[6];
	crc[4] = cmd[5];

	cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
	cmd[4] |= WSPI_INIT_CMD_END;

	t.tx_buf = cmd;
	t.len = WSPI_INIT_CMD_LEN;
	spi_message_add_tail(&t, &m);

	spi_sync(wl->spi, &m);

	wl12xx_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
}

/* Set the SPI partitions to access the chip addresses
 *
 * There are two VIRTUAL (SPI) partitions (the memory partition and the
 * registers partition), which are mapped to two different areas of the
 * PHYSICAL (hardware) memory.  This function also makes other checks to
 * ensure that the partitions are not overlapping.  In the diagram below, the
 * memory partition comes before the register partition, but the opposite is
 * also supported.
 *
 *                               PHYSICAL address
 *                                     space
 *
 *                                    |    |
 *                                 ...+----+--> mem_start
 *          VIRTUAL address     ...   |    |
 *               space       ...      |    | [PART_0]
 *                        ...         |    |
 * 0x00000000 <--+----+...         ...+----+--> mem_start + mem_size
 *               |    |         ...   |    |
 *               |MEM |      ...      |    |
 *               |    |   ...         |    |
 *  part_size <--+----+...            |    | {unused area)
 *               |    |   ...         |    |
 *               |REG |      ...      |    |
 *  part_size    |    |         ...   |    |
 *      +     <--+----+...         ...+----+--> reg_start
 *  reg_size              ...         |    |
 *                           ...      |    | [PART_1]
 *                              ...   |    |
 *                                 ...+----+--> reg_start + reg_size
 *                                    |    |
 *
 */
170
int wl12xx_set_partition(struct wl12xx *wl,
K
Kalle Valo 已提交
171 172 173 174 175 176
			  u32 mem_start, u32 mem_size,
			  u32 reg_start, u32 reg_size)
{
	struct wl12xx_partition *partition;
	struct spi_transfer t;
	struct spi_message m;
177
	size_t len, cmd_len;
K
Kalle Valo 已提交
178 179 180
	u32 *cmd;
	int addr;

181 182 183 184 185
	cmd_len = sizeof(u32) + 2 * sizeof(struct wl12xx_partition);
	cmd = kzalloc(cmd_len, GFP_KERNEL);
	if (!cmd)
		return -ENOMEM;

K
Kalle Valo 已提交
186 187 188
	spi_message_init(&m);
	memset(&t, 0, sizeof(t));

189
	partition = (struct wl12xx_partition *) (cmd + 1);
K
Kalle Valo 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	addr = HW_ACCESS_PART0_SIZE_ADDR;
	len = 2 * sizeof(struct wl12xx_partition);

	*cmd |= WSPI_CMD_WRITE;
	*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
	*cmd |= addr & WSPI_CMD_BYTE_ADDR;

	wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
		     mem_start, mem_size);
	wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
		     reg_start, reg_size);

	/* Make sure that the two partitions together don't exceed the
	 * address range */
	if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
		wl12xx_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
			     " address range.  Truncating partition[0].");
		mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
		wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
			     mem_start, mem_size);
		wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
			     reg_start, reg_size);
	}

	if ((mem_start < reg_start) &&
	    ((mem_start + mem_size) > reg_start)) {
		/* Guarantee that the memory partition doesn't overlap the
		 * registers partition */
		wl12xx_debug(DEBUG_SPI, "End of partition[0] is "
			     "overlapping partition[1].  Adjusted.");
		mem_size = reg_start - mem_start;
		wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
			     mem_start, mem_size);
		wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
			     reg_start, reg_size);
	} else if ((reg_start < mem_start) &&
		   ((reg_start + reg_size) > mem_start)) {
		/* Guarantee that the register partition doesn't overlap the
		 * memory partition */
		wl12xx_debug(DEBUG_SPI, "End of partition[1] is"
			     " overlapping partition[0].  Adjusted.");
		reg_size = mem_start - reg_start;
		wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
			     mem_start, mem_size);
		wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
			     reg_start, reg_size);
	}

	partition[0].start = mem_start;
	partition[0].size  = mem_size;
	partition[1].start = reg_start;
	partition[1].size  = reg_size;

	wl->physical_mem_addr = mem_start;
	wl->physical_reg_addr = reg_start;

	wl->virtual_mem_addr = 0;
	wl->virtual_reg_addr = mem_size;

249 250
	t.tx_buf = cmd;
	t.len = cmd_len;
K
Kalle Valo 已提交
251 252 253
	spi_message_add_tail(&t, &m);

	spi_sync(wl->spi, &m);
254 255 256 257

	kfree(cmd);

	return 0;
K
Kalle Valo 已提交
258 259 260 261 262 263 264 265
}

void wl12xx_spi_read(struct wl12xx *wl, int addr, void *buf,
		     size_t len)
{
	struct spi_transfer t[3];
	struct spi_message m;
	char busy_buf[TNETWIF_READ_OFFSET_BYTES];
266
	u32 *cmd;
K
Kalle Valo 已提交
267

268 269 270 271 272 273
	cmd = &wl->buffer_cmd;

	*cmd = 0;
	*cmd |= WSPI_CMD_READ;
	*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
	*cmd |= addr & WSPI_CMD_BYTE_ADDR;
K
Kalle Valo 已提交
274 275 276 277

	spi_message_init(&m);
	memset(t, 0, sizeof(t));

278
	t[0].tx_buf = cmd;
K
Kalle Valo 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	t[0].len = 4;
	spi_message_add_tail(&t[0], &m);

	/* Busy and non busy words read */
	t[1].rx_buf = busy_buf;
	t[1].len = TNETWIF_READ_OFFSET_BYTES;
	spi_message_add_tail(&t[1], &m);

	t[2].rx_buf = buf;
	t[2].len = len;
	spi_message_add_tail(&t[2], &m);

	spi_sync(wl->spi, &m);

	/* FIXME: check busy words */

295
	wl12xx_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
K
Kalle Valo 已提交
296 297 298 299 300 301 302 303
	wl12xx_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
}

void wl12xx_spi_write(struct wl12xx *wl, int addr, void *buf,
		      size_t len)
{
	struct spi_transfer t[2];
	struct spi_message m;
304
	u32 *cmd;
K
Kalle Valo 已提交
305

306 307 308 309 310 311
	cmd = &wl->buffer_cmd;

	*cmd = 0;
	*cmd |= WSPI_CMD_WRITE;
	*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
	*cmd |= addr & WSPI_CMD_BYTE_ADDR;
K
Kalle Valo 已提交
312 313 314 315

	spi_message_init(&m);
	memset(t, 0, sizeof(t));

316 317
	t[0].tx_buf = cmd;
	t[0].len = sizeof(*cmd);
K
Kalle Valo 已提交
318 319 320 321 322 323 324 325
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	spi_sync(wl->spi, &m);

326
	wl12xx_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
K
Kalle Valo 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	wl12xx_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
}

void wl12xx_spi_mem_read(struct wl12xx *wl, int addr, void *buf,
			 size_t len)
{
	int physical;

	physical = wl12xx_translate_mem_addr(wl, addr);

	wl12xx_spi_read(wl, physical, buf, len);
}

void wl12xx_spi_mem_write(struct wl12xx *wl, int addr, void *buf,
			  size_t len)
{
	int physical;

	physical = wl12xx_translate_mem_addr(wl, addr);

	wl12xx_spi_write(wl, physical, buf, len);
}

u32 wl12xx_mem_read32(struct wl12xx *wl, int addr)
{
	return wl12xx_read32(wl, wl12xx_translate_mem_addr(wl, addr));
}

void wl12xx_mem_write32(struct wl12xx *wl, int addr, u32 val)
{
	wl12xx_write32(wl, wl12xx_translate_mem_addr(wl, addr), val);
}

u32 wl12xx_reg_read32(struct wl12xx *wl, int addr)
{
	return wl12xx_read32(wl, wl12xx_translate_reg_addr(wl, addr));
}

void wl12xx_reg_write32(struct wl12xx *wl, int addr, u32 val)
{
	wl12xx_write32(wl, wl12xx_translate_reg_addr(wl, addr), val);
}