mmu.c 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
C
Christoffer Dall 已提交
23
#include <trace/events/kvm.h>
24
#include <asm/pgalloc.h>
25
#include <asm/cacheflush.h>
26 27
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
28
#include <asm/kvm_mmio.h>
29
#include <asm/kvm_asm.h>
30
#include <asm/kvm_emulate.h>
31
#include <asm/virt.h>
32 33

#include "trace.h"
34

35
static pgd_t *boot_hyp_pgd;
36
static pgd_t *hyp_pgd;
37
static pgd_t *merged_hyp_pgd;
38 39
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

40 41 42 43
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

44
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
45
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46

47 48 49 50 51 52
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
53 54 55 56 57 58 59 60 61 62 63
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
64
}
65

66
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
67
{
68
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
69 70
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

91 92 93 94 95
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

96 97 98 99 100 101 102 103 104 105 106
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
107
	if (!pmd_thp_or_huge(*pmd))
108 109 110 111 112 113 114
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

147
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
148
{
149 150
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
151
	kvm_tlb_flush_vmid_ipa(kvm, addr);
152
	stage2_pud_free(pud_table);
153
	put_page(virt_to_page(pgd));
154 155
}

156
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
157
{
158 159 160
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
161
	kvm_tlb_flush_vmid_ipa(kvm, addr);
162
	stage2_pmd_free(pmd_table);
163 164
	put_page(virt_to_page(pud));
}
165

166
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
167
{
168
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
169
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
170 171 172
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
173 174 175
	put_page(virt_to_page(pmd));
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
196
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197
		       phys_addr_t addr, phys_addr_t end)
198
{
199 200 201 202 203 204
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
205 206
			pte_t old_pte = *pte;

207 208
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
209 210

			/* No need to invalidate the cache for device mappings */
211
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212 213 214
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
215 216 217
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

218 219
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
220 221
}

222
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223
		       phys_addr_t addr, phys_addr_t end)
224
{
225 226
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
227

228
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
229
	do {
230
		next = stage2_pmd_addr_end(addr, end);
231
		if (!pmd_none(*pmd)) {
232
			if (pmd_thp_or_huge(*pmd)) {
233 234
				pmd_t old_pmd = *pmd;

235 236
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
237 238 239

				kvm_flush_dcache_pmd(old_pmd);

240 241
				put_page(virt_to_page(pmd));
			} else {
242
				unmap_stage2_ptes(kvm, pmd, addr, next);
243
			}
244
		}
245
	} while (pmd++, addr = next, addr != end);
246

247 248
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
249
}
250

251
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252 253 254 255
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
256

257
	start_pud = pud = stage2_pud_offset(pgd, addr);
258
	do {
259 260 261
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
262 263
				pud_t old_pud = *pud;

264
				stage2_pud_clear(pud);
265
				kvm_tlb_flush_vmid_ipa(kvm, addr);
266
				kvm_flush_dcache_pud(old_pud);
267 268
				put_page(virt_to_page(pud));
			} else {
269
				unmap_stage2_pmds(kvm, pud, addr, next);
270 271
			}
		}
272
	} while (pud++, addr = next, addr != end);
273

274 275
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
276 277
}

278 279 280 281 282 283 284 285 286 287 288 289
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
290 291 292 293 294
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

295
	assert_spin_locked(&kvm->mmu_lock);
296
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
297
	do {
298 299 300 301 302 303 304
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
305 306 307
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
308 309 310 311 312 313
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
314
	} while (pgd++, addr = next, addr != end);
315 316
}

317 318 319 320 321 322 323
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
324
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
325
			kvm_flush_dcache_pte(*pte);
326 327 328 329 330 331 332 333 334
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

335
	pmd = stage2_pmd_offset(pud, addr);
336
	do {
337
		next = stage2_pmd_addr_end(addr, end);
338
		if (!pmd_none(*pmd)) {
339
			if (pmd_thp_or_huge(*pmd))
340 341
				kvm_flush_dcache_pmd(*pmd);
			else
342 343 344 345 346 347 348 349 350 351 352
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

353
	pud = stage2_pud_offset(pgd, addr);
354
	do {
355 356 357
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
358 359
				kvm_flush_dcache_pud(*pud);
			else
360 361 362 363 364 365 366 367 368 369 370 371 372
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

373
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
374
	do {
375
		next = stage2_pgd_addr_end(addr, end);
376 377 378 379 380 381 382 383 384 385 386
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
387
static void stage2_flush_vm(struct kvm *kvm)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
	pgd = pgdp + pgd_index(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

498
/**
499
 * free_hyp_pgds - free Hyp-mode page tables
500
 *
501 502 503 504 505 506
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
507
 */
508
void free_hyp_pgds(void)
509 510 511
{
	unsigned long addr;

512
	mutex_lock(&kvm_hyp_pgd_mutex);
513

514 515 516 517 518 519
	if (boot_hyp_pgd) {
		unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

520
	if (hyp_pgd) {
521
		unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
522
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
M
Marc Zyngier 已提交
523
			unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
524
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
M
Marc Zyngier 已提交
525
			unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
526

527
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
528
		hyp_pgd = NULL;
529
	}
530 531 532 533 534
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
535

536 537 538 539
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
540 541
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
542 543 544 545
{
	pte_t *pte;
	unsigned long addr;

546 547
	addr = start;
	do {
548 549
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
550
		get_page(virt_to_page(pte));
551
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
552
		pfn++;
553
	} while (addr += PAGE_SIZE, addr != end);
554 555 556
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
557 558
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
559 560 561 562 563
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

564 565
	addr = start;
	do {
566
		pmd = pmd_offset(pud, addr);
567 568 569 570

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
571
			pte = pte_alloc_one_kernel(NULL, addr);
572 573 574 575 576
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
577
			get_page(virt_to_page(pmd));
578
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
579 580 581 582
		}

		next = pmd_addr_end(addr, end);

583 584
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
585
	} while (addr = next, addr != end);
586 587 588 589

	return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

624 625 626
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
627 628 629 630 631 632 633
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
634 635 636
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
637
		pgd = pgdp + pgd_index(addr);
638

639 640 641 642
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
643 644 645
				err = -ENOMEM;
				goto out;
			}
646 647 648
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
649 650 651
		}

		next = pgd_addr_end(addr, end);
652
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
653 654
		if (err)
			goto out;
655
		pfn += (next - addr) >> PAGE_SHIFT;
656
	} while (addr = next, addr != end);
657 658 659 660 661
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

662 663 664 665 666 667 668 669 670 671 672
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

673
/**
674
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675 676
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
677
 * @prot:	The protection to be applied to this range
678
 *
679 680 681
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
682
 */
683
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
684
{
685 686
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
687 688
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
689

690 691 692
	if (is_kernel_in_hyp_mode())
		return 0;

693 694
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
695

696 697
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
698

699 700 701 702
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
		err = __create_hyp_mappings(hyp_pgd, virt_addr,
					    virt_addr + PAGE_SIZE,
					    __phys_to_pfn(phys_addr),
703
					    prot);
704 705 706 707 708
		if (err)
			return err;
	}

	return 0;
709 710 711
}

/**
712 713 714
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
715
 * @phys_addr:	The physical start address which gets mapped
716 717 718
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
719
 */
720
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
721
{
M
Marc Zyngier 已提交
722 723
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
724

725 726 727
	if (is_kernel_in_hyp_mode())
		return 0;

728 729 730 731 732 733
	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
734 735
}

736 737 738 739
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
740 741 742
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
743 744 745 746 747 748 749 750 751 752 753 754 755
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

756 757 758
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
759 760
		return -ENOMEM;

761 762 763 764
	kvm->arch.pgd = pgd;
	return 0;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
820
	down_read(&current->mm->mmap_sem);
821 822 823 824 825 826 827
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
828
	up_read(&current->mm->mmap_sem);
829 830 831
	srcu_read_unlock(&kvm->srcu, idx);
}

832 833 834 835 836 837 838 839 840 841
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
842
	void *pgd = NULL;
843

844
	spin_lock(&kvm->mmu_lock);
845 846
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
847
		pgd = READ_ONCE(kvm->arch.pgd);
848 849
		kvm->arch.pgd = NULL;
	}
850 851
	spin_unlock(&kvm->mmu_lock);

852
	/* Free the HW pgd, one page at a time */
853 854
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
855 856
}

857
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858
			     phys_addr_t addr)
859 860 861 862
{
	pgd_t *pgd;
	pud_t *pud;

863 864
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
865 866 867
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
868
		stage2_pgd_populate(pgd, pud);
869 870 871
		get_page(virt_to_page(pgd));
	}

872
	return stage2_pud_offset(pgd, addr);
873 874 875 876 877 878 879 880 881
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
882
	if (stage2_pud_none(*pud)) {
883
		if (!cache)
884
			return NULL;
885
		pmd = mmu_memory_cache_alloc(cache);
886
		stage2_pud_populate(pud, pmd);
887
		get_page(virt_to_page(pud));
888 889
	}

890
	return stage2_pmd_offset(pud, addr);
891 892 893 894 895 896 897 898 899
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
900

901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
913 914
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
915
		kvm_tlb_flush_vmid_ipa(kvm, addr);
916
	} else {
917
		get_page(virt_to_page(pmd));
918 919 920
	}

	kvm_set_pmd(pmd, *new_pmd);
921 922 923 924
	return 0;
}

static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
925 926
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
927 928 929
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
930 931 932 933
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
934

935
	/* Create stage-2 page table mapping - Levels 0 and 1 */
936 937 938 939 940 941 942 943 944
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

945 946 947 948 949 950 951
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

952
	/* Create stage-2 page mappings - Level 2 */
953 954 955 956 957 958
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
959 960 961
	}

	pte = pte_offset_kernel(pmd, addr);
962 963 964 965 966 967

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
968 969
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
970
		kvm_tlb_flush_vmid_ipa(kvm, addr);
971
	} else {
972
		get_page(virt_to_page(pte));
973
	}
974

975
	kvm_set_pte(pte, *new_pte);
976 977 978
	return 0;
}

979 980 981 982 983 984 985
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
986 987
	return 0;
}
988 989 990 991 992 993 994 995 996 997 998
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
999 1000 1001 1002 1003 1004 1005 1006 1007 1008

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1009
			  phys_addr_t pa, unsigned long size, bool writable)
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1020
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1021

1022
		if (writable)
1023
			pte = kvm_s2pte_mkwrite(pte);
1024

1025 1026
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1027 1028 1029
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1030 1031
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1044
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1045
{
D
Dan Williams 已提交
1046
	kvm_pfn_t pfn = *pfnp;
1047 1048
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1049
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1085 1086 1087 1088 1089 1090 1091 1092
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1123
	pmd = stage2_pmd_offset(pud, addr);
1124 1125

	do {
1126
		next = stage2_pmd_addr_end(addr, end);
1127
		if (!pmd_none(*pmd)) {
1128
			if (pmd_thp_or_huge(*pmd)) {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1151
	pud = stage2_pud_offset(pgd, addr);
1152
	do {
1153 1154
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1155
			/* TODO:PUD not supported, revisit later if supported */
1156
			BUG_ON(stage2_pud_huge(*pud));
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1173
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1174 1175 1176 1177
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1178 1179
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1180 1181 1182
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1183
		 */
1184 1185 1186
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1187 1188
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1208 1209
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1210 1211 1212 1213 1214 1215 1216 1217
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1218 1219

/**
1220
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1221 1222 1223 1224 1225 1226 1227 1228 1229
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1230
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231 1232 1233 1234 1235 1236 1237 1238 1239
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

D
Dan Williams 已提交
1255
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1256
				      unsigned long size)
1257
{
1258
	__coherent_cache_guest_page(vcpu, pfn, size);
1259 1260
}

1261
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1262
			  struct kvm_memory_slot *memslot, unsigned long hva,
1263 1264 1265
			  unsigned long fault_status)
{
	int ret;
1266
	bool write_fault, writable, hugetlb = false, force_pte = false;
1267
	unsigned long mmu_seq;
1268 1269
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1270
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1271
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1272
	kvm_pfn_t pfn;
1273
	pgprot_t mem_type = PAGE_S2;
1274 1275
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1276

1277
	write_fault = kvm_is_write_fault(vcpu);
1278 1279 1280 1281 1282
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1283 1284 1285
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1286 1287 1288 1289 1290 1291
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1292
	if (is_vm_hugetlb_page(vma) && !logging_active) {
1293 1294
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1295 1296
	} else {
		/*
1297 1298 1299 1300 1301 1302 1303
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1304
		 */
1305 1306
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1307
			force_pte = true;
1308 1309 1310
	}
	up_read(&current->mm->mmap_sem);

1311
	/* We need minimum second+third level pages */
1312 1313
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1329
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1330
	if (is_error_noslot_pfn(pfn))
1331 1332
		return -EFAULT;

1333
	if (kvm_is_device_pfn(pfn)) {
1334
		mem_type = PAGE_S2_DEVICE;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1352

1353 1354
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1355
		goto out_unlock;
1356

1357 1358
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1359 1360

	if (hugetlb) {
1361
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1362 1363
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1364
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1365 1366
			kvm_set_pfn_dirty(pfn);
		}
1367
		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1368 1369
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1370
		pte_t new_pte = pfn_pte(pfn, mem_type);
1371

1372
		if (writable) {
1373
			new_pte = kvm_s2pte_mkwrite(new_pte);
1374
			kvm_set_pfn_dirty(pfn);
1375
			mark_page_dirty(kvm, gfn);
1376
		}
1377
		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1378
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1379
	}
1380

1381
out_unlock:
1382
	spin_unlock(&kvm->mmu_lock);
1383
	kvm_set_pfn_accessed(pfn);
1384
	kvm_release_pfn_clean(pfn);
1385
	return ret;
1386 1387
}

1388 1389 1390 1391
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1392 1393
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1394 1395 1396 1397 1398
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1399
	kvm_pfn_t pfn;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1410
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1442 1443
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1444 1445 1446
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1447 1448
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1449 1450 1451
	gfn_t gfn;
	int ret, idx;

1452
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1453 1454 1455 1456 1457
	if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
		kvm_inject_vabt(vcpu);
		return 1;
	}

1458
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1459

1460 1461
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1462 1463

	/* Check the stage-2 fault is trans. fault or write fault */
1464
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1465 1466
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1467 1468 1469 1470
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1471 1472 1473 1474 1475 1476
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1477 1478
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1479
	write_fault = kvm_is_write_fault(vcpu);
1480
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1481 1482
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1483
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1484 1485 1486 1487
			ret = 1;
			goto out_unlock;
		}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1504 1505 1506 1507 1508 1509 1510
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1511
		ret = io_mem_abort(vcpu, run, fault_ipa);
1512 1513 1514
		goto out_unlock;
	}

1515 1516 1517
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1518 1519 1520 1521 1522 1523
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1524
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1525 1526 1527 1528 1529
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1530 1531
}

1532 1533 1534 1535
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1536 1537
					    gpa_t gpa, u64 size,
					    void *data),
1538
			     void *data)
1539 1540 1541
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1542
	int ret = 0;
1543 1544 1545 1546 1547 1548

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1549
		gfn_t gpa;
1550 1551 1552 1553 1554 1555 1556

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1557 1558
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1559
	}
1560 1561

	return ret;
1562 1563
}

1564
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1565
{
1566
	unmap_stage2_range(kvm, gpa, size);
1567
	return 0;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1593
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1594 1595 1596
{
	pte_t *pte = (pte_t *)data;

1597
	WARN_ON(size != PAGE_SIZE);
1598 1599 1600 1601 1602 1603 1604 1605
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1606
	return 0;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1623
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1624 1625 1626 1627
{
	pmd_t *pmd;
	pte_t *pte;

1628
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1629 1630 1631 1632
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1633 1634
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1635 1636 1637 1638 1639

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1640
	return stage2_ptep_test_and_clear_young(pte);
1641 1642
}

1643
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1644 1645 1646 1647
{
	pmd_t *pmd;
	pte_t *pte;

1648
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1649 1650 1651 1652
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1653
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1675 1676 1677 1678 1679
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1680 1681
phys_addr_t kvm_mmu_get_httbr(void)
{
1682 1683 1684 1685
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1686 1687
}

1688 1689 1690 1691 1692
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1709 1710
int kvm_mmu_init(void)
{
1711 1712
	int err;

1713 1714 1715
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1716

1717 1718 1719 1720 1721
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1722

1723 1724
	kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_info("HYP VA range: %lx:%lx\n",
M
Marc Zyngier 已提交
1725
		 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1726

M
Marc Zyngier 已提交
1727
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1728 1729
	    hyp_idmap_start <  kern_hyp_va(~0UL) &&
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1730 1731 1732 1733 1734 1735 1736 1737 1738
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1739
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1740
	if (!hyp_pgd) {
1741
		kvm_err("Hyp mode PGD not allocated\n");
1742 1743 1744 1745
		err = -ENOMEM;
		goto out;
	}

1746 1747 1748 1749 1750 1751 1752 1753
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
1754

1755 1756 1757
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
1758

1759 1760 1761 1762 1763 1764 1765
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
1766 1767 1768 1769
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
1770 1771
	}

1772
	return 0;
1773
out:
1774
	free_hyp_pgds();
1775
	return err;
1776
}
1777 1778

void kvm_arch_commit_memory_region(struct kvm *kvm,
1779
				   const struct kvm_userspace_memory_region *mem,
1780
				   const struct kvm_memory_slot *old,
1781
				   const struct kvm_memory_slot *new,
1782 1783
				   enum kvm_mr_change change)
{
1784 1785 1786 1787 1788 1789 1790
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1791 1792 1793 1794
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1795
				   const struct kvm_userspace_memory_region *mem,
1796 1797
				   enum kvm_mr_change change)
{
1798 1799 1800 1801 1802
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1803 1804
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1805 1806
		return 0;

1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1815
	down_read(&current->mm->mmap_sem);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1853 1854 1855 1856
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1857

1858
			/* IO region dirty page logging not allowed */
1859 1860 1861 1862
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1873
	if (change == KVM_MR_FLAGS_ONLY)
1874
		goto out;
1875

1876 1877
	spin_lock(&kvm->mmu_lock);
	if (ret)
1878
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1879 1880 1881
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1882 1883
out:
	up_read(&current->mm->mmap_sem);
1884
	return ret;
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

1898
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1899 1900 1901 1902 1903
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
1904
	kvm_free_stage2_pgd(kvm);
1905 1906 1907 1908 1909
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1910 1911 1912 1913 1914 1915
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
1916
}
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
	unsigned long hcr = vcpu_get_hcr(vcpu);

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}