ethtool.c 54.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* ethtool support for e1000 */

#include <linux/netdevice.h>
32
#include <linux/interrupt.h>
33 34
#include <linux/ethtool.h>
#include <linux/pci.h>
35
#include <linux/slab.h>
36 37 38 39
#include <linux/delay.h>

#include "e1000.h"

40 41
enum {NETDEV_STATS, E1000_STATS};

42 43
struct e1000_stats {
	char stat_string[ETH_GSTRING_LEN];
44
	int type;
45 46 47 48
	int sizeof_stat;
	int stat_offset;
};

49
#define E1000_STAT(str, m) { \
J
Jeff Kirsher 已提交
50 51 52 53
		.stat_string = str, \
		.type = E1000_STATS, \
		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
		.stat_offset = offsetof(struct e1000_adapter, m) }
54
#define E1000_NETDEV_STAT(str, m) { \
J
Jeff Kirsher 已提交
55 56 57 58
		.stat_string = str, \
		.type = NETDEV_STATS, \
		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
59

60
static const struct e1000_stats e1000_gstrings_stats[] = {
61 62 63 64 65 66 67 68
	E1000_STAT("rx_packets", stats.gprc),
	E1000_STAT("tx_packets", stats.gptc),
	E1000_STAT("rx_bytes", stats.gorc),
	E1000_STAT("tx_bytes", stats.gotc),
	E1000_STAT("rx_broadcast", stats.bprc),
	E1000_STAT("tx_broadcast", stats.bptc),
	E1000_STAT("rx_multicast", stats.mprc),
	E1000_STAT("tx_multicast", stats.mptc),
J
Jeff Kirsher 已提交
69 70 71
	E1000_NETDEV_STAT("rx_errors", rx_errors),
	E1000_NETDEV_STAT("tx_errors", tx_errors),
	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
72 73
	E1000_STAT("multicast", stats.mprc),
	E1000_STAT("collisions", stats.colc),
J
Jeff Kirsher 已提交
74 75
	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
76
	E1000_STAT("rx_crc_errors", stats.crcerrs),
J
Jeff Kirsher 已提交
77
	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
78 79 80 81
	E1000_STAT("rx_no_buffer_count", stats.rnbc),
	E1000_STAT("rx_missed_errors", stats.mpc),
	E1000_STAT("tx_aborted_errors", stats.ecol),
	E1000_STAT("tx_carrier_errors", stats.tncrs),
J
Jeff Kirsher 已提交
82 83
	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	E1000_STAT("tx_window_errors", stats.latecol),
	E1000_STAT("tx_abort_late_coll", stats.latecol),
	E1000_STAT("tx_deferred_ok", stats.dc),
	E1000_STAT("tx_single_coll_ok", stats.scc),
	E1000_STAT("tx_multi_coll_ok", stats.mcc),
	E1000_STAT("tx_timeout_count", tx_timeout_count),
	E1000_STAT("tx_restart_queue", restart_queue),
	E1000_STAT("rx_long_length_errors", stats.roc),
	E1000_STAT("rx_short_length_errors", stats.ruc),
	E1000_STAT("rx_align_errors", stats.algnerrc),
	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
	E1000_STAT("tx_flow_control_xon", stats.xontxc),
	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
	E1000_STAT("rx_long_byte_count", stats.gorc),
	E1000_STAT("rx_csum_offload_good", hw_csum_good),
	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
	E1000_STAT("rx_header_split", rx_hdr_split),
	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
	E1000_STAT("tx_smbus", stats.mgptc),
	E1000_STAT("rx_smbus", stats.mgprc),
	E1000_STAT("dropped_smbus", stats.mgpdc),
	E1000_STAT("rx_dma_failed", rx_dma_failed),
	E1000_STAT("tx_dma_failed", tx_dma_failed),
110 111
};

112
#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
113 114 115 116 117 118
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
	"Register test  (offline)", "Eeprom test    (offline)",
	"Interrupt test (offline)", "Loopback test  (offline)",
	"Link test   (on/offline)"
};
119
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 121 122 123 124 125

static int e1000_get_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
126
	u32 speed;
127

128
	if (hw->phy.media_type == e1000_media_type_copper) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

		ecmd->supported = (SUPPORTED_10baseT_Half |
				   SUPPORTED_10baseT_Full |
				   SUPPORTED_100baseT_Half |
				   SUPPORTED_100baseT_Full |
				   SUPPORTED_1000baseT_Full |
				   SUPPORTED_Autoneg |
				   SUPPORTED_TP);
		if (hw->phy.type == e1000_phy_ife)
			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
		ecmd->advertising = ADVERTISED_TP;

		if (hw->mac.autoneg == 1) {
			ecmd->advertising |= ADVERTISED_Autoneg;
			/* the e1000 autoneg seems to match ethtool nicely */
			ecmd->advertising |= hw->phy.autoneg_advertised;
		}

		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy.addr;
		ecmd->transceiver = XCVR_INTERNAL;

	} else {
		ecmd->supported   = (SUPPORTED_1000baseT_Full |
				     SUPPORTED_FIBRE |
				     SUPPORTED_Autoneg);

		ecmd->advertising = (ADVERTISED_1000baseT_Full |
				     ADVERTISED_FIBRE |
				     ADVERTISED_Autoneg);

		ecmd->port = PORT_FIBRE;
		ecmd->transceiver = XCVR_EXTERNAL;
	}

164
	speed = -1;
165 166 167 168
	ecmd->duplex = -1;

	if (netif_running(netdev)) {
		if (netif_carrier_ok(netdev)) {
169
			speed = adapter->link_speed;
170 171
			ecmd->duplex = adapter->link_duplex - 1;
		}
172
	} else {
173 174 175
		u32 status = er32(STATUS);
		if (status & E1000_STATUS_LU) {
			if (status & E1000_STATUS_SPEED_1000)
176
				speed = SPEED_1000;
177
			else if (status & E1000_STATUS_SPEED_100)
178
				speed = SPEED_100;
179
			else
180
				speed = SPEED_10;
181 182 183 184 185 186

			if (status & E1000_STATUS_FD)
				ecmd->duplex = DUPLEX_FULL;
			else
				ecmd->duplex = DUPLEX_HALF;
		}
187 188
	}

189
	ethtool_cmd_speed_set(ecmd, speed);
190
	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
191
			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
192 193 194

	/* MDI-X => 2; MDI =>1; Invalid =>0 */
	if ((hw->phy.media_type == e1000_media_type_copper) &&
195
	    netif_carrier_ok(netdev))
196 197 198 199 200
		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
		                                      ETH_TP_MDI;
	else
		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;

201 202 203
	return 0;
}

204
static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
205 206 207 208 209
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

210 211 212 213 214
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

215
	/* Fiber NICs only allow 1000 gbps Full duplex */
216
	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 218 219
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL) {
		goto err_inval;
220 221
	}

222
	switch (spd + dplx) {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
241
		goto err_inval;
242 243
	}
	return 0;
244 245 246 247

err_inval:
	e_err("Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
248 249 250 251 252 253 254 255
}

static int e1000_set_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

256 257 258 259
	/*
	 * When SoL/IDER sessions are active, autoneg/speed/duplex
	 * cannot be changed
	 */
260
	if (e1000_check_reset_block(hw)) {
261 262
		e_err("Cannot change link characteristics when SoL/IDER is "
		      "active.\n");
263 264 265 266
		return -EINVAL;
	}

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
267
		usleep_range(1000, 2000);
268 269 270

	if (ecmd->autoneg == AUTONEG_ENABLE) {
		hw->mac.autoneg = 1;
271
		if (hw->phy.media_type == e1000_media_type_fiber)
272 273 274 275 276 277 278 279
			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
						     ADVERTISED_FIBRE |
						     ADVERTISED_Autoneg;
		else
			hw->phy.autoneg_advertised = ecmd->advertising |
						     ADVERTISED_TP |
						     ADVERTISED_Autoneg;
		ecmd->advertising = hw->phy.autoneg_advertised;
280
		if (adapter->fc_autoneg)
281
			hw->fc.requested_mode = e1000_fc_default;
282
	} else {
283
		u32 speed = ethtool_cmd_speed(ecmd);
284
		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			clear_bit(__E1000_RESETTING, &adapter->state);
			return -EINVAL;
		}
	}

	/* reset the link */

	if (netif_running(adapter->netdev)) {
		e1000e_down(adapter);
		e1000e_up(adapter);
	} else {
		e1000e_reset(adapter);
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
}

static void e1000_get_pauseparam(struct net_device *netdev,
				 struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pause->autoneg =
		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);

312
	if (hw->fc.current_mode == e1000_fc_rx_pause) {
313
		pause->rx_pause = 1;
314
	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
315
		pause->tx_pause = 1;
316
	} else if (hw->fc.current_mode == e1000_fc_full) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		pause->rx_pause = 1;
		pause->tx_pause = 1;
	}
}

static int e1000_set_pauseparam(struct net_device *netdev,
				struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int retval = 0;

	adapter->fc_autoneg = pause->autoneg;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
332
		usleep_range(1000, 2000);
333 334

	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
335
		hw->fc.requested_mode = e1000_fc_default;
336 337 338 339 340 341 342
		if (netif_running(adapter->netdev)) {
			e1000e_down(adapter);
			e1000e_up(adapter);
		} else {
			e1000e_reset(adapter);
		}
	} else {
343 344 345 346 347 348 349 350 351 352 353
		if (pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_full;
		else if (pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else if (!pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_tx_pause;
		else if (!pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_none;

		hw->fc.current_mode = hw->fc.requested_mode;

354 355 356 357 358 359 360 361 362
		if (hw->phy.media_type == e1000_media_type_fiber) {
			retval = hw->mac.ops.setup_link(hw);
			/* implicit goto out */
		} else {
			retval = e1000e_force_mac_fc(hw);
			if (retval)
				goto out;
			e1000e_set_fc_watermarks(hw);
		}
363 364
	}

365
out:
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	clear_bit(__E1000_RESETTING, &adapter->state);
	return retval;
}

static u32 e1000_get_msglevel(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->msg_enable;
}

static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	adapter->msg_enable = data;
}

static int e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32 /* overestimate */
	return E1000_REGS_LEN * sizeof(u32);
}

static void e1000_get_regs(struct net_device *netdev,
			   struct ethtool_regs *regs, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 *regs_buff = p;
	u16 phy_data;

	memset(p, 0, E1000_REGS_LEN * sizeof(u32));

398 399
	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
			adapter->pdev->device;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

	regs_buff[0]  = er32(CTRL);
	regs_buff[1]  = er32(STATUS);

	regs_buff[2]  = er32(RCTL);
	regs_buff[3]  = er32(RDLEN);
	regs_buff[4]  = er32(RDH);
	regs_buff[5]  = er32(RDT);
	regs_buff[6]  = er32(RDTR);

	regs_buff[7]  = er32(TCTL);
	regs_buff[8]  = er32(TDLEN);
	regs_buff[9]  = er32(TDH);
	regs_buff[10] = er32(TDT);
	regs_buff[11] = er32(TIDV);

	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
417 418 419 420

	/* ethtool doesn't use anything past this point, so all this
	 * code is likely legacy junk for apps that may or may not
	 * exist */
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	if (hw->phy.type == e1000_phy_m88) {
		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
		regs_buff[13] = (u32)phy_data; /* cable length */
		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
		regs_buff[18] = regs_buff[13]; /* cable polarity */
		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[20] = regs_buff[17]; /* polarity correction */
		/* phy receive errors */
		regs_buff[22] = adapter->phy_stats.receive_errors;
		regs_buff[23] = regs_buff[13]; /* mdix mode */
	}
436
	regs_buff[21] = 0; /* was idle_errors */
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
}

static int e1000_get_eeprom_len(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->hw.nvm.word_size * 2;
}

static int e1000_get_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EINVAL;

	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;

	eeprom_buff = kmalloc(sizeof(u16) *
			(last_word - first_word + 1), GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
		ret_val = e1000_read_nvm(hw, first_word,
					 last_word - first_word + 1,
					 eeprom_buff);
	} else {
		for (i = 0; i < last_word - first_word + 1; i++) {
			ret_val = e1000_read_nvm(hw, first_word + i, 1,
						      &eeprom_buff[i]);
480
			if (ret_val)
481 482 483 484
				break;
		}
	}

485 486
	if (ret_val) {
		/* a read error occurred, throw away the result */
487 488
		memset(eeprom_buff, 0xff, sizeof(u16) *
		       (last_word - first_word + 1));
489 490 491 492 493
	} else {
		/* Device's eeprom is always little-endian, word addressable */
		for (i = 0; i < last_word - first_word + 1; i++)
			le16_to_cpus(&eeprom_buff[i]);
	}
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
	kfree(eeprom_buff);

	return ret_val;
}

static int e1000_set_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	void *ptr;
	int max_len;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EOPNOTSUPP;

	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
		return -EFAULT;

520 521 522
	if (adapter->flags & FLAG_READ_ONLY_NVM)
		return -EINVAL;

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	max_len = hw->nvm.word_size * 2;

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	ptr = (void *)eeprom_buff;

	if (eeprom->offset & 1) {
		/* need read/modify/write of first changed EEPROM word */
		/* only the second byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
		ptr++;
	}
	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
		/* need read/modify/write of last changed EEPROM word */
		/* only the first byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, last_word, 1,
				  &eeprom_buff[last_word - first_word]);

545 546 547
	if (ret_val)
		goto out;

548 549 550 551 552 553 554 555 556 557 558 559
	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(ptr, bytes, eeprom->len);

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);

	ret_val = e1000_write_nvm(hw, first_word,
				  last_word - first_word + 1, eeprom_buff);

560 561 562
	if (ret_val)
		goto out;

563 564
	/*
	 * Update the checksum over the first part of the EEPROM if needed
565
	 * and flush shadow RAM for applicable controllers
566
	 */
567
	if ((first_word <= NVM_CHECKSUM_REG) ||
568 569 570
	    (hw->mac.type == e1000_82583) ||
	    (hw->mac.type == e1000_82574) ||
	    (hw->mac.type == e1000_82573))
571
		ret_val = e1000e_update_nvm_checksum(hw);
572

573
out:
574 575 576 577 578 579 580 581 582
	kfree(eeprom_buff);
	return ret_val;
}

static void e1000_get_drvinfo(struct net_device *netdev,
			      struct ethtool_drvinfo *drvinfo)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

583 584
	strlcpy(drvinfo->driver,  e1000e_driver_name,
		sizeof(drvinfo->driver));
585
	strlcpy(drvinfo->version, e1000e_driver_version,
586
		sizeof(drvinfo->version));
587

588 589 590 591
	/*
	 * EEPROM image version # is reported as firmware version # for
	 * PCI-E controllers
	 */
592 593
	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
		"%d.%d-%d",
594 595 596
		(adapter->eeprom_vers & 0xF000) >> 12,
		(adapter->eeprom_vers & 0x0FF0) >> 4,
		(adapter->eeprom_vers & 0x000F));
597

598 599
	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
		sizeof(drvinfo->bus_info));
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
	drvinfo->regdump_len = e1000_get_regs_len(netdev);
	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}

static void e1000_get_ringparam(struct net_device *netdev,
				struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_ring *rx_ring = adapter->rx_ring;

	ring->rx_max_pending = E1000_MAX_RXD;
	ring->tx_max_pending = E1000_MAX_TXD;
	ring->rx_pending = rx_ring->count;
	ring->tx_pending = tx_ring->count;
}

static int e1000_set_ringparam(struct net_device *netdev,
			       struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring, *tx_old;
	struct e1000_ring *rx_ring, *rx_old;
	int err;

	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
		return -EINVAL;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
629
		usleep_range(1000, 2000);
630 631 632 633 634 635 636 637

	if (netif_running(adapter->netdev))
		e1000e_down(adapter);

	tx_old = adapter->tx_ring;
	rx_old = adapter->rx_ring;

	err = -ENOMEM;
638
	tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
639 640 641
	if (!tx_ring)
		goto err_alloc_tx;

642
	rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	if (!rx_ring)
		goto err_alloc_rx;

	adapter->tx_ring = tx_ring;
	adapter->rx_ring = rx_ring;

	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);

	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);

	if (netif_running(adapter->netdev)) {
		/* Try to get new resources before deleting old */
659
		err = e1000e_setup_rx_resources(rx_ring);
660 661
		if (err)
			goto err_setup_rx;
662
		err = e1000e_setup_tx_resources(tx_ring);
663 664 665
		if (err)
			goto err_setup_tx;

666 667 668 669
		/*
		 * restore the old in order to free it,
		 * then add in the new
		 */
670 671
		adapter->rx_ring = rx_old;
		adapter->tx_ring = tx_old;
672 673
		e1000e_free_rx_resources(adapter->rx_ring);
		e1000e_free_tx_resources(adapter->tx_ring);
674 675 676 677 678 679 680 681 682 683 684 685
		kfree(tx_old);
		kfree(rx_old);
		adapter->rx_ring = rx_ring;
		adapter->tx_ring = tx_ring;
		err = e1000e_up(adapter);
		if (err)
			goto err_setup;
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
err_setup_tx:
686
	e1000e_free_rx_resources(rx_ring);
687 688 689 690 691 692 693 694 695 696 697 698 699
err_setup_rx:
	adapter->rx_ring = rx_old;
	adapter->tx_ring = tx_old;
	kfree(rx_ring);
err_alloc_rx:
	kfree(tx_ring);
err_alloc_tx:
	e1000e_up(adapter);
err_setup:
	clear_bit(__E1000_RESETTING, &adapter->state);
	return err;
}

700 701
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
			     int reg, int offset, u32 mask, u32 write)
702
{
703
	u32 pat, val;
704 705
	static const u32 test[] = {
		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
706
	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
707
		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
708 709 710
				      (test[pat] & write));
		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
		if (val != (test[pat] & write & mask)) {
711 712 713
			e_err("pattern test reg %04X failed: got 0x%08X "
			      "expected 0x%08X\n", reg + offset, val,
			      (test[pat] & write & mask));
714
			*data = reg;
715
			return 1;
716 717
		}
	}
718
	return 0;
719 720
}

721 722 723
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
			      int reg, u32 mask, u32 write)
{
724
	u32 val;
725
	__ew32(&adapter->hw, reg, write & mask);
726 727
	val = __er32(&adapter->hw, reg);
	if ((write & mask) != (val & mask)) {
728 729
		e_err("set/check reg %04X test failed: got 0x%08X "
		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
730
		*data = reg;
731
		return 1;
732
	}
733
	return 0;
734
}
735 736 737 738
#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
	do {                                                                   \
		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
			return 1;                                              \
739
	} while (0)
740 741
#define REG_PATTERN_TEST(reg, mask, write)                                     \
	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
742

743 744 745 746
#define REG_SET_AND_CHECK(reg, mask, write)                                    \
	do {                                                                   \
		if (reg_set_and_check(adapter, data, reg, mask, write))        \
			return 1;                                              \
747 748
	} while (0)

749 750 751 752 753 754 755 756 757
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &adapter->hw.mac;
	u32 value;
	u32 before;
	u32 after;
	u32 i;
	u32 toggle;
758
	u32 mask;
759

760 761
	/*
	 * The status register is Read Only, so a write should fail.
762 763 764 765 766 767 768 769 770
	 * Some bits that get toggled are ignored.
	 */
	switch (mac->type) {
	/* there are several bits on newer hardware that are r/w */
	case e1000_82571:
	case e1000_82572:
	case e1000_80003es2lan:
		toggle = 0x7FFFF3FF;
		break;
771
        default:
772 773 774 775 776 777 778 779 780
		toggle = 0x7FFFF033;
		break;
	}

	before = er32(STATUS);
	value = (er32(STATUS) & toggle);
	ew32(STATUS, toggle);
	after = er32(STATUS) & toggle;
	if (value != after) {
781 782
		e_err("failed STATUS register test got: 0x%08X expected: "
		      "0x%08X\n", after, value);
783 784 785 786 787 788
		*data = 1;
		return 1;
	}
	/* restore previous status */
	ew32(STATUS, before);

789
	if (!(adapter->flags & FLAG_IS_ICH)) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
	}

	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);

	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);

809
	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
810 811 812
	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);

A
Auke Kok 已提交
813 814
	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
815
	if (!(adapter->flags & FLAG_IS_ICH))
A
Auke Kok 已提交
816 817 818
		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
819 820 821 822
	mask = 0x8003FFFF;
	switch (mac->type) {
	case e1000_ich10lan:
	case e1000_pchlan:
823
	case e1000_pch2lan:
824 825 826 827 828
		mask |= (1 << 18);
		break;
	default:
		break;
	}
A
Auke Kok 已提交
829 830
	for (i = 0; i < mac->rar_entry_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
831
		                       mask, 0xFFFFFFFF);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

	for (i = 0; i < mac->mta_reg_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);

	*data = 0;
	return 0;
}

static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
	u16 temp;
	u16 checksum = 0;
	u16 i;

	*data = 0;
	/* Read and add up the contents of the EEPROM */
	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
			*data = 1;
851
			return *data;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		}
		checksum += temp;
	}

	/* If Checksum is not Correct return error else test passed */
	if ((checksum != (u16) NVM_SUM) && !(*data))
		*data = 2;

	return *data;
}

static irqreturn_t e1000_test_intr(int irq, void *data)
{
	struct net_device *netdev = (struct net_device *) data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	adapter->test_icr |= er32(ICR);

	return IRQ_HANDLED;
}

static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 mask;
	u32 shared_int = 1;
	u32 irq = adapter->pdev->irq;
	int i;
882 883
	int ret_val = 0;
	int int_mode = E1000E_INT_MODE_LEGACY;
884 885 886

	*data = 0;

887 888 889 890 891 892 893
	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
		int_mode = adapter->int_mode;
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
		e1000e_set_interrupt_capability(adapter);
	}
894
	/* Hook up test interrupt handler just for this test */
895
	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
896 897
			 netdev)) {
		shared_int = 0;
898
	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
899 900
		 netdev->name, netdev)) {
		*data = 1;
901 902
		ret_val = -1;
		goto out;
903
	}
904
	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
905 906 907

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
908
	e1e_flush();
909
	usleep_range(10000, 20000);
910 911 912 913 914 915

	/* Test each interrupt */
	for (i = 0; i < 10; i++) {
		/* Interrupt to test */
		mask = 1 << i;

916 917 918 919 920 921 922 923 924 925 926 927 928 929
		if (adapter->flags & FLAG_IS_ICH) {
			switch (mask) {
			case E1000_ICR_RXSEQ:
				continue;
			case 0x00000100:
				if (adapter->hw.mac.type == e1000_ich8lan ||
				    adapter->hw.mac.type == e1000_ich9lan)
					continue;
				break;
			default:
				break;
			}
		}

930
		if (!shared_int) {
931 932
			/*
			 * Disable the interrupt to be reported in
933 934 935 936 937 938 939 940
			 * the cause register and then force the same
			 * interrupt and see if one gets posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, mask);
			ew32(ICS, mask);
941
			e1e_flush();
942
			usleep_range(10000, 20000);
943 944 945 946 947 948 949

			if (adapter->test_icr & mask) {
				*data = 3;
				break;
			}
		}

950 951
		/*
		 * Enable the interrupt to be reported in
952 953 954 955 956 957 958 959
		 * the cause register and then force the same
		 * interrupt and see if one gets posted.  If
		 * an interrupt was not posted to the bus, the
		 * test failed.
		 */
		adapter->test_icr = 0;
		ew32(IMS, mask);
		ew32(ICS, mask);
960
		e1e_flush();
961
		usleep_range(10000, 20000);
962 963 964 965 966 967 968

		if (!(adapter->test_icr & mask)) {
			*data = 4;
			break;
		}

		if (!shared_int) {
969 970
			/*
			 * Disable the other interrupts to be reported in
971 972 973 974 975 976 977 978
			 * the cause register and then force the other
			 * interrupts and see if any get posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, ~mask & 0x00007FFF);
			ew32(ICS, ~mask & 0x00007FFF);
979
			e1e_flush();
980
			usleep_range(10000, 20000);
981 982 983 984 985 986 987 988 989 990

			if (adapter->test_icr) {
				*data = 5;
				break;
			}
		}
	}

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
991
	e1e_flush();
992
	usleep_range(10000, 20000);
993 994 995 996

	/* Unhook test interrupt handler */
	free_irq(irq, netdev);

997 998 999 1000 1001 1002 1003 1004
out:
	if (int_mode == E1000E_INT_MODE_MSIX) {
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = int_mode;
		e1000e_set_interrupt_capability(adapter);
	}

	return ret_val;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
}

static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int i;

	if (tx_ring->desc && tx_ring->buffer_info) {
		for (i = 0; i < tx_ring->count; i++) {
			if (tx_ring->buffer_info[i].dma)
1017
				dma_unmap_single(&pdev->dev,
1018 1019
					tx_ring->buffer_info[i].dma,
					tx_ring->buffer_info[i].length,
1020
					DMA_TO_DEVICE);
1021 1022 1023 1024 1025 1026 1027 1028
			if (tx_ring->buffer_info[i].skb)
				dev_kfree_skb(tx_ring->buffer_info[i].skb);
		}
	}

	if (rx_ring->desc && rx_ring->buffer_info) {
		for (i = 0; i < rx_ring->count; i++) {
			if (rx_ring->buffer_info[i].dma)
1029
				dma_unmap_single(&pdev->dev,
1030
					rx_ring->buffer_info[i].dma,
1031
					2048, DMA_FROM_DEVICE);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			if (rx_ring->buffer_info[i].skb)
				dev_kfree_skb(rx_ring->buffer_info[i].skb);
		}
	}

	if (tx_ring->desc) {
		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
				  tx_ring->dma);
		tx_ring->desc = NULL;
	}
	if (rx_ring->desc) {
		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
				  rx_ring->dma);
		rx_ring->desc = NULL;
	}

	kfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;
	kfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;
}

static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	int i;
	int ret_val;

	/* Setup Tx descriptor ring and Tx buffers */

	if (!tx_ring->count)
		tx_ring->count = E1000_DEFAULT_TXD;

1069 1070 1071 1072
	tx_ring->buffer_info = kcalloc(tx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(tx_ring->buffer_info)) {
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		ret_val = 1;
		goto err_nomem;
	}

	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		ret_val = 2;
		goto err_nomem;
	}
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

1088
	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1089
	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1090
	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1091 1092
	ew32(TDH, 0);
	ew32(TDT, 0);
1093 1094 1095
	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

	for (i = 0; i < tx_ring->count; i++) {
		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
		struct sk_buff *skb;
		unsigned int skb_size = 1024;

		skb = alloc_skb(skb_size, GFP_KERNEL);
		if (!skb) {
			ret_val = 3;
			goto err_nomem;
		}
		skb_put(skb, skb_size);
		tx_ring->buffer_info[i].skb = skb;
		tx_ring->buffer_info[i].length = skb->len;
		tx_ring->buffer_info[i].dma =
1111 1112 1113 1114
			dma_map_single(&pdev->dev, skb->data, skb->len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(&pdev->dev,
				      tx_ring->buffer_info[i].dma)) {
1115 1116 1117
			ret_val = 4;
			goto err_nomem;
		}
1118
		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1119 1120 1121
		tx_desc->lower.data = cpu_to_le32(skb->len);
		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
						   E1000_TXD_CMD_IFCS |
1122
						   E1000_TXD_CMD_RS);
1123 1124 1125 1126 1127 1128 1129 1130
		tx_desc->upper.data = 0;
	}

	/* Setup Rx descriptor ring and Rx buffers */

	if (!rx_ring->count)
		rx_ring->count = E1000_DEFAULT_RXD;

1131 1132 1133 1134
	rx_ring->buffer_info = kcalloc(rx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(rx_ring->buffer_info)) {
1135 1136 1137 1138
		ret_val = 5;
		goto err_nomem;
	}

1139
	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->desc) {
		ret_val = 6;
		goto err_nomem;
	}
	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;

	rctl = er32(RCTL);
1150 1151
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1152 1153 1154 1155 1156 1157
	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
	ew32(RDLEN, rx_ring->size);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1158 1159
		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1160 1161 1162 1163 1164
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
	ew32(RCTL, rctl);

	for (i = 0; i < rx_ring->count; i++) {
1165
		union e1000_rx_desc_extended *rx_desc;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		struct sk_buff *skb;

		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
		if (!skb) {
			ret_val = 7;
			goto err_nomem;
		}
		skb_reserve(skb, NET_IP_ALIGN);
		rx_ring->buffer_info[i].skb = skb;
		rx_ring->buffer_info[i].dma =
1176 1177 1178 1179
			dma_map_single(&pdev->dev, skb->data, 2048,
				       DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev,
				      rx_ring->buffer_info[i].dma)) {
1180 1181 1182
			ret_val = 8;
			goto err_nomem;
		}
1183 1184 1185
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr =
		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		memset(skb->data, 0x00, skb->len);
	}

	return 0;

err_nomem:
	e1000_free_desc_rings(adapter);
	return ret_val;
}

static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
	e1e_wphy(&adapter->hw, 29, 0x001F);
	e1e_wphy(&adapter->hw, 30, 0x8FFC);
	e1e_wphy(&adapter->hw, 29, 0x001A);
	e1e_wphy(&adapter->hw, 30, 0x8FF0);
}

static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_reg = 0;
1209
	u16 phy_reg = 0;
1210
	s32 ret_val = 0;
1211

1212
	hw->mac.autoneg = 0;
1213

1214
	if (hw->phy.type == e1000_phy_ife) {
1215 1216 1217 1218
		/* force 100, set loopback */
		e1e_wphy(hw, PHY_CONTROL, 0x6100);

		/* Now set up the MAC to the same speed/duplex as the PHY. */
1219
		ctrl_reg = er32(CTRL);
1220 1221 1222 1223 1224
		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1225 1226

		ew32(CTRL, ctrl_reg);
1227
		e1e_flush();
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		udelay(500);

		return 0;
	}

	/* Specific PHY configuration for loopback */
	switch (hw->phy.type) {
	case e1000_phy_m88:
		/* Auto-MDI/MDIX Off */
		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
		/* reset to update Auto-MDI/MDIX */
		e1e_wphy(hw, PHY_CONTROL, 0x9140);
		/* autoneg off */
		e1e_wphy(hw, PHY_CONTROL, 0x8140);
		break;
	case e1000_phy_gg82563:
		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1245
		break;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	case e1000_phy_bm:
		/* Set Default MAC Interface speed to 1GB */
		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
		phy_reg &= ~0x0007;
		phy_reg |= 0x006;
		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
		/* Assert SW reset for above settings to take effect */
		e1000e_commit_phy(hw);
		mdelay(1);
		/* Force Full Duplex */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
		/* Set Link Up (in force link) */
		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
		/* Force Link */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
		/* Set Early Link Enable */
		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1267 1268 1269 1270
		break;
	case e1000_phy_82577:
	case e1000_phy_82578:
		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1271 1272 1273 1274 1275
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val) {
			e_err("Cannot setup 1Gbps loopback.\n");
			return ret_val;
		}
1276
		e1000_configure_k1_ich8lan(hw, false);
1277
		hw->phy.ops.release(hw);
1278
		break;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	case e1000_phy_82579:
		/* Disable PHY energy detect power down */
		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
		/* Disable full chip energy detect */
		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
		/* Enable loopback on the PHY */
#define I82577_PHY_LBK_CTRL          19
		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
		break;
1290
	default:
1291 1292
		break;
	}
1293

1294 1295 1296
	/* force 1000, set loopback */
	e1e_wphy(hw, PHY_CONTROL, 0x4140);
	mdelay(250);
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	/* Now set up the MAC to the same speed/duplex as the PHY. */
	ctrl_reg = er32(CTRL);
	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
		     E1000_CTRL_FD);	 /* Force Duplex to FULL */

	if (adapter->flags & FLAG_IS_ICH)
		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1308

1309 1310
	if (hw->phy.media_type == e1000_media_type_copper &&
	    hw->phy.type == e1000_phy_m88) {
1311 1312
		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
	} else {
1313 1314 1315 1316
		/*
		 * Set the ILOS bit on the fiber Nic if half duplex link is
		 * detected.
		 */
1317
		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1318 1319 1320 1321 1322
			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
	}

	ew32(CTRL, ctrl_reg);

1323 1324
	/*
	 * Disable the receiver on the PHY so when a cable is plugged in, the
1325 1326
	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
	 */
1327
	if (hw->phy.type == e1000_phy_m88)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		e1000_phy_disable_receiver(adapter);

	udelay(500);

	return 0;
}

static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);
	int link = 0;

	/* special requirements for 82571/82572 fiber adapters */

1343 1344 1345 1346
	/*
	 * jump through hoops to make sure link is up because serdes
	 * link is hardwired up
	 */
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	ctrl |= E1000_CTRL_SLU;
	ew32(CTRL, ctrl);

	/* disable autoneg */
	ctrl = er32(TXCW);
	ctrl &= ~(1 << 31);
	ew32(TXCW, ctrl);

	link = (er32(STATUS) & E1000_STATUS_LU);

	if (!link) {
		/* set invert loss of signal */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_ILOS;
		ew32(CTRL, ctrl);
	}

1364 1365 1366 1367
	/*
	 * special write to serdes control register to enable SerDes analog
	 * loopback
	 */
1368 1369
#define E1000_SERDES_LB_ON 0x410
	ew32(SCTL, E1000_SERDES_LB_ON);
1370
	e1e_flush();
1371
	usleep_range(10000, 20000);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	return 0;
}

/* only call this for fiber/serdes connections to es2lan */
static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrlext = er32(CTRL_EXT);
	u32 ctrl = er32(CTRL);

1383 1384 1385 1386
	/*
	 * save CTRL_EXT to restore later, reuse an empty variable (unused
	 * on mac_type 80003es2lan)
	 */
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	adapter->tx_fifo_head = ctrlext;

	/* clear the serdes mode bits, putting the device into mac loopback */
	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
	ew32(CTRL_EXT, ctrlext);

	/* force speed to 1000/FD, link up */
	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
	ew32(CTRL, ctrl);

	/* set mac loopback */
	ctrl = er32(RCTL);
	ctrl |= E1000_RCTL_LBM_MAC;
	ew32(RCTL, ctrl);

	/* set testing mode parameters (no need to reset later) */
#define KMRNCTRLSTA_OPMODE (0x1F << 16)
#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
	ew32(KMRNCTRLSTA,
1408
	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1409 1410 1411 1412 1413 1414 1415 1416 1417

	return 0;
}

static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

1418 1419
	if (hw->phy.media_type == e1000_media_type_fiber ||
	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		switch (hw->mac.type) {
		case e1000_80003es2lan:
			return e1000_set_es2lan_mac_loopback(adapter);
			break;
		case e1000_82571:
		case e1000_82572:
			return e1000_set_82571_fiber_loopback(adapter);
			break;
		default:
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_LBM_TCVR;
			ew32(RCTL, rctl);
			return 0;
		}
1434
	} else if (hw->phy.media_type == e1000_media_type_copper) {
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		return e1000_integrated_phy_loopback(adapter);
	}

	return 7;
}

static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u16 phy_reg;

	rctl = er32(RCTL);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
	ew32(RCTL, rctl);

	switch (hw->mac.type) {
	case e1000_80003es2lan:
1453 1454
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1455
			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1456
			ew32(CTRL_EXT, adapter->tx_fifo_head);
1457 1458 1459 1460 1461
			adapter->tx_fifo_head = 0;
		}
		/* fall through */
	case e1000_82571:
	case e1000_82572:
1462 1463
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1464 1465
#define E1000_SERDES_LB_OFF 0x400
			ew32(SCTL, E1000_SERDES_LB_OFF);
1466
			e1e_flush();
1467
			usleep_range(10000, 20000);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			break;
		}
		/* Fall Through */
	default:
		hw->mac.autoneg = 1;
		if (hw->phy.type == e1000_phy_gg82563)
			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
		if (phy_reg & MII_CR_LOOPBACK) {
			phy_reg &= ~MII_CR_LOOPBACK;
			e1e_wphy(hw, PHY_CONTROL, phy_reg);
			e1000e_commit_phy(hw);
		}
		break;
	}
}

static void e1000_create_lbtest_frame(struct sk_buff *skb,
				      unsigned int frame_size)
{
	memset(skb->data, 0xFF, frame_size);
	frame_size &= ~1;
	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}

static int e1000_check_lbtest_frame(struct sk_buff *skb,
				    unsigned int frame_size)
{
	frame_size &= ~1;
	if (*(skb->data + 3) == 0xFF)
		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
			return 0;
	return 13;
}

static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	int i, j, k, l;
	int lc;
	int good_cnt;
	int ret_val = 0;
	unsigned long time;

	ew32(RDT, rx_ring->count - 1);

1520 1521
	/*
	 * Calculate the loop count based on the largest descriptor ring
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	 * The idea is to wrap the largest ring a number of times using 64
	 * send/receive pairs during each loop
	 */

	if (rx_ring->count <= tx_ring->count)
		lc = ((tx_ring->count / 64) * 2) + 1;
	else
		lc = ((rx_ring->count / 64) * 2) + 1;

	k = 0;
	l = 0;
	for (j = 0; j <= lc; j++) { /* loop count loop */
		for (i = 0; i < 64; i++) { /* send the packets */
1535 1536
			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
						  1024);
1537
			dma_sync_single_for_device(&pdev->dev,
1538 1539
					tx_ring->buffer_info[k].dma,
					tx_ring->buffer_info[k].length,
1540
					DMA_TO_DEVICE);
1541 1542 1543 1544 1545
			k++;
			if (k == tx_ring->count)
				k = 0;
		}
		ew32(TDT, k);
1546
		e1e_flush();
1547 1548 1549 1550
		msleep(200);
		time = jiffies; /* set the start time for the receive */
		good_cnt = 0;
		do { /* receive the sent packets */
1551
			dma_sync_single_for_cpu(&pdev->dev,
1552
					rx_ring->buffer_info[l].dma, 2048,
1553
					DMA_FROM_DEVICE);
1554 1555 1556 1557 1558 1559 1560 1561

			ret_val = e1000_check_lbtest_frame(
					rx_ring->buffer_info[l].skb, 1024);
			if (!ret_val)
				good_cnt++;
			l++;
			if (l == rx_ring->count)
				l = 0;
1562 1563
			/*
			 * time + 20 msecs (200 msecs on 2.4) is more than
1564 1565 1566 1567 1568 1569 1570 1571
			 * enough time to complete the receives, if it's
			 * exceeded, break and error off
			 */
		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
		if (good_cnt != 64) {
			ret_val = 13; /* ret_val is the same as mis-compare */
			break;
		}
1572
		if (jiffies >= (time + 20)) {
1573 1574 1575 1576 1577 1578 1579 1580 1581
			ret_val = 14; /* error code for time out error */
			break;
		}
	} /* end loop count loop */
	return ret_val;
}

static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
1582 1583 1584 1585
	/*
	 * PHY loopback cannot be performed if SoL/IDER
	 * sessions are active
	 */
1586
	if (e1000_check_reset_block(&adapter->hw)) {
1587
		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1588 1589 1590 1591 1592
		*data = 0;
		goto out;
	}

	*data = e1000_setup_desc_rings(adapter);
A
Adrian Bunk 已提交
1593
	if (*data)
1594 1595 1596
		goto out;

	*data = e1000_setup_loopback_test(adapter);
A
Adrian Bunk 已提交
1597
	if (*data)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		goto err_loopback;

	*data = e1000_run_loopback_test(adapter);
	e1000_loopback_cleanup(adapter);

err_loopback:
	e1000_free_desc_rings(adapter);
out:
	return *data;
}

static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;

	*data = 0;
1614
	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1615
		int i = 0;
1616
		hw->mac.serdes_has_link = false;
1617

1618 1619 1620 1621
		/*
		 * On some blade server designs, link establishment
		 * could take as long as 2-3 minutes
		 */
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		do {
			hw->mac.ops.check_for_link(hw);
			if (hw->mac.serdes_has_link)
				return *data;
			msleep(20);
		} while (i++ < 3750);

		*data = 1;
	} else {
		hw->mac.ops.check_for_link(hw);
		if (hw->mac.autoneg)
1633 1634 1635 1636 1637
			/*
			 * On some Phy/switch combinations, link establishment
			 * can take a few seconds more than expected.
			 */
			msleep(5000);
1638

1639
		if (!(er32(STATUS) & E1000_STATUS_LU))
1640 1641 1642 1643 1644
			*data = 1;
	}
	return *data;
}

1645
static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1646
{
1647 1648 1649 1650 1651 1652 1653 1654
	switch (sset) {
	case ETH_SS_TEST:
		return E1000_TEST_LEN;
	case ETH_SS_STATS:
		return E1000_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
}

static void e1000_diag_test(struct net_device *netdev,
			    struct ethtool_test *eth_test, u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	u16 autoneg_advertised;
	u8 forced_speed_duplex;
	u8 autoneg;
	bool if_running = netif_running(netdev);

	set_bit(__E1000_TESTING, &adapter->state);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

	if (!if_running) {
		/* Get control of and reset hardware */
		if (adapter->flags & FLAG_HAS_AMT)
			e1000e_get_hw_control(adapter);

		e1000e_power_up_phy(adapter);

		adapter->hw.phy.autoneg_wait_to_complete = 1;
		e1000e_reset(adapter);
		adapter->hw.phy.autoneg_wait_to_complete = 0;
	}

1680 1681 1682 1683 1684 1685 1686 1687
	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
		/* Offline tests */

		/* save speed, duplex, autoneg settings */
		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
		autoneg = adapter->hw.mac.autoneg;

1688
		e_info("offline testing starting\n");
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

		if (if_running)
			/* indicate we're in test mode */
			dev_close(netdev);

		if (e1000_reg_test(adapter, &data[0]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_eeprom_test(adapter, &data[1]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_intr_test(adapter, &data[2]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_loopback_test(adapter, &data[3]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

1709 1710 1711 1712 1713 1714 1715 1716
		/* force this routine to wait until autoneg complete/timeout */
		adapter->hw.phy.autoneg_wait_to_complete = 1;
		e1000e_reset(adapter);
		adapter->hw.phy.autoneg_wait_to_complete = 0;

		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		/* restore speed, duplex, autoneg settings */
		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
		adapter->hw.mac.autoneg = autoneg;
		e1000e_reset(adapter);

		clear_bit(__E1000_TESTING, &adapter->state);
		if (if_running)
			dev_open(netdev);
	} else {
1727
		/* Online tests */
1728

1729
		e_info("online testing starting\n");
1730

1731
		/* register, eeprom, intr and loopback tests not run online */
1732 1733 1734 1735 1736
		data[0] = 0;
		data[1] = 0;
		data[2] = 0;
		data[3] = 0;

1737 1738
		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;
1739

1740 1741
		clear_bit(__E1000_TESTING, &adapter->state);
	}
1742 1743 1744 1745 1746 1747 1748 1749

	if (!if_running) {
		e1000e_reset(adapter);

		if (adapter->flags & FLAG_HAS_AMT)
			e1000e_release_hw_control(adapter);
	}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	msleep_interruptible(4 * 1000);
}

static void e1000_get_wol(struct net_device *netdev,
			  struct ethtool_wolinfo *wol)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	wol->supported = 0;
	wol->wolopts = 0;

1761 1762
	if (!(adapter->flags & FLAG_HAS_WOL) ||
	    !device_can_wakeup(&adapter->pdev->dev))
1763 1764 1765
		return;

	wol->supported = WAKE_UCAST | WAKE_MCAST |
1766
	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1767 1768 1769 1770 1771 1772

	/* apply any specific unsupported masks here */
	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
		wol->supported &= ~WAKE_UCAST;

		if (adapter->wol & E1000_WUFC_EX)
1773 1774
			e_err("Interface does not support directed (unicast) "
			      "frame wake-up packets\n");
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	}

	if (adapter->wol & E1000_WUFC_EX)
		wol->wolopts |= WAKE_UCAST;
	if (adapter->wol & E1000_WUFC_MC)
		wol->wolopts |= WAKE_MCAST;
	if (adapter->wol & E1000_WUFC_BC)
		wol->wolopts |= WAKE_BCAST;
	if (adapter->wol & E1000_WUFC_MAG)
		wol->wolopts |= WAKE_MAGIC;
1785 1786
	if (adapter->wol & E1000_WUFC_LNKC)
		wol->wolopts |= WAKE_PHY;
1787 1788
}

1789
static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1790 1791 1792
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

1793
	if (!(adapter->flags & FLAG_HAS_WOL) ||
1794 1795
	    !device_can_wakeup(&adapter->pdev->dev) ||
	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1796
			      WAKE_MAGIC | WAKE_PHY)))
1797
		return -EOPNOTSUPP;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

	/* these settings will always override what we currently have */
	adapter->wol = 0;

	if (wol->wolopts & WAKE_UCAST)
		adapter->wol |= E1000_WUFC_EX;
	if (wol->wolopts & WAKE_MCAST)
		adapter->wol |= E1000_WUFC_MC;
	if (wol->wolopts & WAKE_BCAST)
		adapter->wol |= E1000_WUFC_BC;
	if (wol->wolopts & WAKE_MAGIC)
		adapter->wol |= E1000_WUFC_MAG;
1810 1811
	if (wol->wolopts & WAKE_PHY)
		adapter->wol |= E1000_WUFC_LNKC;
1812

1813 1814
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);

1815 1816 1817
	return 0;
}

1818 1819
static int e1000_set_phys_id(struct net_device *netdev,
			     enum ethtool_phys_id_state state)
1820 1821
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
1822
	struct e1000_hw *hw = &adapter->hw;
1823

1824 1825 1826 1827
	switch (state) {
	case ETHTOOL_ID_ACTIVE:
		if (!hw->mac.ops.blink_led)
			return 2;	/* cycle on/off twice per second */
1828

1829 1830 1831 1832
		hw->mac.ops.blink_led(hw);
		break;

	case ETHTOOL_ID_INACTIVE:
1833 1834
		if (hw->phy.type == e1000_phy_ife)
			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1835 1836 1837
		hw->mac.ops.led_off(hw);
		hw->mac.ops.cleanup_led(hw);
		break;
1838

1839 1840 1841
	case ETHTOOL_ID_ON:
		adapter->hw.mac.ops.led_on(&adapter->hw);
		break;
1842

1843 1844 1845 1846
	case ETHTOOL_ID_OFF:
		adapter->hw.mac.ops.led_off(&adapter->hw);
		break;
	}
1847 1848 1849
	return 0;
}

1850 1851 1852 1853 1854
static int e1000_get_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

1855
	if (adapter->itr_setting <= 4)
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
		ec->rx_coalesce_usecs = adapter->itr_setting;
	else
		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;

	return 0;
}

static int e1000_set_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1870
	    ((ec->rx_coalesce_usecs > 4) &&
1871 1872 1873 1874
	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
	    (ec->rx_coalesce_usecs == 2))
		return -EINVAL;

1875 1876 1877
	if (ec->rx_coalesce_usecs == 4) {
		adapter->itr = adapter->itr_setting = 4;
	} else if (ec->rx_coalesce_usecs <= 3) {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		adapter->itr = 20000;
		adapter->itr_setting = ec->rx_coalesce_usecs;
	} else {
		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
		adapter->itr_setting = adapter->itr & ~3;
	}

	if (adapter->itr_setting != 0)
		ew32(ITR, 1000000000 / (adapter->itr * 256));
	else
		ew32(ITR, 0);

	return 0;
}

1893 1894 1895
static int e1000_nway_reset(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
1896 1897 1898 1899 1900 1901 1902 1903 1904

	if (!netif_running(netdev))
		return -EAGAIN;

	if (!adapter->hw.mac.autoneg)
		return -EINVAL;

	e1000e_reinit_locked(adapter);

1905 1906 1907 1908 1909 1910 1911 1912
	return 0;
}

static void e1000_get_ethtool_stats(struct net_device *netdev,
				    struct ethtool_stats *stats,
				    u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
J
Jeff Kirsher 已提交
1913
	struct rtnl_link_stats64 net_stats;
1914
	int i;
1915
	char *p = NULL;
1916

J
Jeff Kirsher 已提交
1917
	e1000e_get_stats64(netdev, &net_stats);
1918
	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1919 1920
		switch (e1000_gstrings_stats[i].type) {
		case NETDEV_STATS:
J
Jeff Kirsher 已提交
1921
			p = (char *) &net_stats +
1922 1923 1924 1925 1926 1927
					e1000_gstrings_stats[i].stat_offset;
			break;
		case E1000_STATS:
			p = (char *) adapter +
					e1000_gstrings_stats[i].stat_offset;
			break;
1928 1929 1930
		default:
			data[i] = 0;
			continue;
1931 1932
		}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
	}
}

static void e1000_get_strings(struct net_device *netdev, u32 stringset,
			      u8 *data)
{
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_TEST:
1946
		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		break;
	case ETH_SS_STATS:
		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
			memcpy(p, e1000_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		break;
	}
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static int e1000_get_rxnfc(struct net_device *netdev,
			   struct ethtool_rxnfc *info, u32 *rule_locs)
{
	info->data = 0;

	switch (info->cmd) {
	case ETHTOOL_GRXFH: {
		struct e1000_adapter *adapter = netdev_priv(netdev);
		struct e1000_hw *hw = &adapter->hw;
		u32 mrqc = er32(MRQC);

		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
			return 0;

		switch (info->flow_type) {
		case TCP_V4_FLOW:
			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
			/* fall through */
		case UDP_V4_FLOW:
		case SCTP_V4_FLOW:
		case AH_ESP_V4_FLOW:
		case IPV4_FLOW:
			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
				info->data |= RXH_IP_SRC | RXH_IP_DST;
			break;
		case TCP_V6_FLOW:
			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
			/* fall through */
		case UDP_V6_FLOW:
		case SCTP_V6_FLOW:
		case AH_ESP_V6_FLOW:
		case IPV6_FLOW:
			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
				info->data |= RXH_IP_SRC | RXH_IP_DST;
			break;
		default:
			break;
		}
		return 0;
	}
	default:
		return -EOPNOTSUPP;
	}
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static const struct ethtool_ops e1000_ethtool_ops = {
	.get_settings		= e1000_get_settings,
	.set_settings		= e1000_set_settings,
	.get_drvinfo		= e1000_get_drvinfo,
	.get_regs_len		= e1000_get_regs_len,
	.get_regs		= e1000_get_regs,
	.get_wol		= e1000_get_wol,
	.set_wol		= e1000_set_wol,
	.get_msglevel		= e1000_get_msglevel,
	.set_msglevel		= e1000_set_msglevel,
	.nway_reset		= e1000_nway_reset,
2016
	.get_link		= ethtool_op_get_link,
2017 2018 2019 2020 2021 2022 2023 2024 2025
	.get_eeprom_len		= e1000_get_eeprom_len,
	.get_eeprom		= e1000_get_eeprom,
	.set_eeprom		= e1000_set_eeprom,
	.get_ringparam		= e1000_get_ringparam,
	.set_ringparam		= e1000_set_ringparam,
	.get_pauseparam		= e1000_get_pauseparam,
	.set_pauseparam		= e1000_set_pauseparam,
	.self_test		= e1000_diag_test,
	.get_strings		= e1000_get_strings,
2026
	.set_phys_id		= e1000_set_phys_id,
2027
	.get_ethtool_stats	= e1000_get_ethtool_stats,
2028
	.get_sset_count		= e1000e_get_sset_count,
2029 2030
	.get_coalesce		= e1000_get_coalesce,
	.set_coalesce		= e1000_set_coalesce,
2031
	.get_rxnfc		= e1000_get_rxnfc,
2032 2033 2034 2035 2036 2037
};

void e1000e_set_ethtool_ops(struct net_device *netdev)
{
	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
}