atmel-sha.c 37.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Cryptographic API.
 *
 * Support for ATMEL SHA1/SHA256 HW acceleration.
 *
 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
 * Author: Nicolas Royer <nicolas@eukrea.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * Some ideas are from omap-sham.c drivers.
 */


#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>

#include <linux/device.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
33
#include <linux/of_device.h>
34 35 36 37 38 39 40 41
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/sha.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
42
#include <linux/platform_data/crypto-atmel.h>
43 44 45 46 47 48 49 50 51 52 53 54 55 56
#include "atmel-sha-regs.h"

/* SHA flags */
#define SHA_FLAGS_BUSY			BIT(0)
#define	SHA_FLAGS_FINAL			BIT(1)
#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
#define SHA_FLAGS_OUTPUT_READY	BIT(3)
#define SHA_FLAGS_INIT			BIT(4)
#define SHA_FLAGS_CPU			BIT(5)
#define SHA_FLAGS_DMA_READY		BIT(6)

#define SHA_FLAGS_FINUP		BIT(16)
#define SHA_FLAGS_SG		BIT(17)
#define SHA_FLAGS_SHA1		BIT(18)
57 58 59 60 61 62
#define SHA_FLAGS_SHA224	BIT(19)
#define SHA_FLAGS_SHA256	BIT(20)
#define SHA_FLAGS_SHA384	BIT(21)
#define SHA_FLAGS_SHA512	BIT(22)
#define SHA_FLAGS_ERROR		BIT(23)
#define SHA_FLAGS_PAD		BIT(24)
63 64 65 66 67 68 69 70

#define SHA_OP_UPDATE	1
#define SHA_OP_FINAL	2

#define SHA_BUFFER_LEN		PAGE_SIZE

#define ATMEL_SHA_DMA_THRESHOLD		56

71 72 73 74 75 76
struct atmel_sha_caps {
	bool	has_dma;
	bool	has_dualbuff;
	bool	has_sha224;
	bool	has_sha_384_512;
};
77 78 79 80 81 82 83 84

struct atmel_sha_dev;

struct atmel_sha_reqctx {
	struct atmel_sha_dev	*dd;
	unsigned long	flags;
	unsigned long	op;

85 86
	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
	u64	digcnt[2];
87 88 89 90 91 92 93 94 95
	size_t	bufcnt;
	size_t	buflen;
	dma_addr_t	dma_addr;

	/* walk state */
	struct scatterlist	*sg;
	unsigned int	offset;	/* offset in current sg */
	unsigned int	total;	/* total request */

96 97
	size_t block_size;

98 99 100 101 102 103 104 105 106 107 108 109 110
	u8	buffer[0] __aligned(sizeof(u32));
};

struct atmel_sha_ctx {
	struct atmel_sha_dev	*dd;

	unsigned long		flags;

	/* fallback stuff */
	struct crypto_shash	*fallback;

};

111 112 113 114 115 116
#define ATMEL_SHA_QUEUE_LENGTH	50

struct atmel_sha_dma {
	struct dma_chan			*chan;
	struct dma_slave_config dma_conf;
};
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

struct atmel_sha_dev {
	struct list_head	list;
	unsigned long		phys_base;
	struct device		*dev;
	struct clk			*iclk;
	int					irq;
	void __iomem		*io_base;

	spinlock_t		lock;
	int			err;
	struct tasklet_struct	done_task;

	unsigned long		flags;
	struct crypto_queue	queue;
	struct ahash_request	*req;
133 134 135 136 137 138

	struct atmel_sha_dma	dma_lch_in;

	struct atmel_sha_caps	caps;

	u32	hw_version;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
};

struct atmel_sha_drv {
	struct list_head	dev_list;
	spinlock_t		lock;
};

static struct atmel_sha_drv atmel_sha = {
	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
};

static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
{
	return readl_relaxed(dd->io_base + offset);
}

static inline void atmel_sha_write(struct atmel_sha_dev *dd,
					u32 offset, u32 value)
{
	writel_relaxed(value, dd->io_base + offset);
}

static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
{
	size_t count;

	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
		count = min(ctx->sg->length - ctx->offset, ctx->total);
		count = min(count, ctx->buflen - ctx->bufcnt);

		if (count <= 0)
			break;

		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
			ctx->offset, count, 0);

		ctx->bufcnt += count;
		ctx->offset += count;
		ctx->total -= count;

		if (ctx->offset == ctx->sg->length) {
			ctx->sg = sg_next(ctx->sg);
			if (ctx->sg)
				ctx->offset = 0;
			else
				ctx->total = 0;
		}
	}

	return 0;
}

/*
193 194 195 196 197 198
 * The purpose of this padding is to ensure that the padded message is a
 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 * The bit "1" is appended at the end of the message followed by
 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 * is appended.
199
 *
200
 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
201 202
 *  - if message length < 56 bytes then padlen = 56 - message length
 *  - else padlen = 64 + 56 - message length
203 204 205 206
 *
 * For SHA384/SHA512, padlen is calculated as followed:
 *  - if message length < 112 bytes then padlen = 112 - message length
 *  - else padlen = 128 + 112 - message length
207 208 209 210
 */
static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
{
	unsigned int index, padlen;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	u64 bits[2];
	u64 size[2];

	size[0] = ctx->digcnt[0];
	size[1] = ctx->digcnt[1];

	size[0] += ctx->bufcnt;
	if (size[0] < ctx->bufcnt)
		size[1]++;

	size[0] += length;
	if (size[0]  < length)
		size[1]++;

	bits[1] = cpu_to_be64(size[0] << 3);
	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);

	if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
		index = ctx->bufcnt & 0x7f;
		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
		*(ctx->buffer + ctx->bufcnt) = 0x80;
		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
		ctx->bufcnt += padlen + 16;
		ctx->flags |= SHA_FLAGS_PAD;
	} else {
		index = ctx->bufcnt & 0x3f;
		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
		*(ctx->buffer + ctx->bufcnt) = 0x80;
		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
		ctx->bufcnt += padlen + 8;
		ctx->flags |= SHA_FLAGS_PAD;
	}
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
}

static int atmel_sha_init(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	struct atmel_sha_dev *dd = NULL;
	struct atmel_sha_dev *tmp;

	spin_lock_bh(&atmel_sha.lock);
	if (!tctx->dd) {
		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
			dd = tmp;
			break;
		}
		tctx->dd = dd;
	} else {
		dd = tctx->dd;
	}

	spin_unlock_bh(&atmel_sha.lock);

	ctx->dd = dd;

	ctx->flags = 0;

	dev_dbg(dd->dev, "init: digest size: %d\n",
		crypto_ahash_digestsize(tfm));

275 276
	switch (crypto_ahash_digestsize(tfm)) {
	case SHA1_DIGEST_SIZE:
277
		ctx->flags |= SHA_FLAGS_SHA1;
278 279 280 281 282 283 284
		ctx->block_size = SHA1_BLOCK_SIZE;
		break;
	case SHA224_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA224;
		ctx->block_size = SHA224_BLOCK_SIZE;
		break;
	case SHA256_DIGEST_SIZE:
285
		ctx->flags |= SHA_FLAGS_SHA256;
286 287 288 289 290 291 292 293 294 295 296 297 298 299
		ctx->block_size = SHA256_BLOCK_SIZE;
		break;
	case SHA384_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA384;
		ctx->block_size = SHA384_BLOCK_SIZE;
		break;
	case SHA512_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA512;
		ctx->block_size = SHA512_BLOCK_SIZE;
		break;
	default:
		return -EINVAL;
		break;
	}
300 301

	ctx->bufcnt = 0;
302 303
	ctx->digcnt[0] = 0;
	ctx->digcnt[1] = 0;
304 305 306 307 308 309 310 311 312 313 314
	ctx->buflen = SHA_BUFFER_LEN;

	return 0;
}

static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
	u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;

	if (likely(dma)) {
315 316
		if (!dd->caps.has_dma)
			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
317
		valmr = SHA_MR_MODE_PDC;
318 319
		if (dd->caps.has_dualbuff)
			valmr |= SHA_MR_DUALBUFF;
320 321 322 323
	} else {
		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
	}

324 325 326 327 328
	if (ctx->flags & SHA_FLAGS_SHA1)
		valmr |= SHA_MR_ALGO_SHA1;
	else if (ctx->flags & SHA_FLAGS_SHA224)
		valmr |= SHA_MR_ALGO_SHA224;
	else if (ctx->flags & SHA_FLAGS_SHA256)
329
		valmr |= SHA_MR_ALGO_SHA256;
330 331 332 333
	else if (ctx->flags & SHA_FLAGS_SHA384)
		valmr |= SHA_MR_ALGO_SHA384;
	else if (ctx->flags & SHA_FLAGS_SHA512)
		valmr |= SHA_MR_ALGO_SHA512;
334 335

	/* Setting CR_FIRST only for the first iteration */
336
	if (!(ctx->digcnt[0] || ctx->digcnt[1]))
337 338 339 340 341 342 343 344 345 346 347 348 349
		valcr = SHA_CR_FIRST;

	atmel_sha_write(dd, SHA_CR, valcr);
	atmel_sha_write(dd, SHA_MR, valmr);
}

static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
			      size_t length, int final)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
	int count, len32;
	const u32 *buffer = (const u32 *)buf;

350 351
	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
		ctx->digcnt[1], ctx->digcnt[0], length, final);
352 353 354 355

	atmel_sha_write_ctrl(dd, 0);

	/* should be non-zero before next lines to disable clocks later */
356 357 358
	ctx->digcnt[0] += length;
	if (ctx->digcnt[0] < length)
		ctx->digcnt[1]++;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	if (final)
		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */

	len32 = DIV_ROUND_UP(length, sizeof(u32));

	dd->flags |= SHA_FLAGS_CPU;

	for (count = 0; count < len32; count++)
		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);

	return -EINPROGRESS;
}

static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
	int len32;

379 380
	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
		ctx->digcnt[1], ctx->digcnt[0], length1, final);
381 382 383 384 385 386 387 388 389 390 391 392 393

	len32 = DIV_ROUND_UP(length1, sizeof(u32));
	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
	atmel_sha_write(dd, SHA_TPR, dma_addr1);
	atmel_sha_write(dd, SHA_TCR, len32);

	len32 = DIV_ROUND_UP(length2, sizeof(u32));
	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
	atmel_sha_write(dd, SHA_TNCR, len32);

	atmel_sha_write_ctrl(dd, 1);

	/* should be non-zero before next lines to disable clocks later */
394 395 396
	ctx->digcnt[0] += length1;
	if (ctx->digcnt[0] < length1)
		ctx->digcnt[1]++;
397 398 399 400 401 402 403 404 405 406 407 408

	if (final)
		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */

	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;

	/* Start DMA transfer */
	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);

	return -EINPROGRESS;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static void atmel_sha_dma_callback(void *data)
{
	struct atmel_sha_dev *dd = data;

	/* dma_lch_in - completed - wait DATRDY */
	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
}

static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
	struct dma_async_tx_descriptor	*in_desc;
	struct scatterlist sg[2];

	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
		ctx->digcnt[1], ctx->digcnt[0], length1, final);

	if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
			SHA_FLAGS_SHA256)) {
		dd->dma_lch_in.dma_conf.src_maxburst = 16;
		dd->dma_lch_in.dma_conf.dst_maxburst = 16;
	} else {
		dd->dma_lch_in.dma_conf.src_maxburst = 32;
		dd->dma_lch_in.dma_conf.dst_maxburst = 32;
	}

	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);

	if (length2) {
		sg_init_table(sg, 2);
		sg_dma_address(&sg[0]) = dma_addr1;
		sg_dma_len(&sg[0]) = length1;
		sg_dma_address(&sg[1]) = dma_addr2;
		sg_dma_len(&sg[1]) = length2;
		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	} else {
		sg_init_table(sg, 1);
		sg_dma_address(&sg[0]) = dma_addr1;
		sg_dma_len(&sg[0]) = length1;
		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	}
	if (!in_desc)
		return -EINVAL;

	in_desc->callback = atmel_sha_dma_callback;
	in_desc->callback_param = dd;

	atmel_sha_write_ctrl(dd, 1);

	/* should be non-zero before next lines to disable clocks later */
	ctx->digcnt[0] += length1;
	if (ctx->digcnt[0] < length1)
		ctx->digcnt[1]++;

	if (final)
		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */

	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;

	/* Start DMA transfer */
	dmaengine_submit(in_desc);
	dma_async_issue_pending(dd->dma_lch_in.chan);

	return -EINPROGRESS;
}

static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
	if (dd->caps.has_dma)
		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
				dma_addr2, length2, final);
	else
		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
				dma_addr2, length2, final);
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
	int bufcnt;

	atmel_sha_append_sg(ctx);
	atmel_sha_fill_padding(ctx, 0);
	bufcnt = ctx->bufcnt;
	ctx->bufcnt = 0;

	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
}

static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
					struct atmel_sha_reqctx *ctx,
					size_t length, int final)
{
	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
507
				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
508 509
	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
		dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
510
				ctx->block_size);
511 512 513 514 515 516
		return -EINVAL;
	}

	ctx->flags &= ~SHA_FLAGS_SG;

	/* next call does not fail... so no unmap in the case of error */
517
	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
518 519 520 521 522 523 524 525 526 527 528 529
}

static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
	unsigned int final;
	size_t count;

	atmel_sha_append_sg(ctx);

	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;

530 531
	dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

	if (final)
		atmel_sha_fill_padding(ctx, 0);

	if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
		count = ctx->bufcnt;
		ctx->bufcnt = 0;
		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
	}

	return 0;
}

static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
	unsigned int length, final, tail;
	struct scatterlist *sg;
	unsigned int count;

	if (!ctx->total)
		return 0;

	if (ctx->bufcnt || ctx->offset)
		return atmel_sha_update_dma_slow(dd);

558 559
	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
560 561 562 563 564 565

	sg = ctx->sg;

	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
		return atmel_sha_update_dma_slow(dd);

566 567
	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
		/* size is not ctx->block_size aligned */
568 569 570 571 572 573
		return atmel_sha_update_dma_slow(dd);

	length = min(ctx->total, sg->length);

	if (sg_is_last(sg)) {
		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
574 575
			/* not last sg must be ctx->block_size aligned */
			tail = length & (ctx->block_size - 1);
576 577 578 579 580 581 582 583 584 585 586
			length -= tail;
		}
	}

	ctx->total -= length;
	ctx->offset = length; /* offset where to start slow */

	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;

	/* Add padding */
	if (final) {
587
		tail = length & (ctx->block_size - 1);
588 589 590 591 592 593 594 595 596 597
		length -= tail;
		ctx->total += tail;
		ctx->offset = length; /* offset where to start slow */

		sg = ctx->sg;
		atmel_sha_append_sg(ctx);

		atmel_sha_fill_padding(ctx, length);

		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
598
			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
599 600
		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
			dev_err(dd->dev, "dma %u bytes error\n",
601
				ctx->buflen + ctx->block_size);
602 603 604 605 606 607 608
			return -EINVAL;
		}

		if (length == 0) {
			ctx->flags &= ~SHA_FLAGS_SG;
			count = ctx->bufcnt;
			ctx->bufcnt = 0;
609
			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
610 611 612 613 614 615 616 617 618 619 620 621 622
					0, final);
		} else {
			ctx->sg = sg;
			if (!dma_map_sg(dd->dev, ctx->sg, 1,
				DMA_TO_DEVICE)) {
					dev_err(dd->dev, "dma_map_sg  error\n");
					return -EINVAL;
			}

			ctx->flags |= SHA_FLAGS_SG;

			count = ctx->bufcnt;
			ctx->bufcnt = 0;
623
			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
624 625 626 627 628 629 630 631 632 633 634 635
					length, ctx->dma_addr, count, final);
		}
	}

	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
		dev_err(dd->dev, "dma_map_sg  error\n");
		return -EINVAL;
	}

	ctx->flags |= SHA_FLAGS_SG;

	/* next call does not fail... so no unmap in the case of error */
636
	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
637 638 639 640 641 642 643 644 645 646 647 648 649 650
								0, final);
}

static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);

	if (ctx->flags & SHA_FLAGS_SG) {
		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
		if (ctx->sg->length == ctx->offset) {
			ctx->sg = sg_next(ctx->sg);
			if (ctx->sg)
				ctx->offset = 0;
		}
651
		if (ctx->flags & SHA_FLAGS_PAD) {
652
			dma_unmap_single(dd->dev, ctx->dma_addr,
653 654
				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
		}
655 656
	} else {
		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
657
						ctx->block_size, DMA_TO_DEVICE);
658 659 660 661 662 663 664 665 666 667 668
	}

	return 0;
}

static int atmel_sha_update_req(struct atmel_sha_dev *dd)
{
	struct ahash_request *req = dd->req;
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	int err;

669 670
	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
671 672 673 674 675 676 677

	if (ctx->flags & SHA_FLAGS_CPU)
		err = atmel_sha_update_cpu(dd);
	else
		err = atmel_sha_update_dma_start(dd);

	/* wait for dma completion before can take more data */
678 679
	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
			err, ctx->digcnt[1], ctx->digcnt[0]);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	return err;
}

static int atmel_sha_final_req(struct atmel_sha_dev *dd)
{
	struct ahash_request *req = dd->req;
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	int err = 0;
	int count;

	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
		atmel_sha_fill_padding(ctx, 0);
		count = ctx->bufcnt;
		ctx->bufcnt = 0;
		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
	}
	/* faster to handle last block with cpu */
	else {
		atmel_sha_fill_padding(ctx, 0);
		count = ctx->bufcnt;
		ctx->bufcnt = 0;
		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
	}

	dev_dbg(dd->dev, "final_req: err: %d\n", err);

	return err;
}

static void atmel_sha_copy_hash(struct ahash_request *req)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	u32 *hash = (u32 *)ctx->digest;
	int i;

716
	if (ctx->flags & SHA_FLAGS_SHA1)
717 718
		for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
719 720 721 722
	else if (ctx->flags & SHA_FLAGS_SHA224)
		for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
	else if (ctx->flags & SHA_FLAGS_SHA256)
723 724
		for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
725 726 727 728 729 730
	else if (ctx->flags & SHA_FLAGS_SHA384)
		for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
	else
		for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
731 732 733 734 735 736 737 738 739
}

static void atmel_sha_copy_ready_hash(struct ahash_request *req)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);

	if (!req->result)
		return;

740
	if (ctx->flags & SHA_FLAGS_SHA1)
741
		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
742 743 744
	else if (ctx->flags & SHA_FLAGS_SHA224)
		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
	else if (ctx->flags & SHA_FLAGS_SHA256)
745
		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
746 747 748 749
	else if (ctx->flags & SHA_FLAGS_SHA384)
		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
	else
		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
750 751 752 753 754 755 756 757
}

static int atmel_sha_finish(struct ahash_request *req)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	struct atmel_sha_dev *dd = ctx->dd;
	int err = 0;

758
	if (ctx->digcnt[0] || ctx->digcnt[1])
759 760
		atmel_sha_copy_ready_hash(req);

761 762
	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
		ctx->digcnt[0], ctx->bufcnt);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	return err;
}

static void atmel_sha_finish_req(struct ahash_request *req, int err)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	struct atmel_sha_dev *dd = ctx->dd;

	if (!err) {
		atmel_sha_copy_hash(req);
		if (SHA_FLAGS_FINAL & dd->flags)
			err = atmel_sha_finish(req);
	} else {
		ctx->flags |= SHA_FLAGS_ERROR;
	}

	/* atomic operation is not needed here */
	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
			SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);

	clk_disable_unprepare(dd->iclk);

	if (req->base.complete)
		req->base.complete(&req->base, err);

	/* handle new request */
	tasklet_schedule(&dd->done_task);
}

static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
{
	clk_prepare_enable(dd->iclk);

797
	if (!(SHA_FLAGS_INIT & dd->flags)) {
798 799 800 801 802 803 804 805
		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
		dd->flags |= SHA_FLAGS_INIT;
		dd->err = 0;
	}

	return 0;
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
{
	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
}

static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
{
	atmel_sha_hw_init(dd);

	dd->hw_version = atmel_sha_get_version(dd);

	dev_info(dd->dev,
			"version: 0x%x\n", dd->hw_version);

	clk_disable_unprepare(dd->iclk);
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
				  struct ahash_request *req)
{
	struct crypto_async_request *async_req, *backlog;
	struct atmel_sha_reqctx *ctx;
	unsigned long flags;
	int err = 0, ret = 0;

	spin_lock_irqsave(&dd->lock, flags);
	if (req)
		ret = ahash_enqueue_request(&dd->queue, req);

	if (SHA_FLAGS_BUSY & dd->flags) {
		spin_unlock_irqrestore(&dd->lock, flags);
		return ret;
	}

	backlog = crypto_get_backlog(&dd->queue);
	async_req = crypto_dequeue_request(&dd->queue);
	if (async_req)
		dd->flags |= SHA_FLAGS_BUSY;

	spin_unlock_irqrestore(&dd->lock, flags);

	if (!async_req)
		return ret;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

	req = ahash_request_cast(async_req);
	dd->req = req;
	ctx = ahash_request_ctx(req);

	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
						ctx->op, req->nbytes);

	err = atmel_sha_hw_init(dd);

	if (err)
		goto err1;

	if (ctx->op == SHA_OP_UPDATE) {
		err = atmel_sha_update_req(dd);
867
		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
			/* no final() after finup() */
			err = atmel_sha_final_req(dd);
	} else if (ctx->op == SHA_OP_FINAL) {
		err = atmel_sha_final_req(dd);
	}

err1:
	if (err != -EINPROGRESS)
		/* done_task will not finish it, so do it here */
		atmel_sha_finish_req(req, err);

	dev_dbg(dd->dev, "exit, err: %d\n", err);

	return ret;
}

static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
	struct atmel_sha_dev *dd = tctx->dd;

	ctx->op = op;

	return atmel_sha_handle_queue(dd, req);
}

static int atmel_sha_update(struct ahash_request *req)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);

	if (!req->nbytes)
		return 0;

	ctx->total = req->nbytes;
	ctx->sg = req->src;
	ctx->offset = 0;

	if (ctx->flags & SHA_FLAGS_FINUP) {
		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
			/* faster to use CPU for short transfers */
			ctx->flags |= SHA_FLAGS_CPU;
	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
		atmel_sha_append_sg(ctx);
		return 0;
	}
	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
}

static int atmel_sha_final(struct ahash_request *req)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
	struct atmel_sha_dev *dd = tctx->dd;

	int err = 0;

	ctx->flags |= SHA_FLAGS_FINUP;

	if (ctx->flags & SHA_FLAGS_ERROR)
		return 0; /* uncompleted hash is not needed */

	if (ctx->bufcnt) {
		return atmel_sha_enqueue(req, SHA_OP_FINAL);
	} else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
		err = atmel_sha_hw_init(dd);
		if (err)
			goto err1;

		dd->flags |= SHA_FLAGS_BUSY;
		err = atmel_sha_final_req(dd);
	} else {
		/* copy ready hash (+ finalize hmac) */
		return atmel_sha_finish(req);
	}

err1:
	if (err != -EINPROGRESS)
		/* done_task will not finish it, so do it here */
		atmel_sha_finish_req(req, err);

	return err;
}

static int atmel_sha_finup(struct ahash_request *req)
{
	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
	int err1, err2;

	ctx->flags |= SHA_FLAGS_FINUP;

	err1 = atmel_sha_update(req);
	if (err1 == -EINPROGRESS || err1 == -EBUSY)
		return err1;

	/*
	 * final() has to be always called to cleanup resources
	 * even if udpate() failed, except EINPROGRESS
	 */
	err2 = atmel_sha_final(req);

	return err1 ?: err2;
}

static int atmel_sha_digest(struct ahash_request *req)
{
	return atmel_sha_init(req) ?: atmel_sha_finup(req);
}

static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
{
	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
	const char *alg_name = crypto_tfm_alg_name(tfm);

	/* Allocate a fallback and abort if it failed. */
	tctx->fallback = crypto_alloc_shash(alg_name, 0,
					    CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(tctx->fallback)) {
		pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
				alg_name);
		return PTR_ERR(tctx->fallback);
	}
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct atmel_sha_reqctx) +
992
				 SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	return 0;
}

static int atmel_sha_cra_init(struct crypto_tfm *tfm)
{
	return atmel_sha_cra_init_alg(tfm, NULL);
}

static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
{
	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);

	crypto_free_shash(tctx->fallback);
	tctx->fallback = NULL;
}

1010
static struct ahash_alg sha_1_256_algs[] = {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
{
	.init		= atmel_sha_init,
	.update		= atmel_sha_update,
	.final		= atmel_sha_final,
	.finup		= atmel_sha_finup,
	.digest		= atmel_sha_digest,
	.halg = {
		.digestsize	= SHA1_DIGEST_SIZE,
		.base	= {
			.cra_name		= "sha1",
			.cra_driver_name	= "atmel-sha1",
			.cra_priority		= 100,
			.cra_flags		= CRYPTO_ALG_ASYNC |
						CRYPTO_ALG_NEED_FALLBACK,
			.cra_blocksize		= SHA1_BLOCK_SIZE,
			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
			.cra_alignmask		= 0,
			.cra_module		= THIS_MODULE,
			.cra_init		= atmel_sha_cra_init,
			.cra_exit		= atmel_sha_cra_exit,
		}
	}
},
{
	.init		= atmel_sha_init,
	.update		= atmel_sha_update,
	.final		= atmel_sha_final,
	.finup		= atmel_sha_finup,
	.digest		= atmel_sha_digest,
	.halg = {
		.digestsize	= SHA256_DIGEST_SIZE,
		.base	= {
			.cra_name		= "sha256",
			.cra_driver_name	= "atmel-sha256",
			.cra_priority		= 100,
			.cra_flags		= CRYPTO_ALG_ASYNC |
						CRYPTO_ALG_NEED_FALLBACK,
			.cra_blocksize		= SHA256_BLOCK_SIZE,
			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
			.cra_alignmask		= 0,
			.cra_module		= THIS_MODULE,
			.cra_init		= atmel_sha_cra_init,
			.cra_exit		= atmel_sha_cra_exit,
		}
	}
},
};

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static struct ahash_alg sha_224_alg = {
	.init		= atmel_sha_init,
	.update		= atmel_sha_update,
	.final		= atmel_sha_final,
	.finup		= atmel_sha_finup,
	.digest		= atmel_sha_digest,
	.halg = {
		.digestsize	= SHA224_DIGEST_SIZE,
		.base	= {
			.cra_name		= "sha224",
			.cra_driver_name	= "atmel-sha224",
			.cra_priority		= 100,
			.cra_flags		= CRYPTO_ALG_ASYNC |
						CRYPTO_ALG_NEED_FALLBACK,
			.cra_blocksize		= SHA224_BLOCK_SIZE,
			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
			.cra_alignmask		= 0,
			.cra_module		= THIS_MODULE,
			.cra_init		= atmel_sha_cra_init,
			.cra_exit		= atmel_sha_cra_exit,
		}
	}
};

static struct ahash_alg sha_384_512_algs[] = {
{
	.init		= atmel_sha_init,
	.update		= atmel_sha_update,
	.final		= atmel_sha_final,
	.finup		= atmel_sha_finup,
	.digest		= atmel_sha_digest,
	.halg = {
		.digestsize	= SHA384_DIGEST_SIZE,
		.base	= {
			.cra_name		= "sha384",
			.cra_driver_name	= "atmel-sha384",
			.cra_priority		= 100,
			.cra_flags		= CRYPTO_ALG_ASYNC |
						CRYPTO_ALG_NEED_FALLBACK,
			.cra_blocksize		= SHA384_BLOCK_SIZE,
			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
			.cra_alignmask		= 0x3,
			.cra_module		= THIS_MODULE,
			.cra_init		= atmel_sha_cra_init,
			.cra_exit		= atmel_sha_cra_exit,
		}
	}
},
{
	.init		= atmel_sha_init,
	.update		= atmel_sha_update,
	.final		= atmel_sha_final,
	.finup		= atmel_sha_finup,
	.digest		= atmel_sha_digest,
	.halg = {
		.digestsize	= SHA512_DIGEST_SIZE,
		.base	= {
			.cra_name		= "sha512",
			.cra_driver_name	= "atmel-sha512",
			.cra_priority		= 100,
			.cra_flags		= CRYPTO_ALG_ASYNC |
						CRYPTO_ALG_NEED_FALLBACK,
			.cra_blocksize		= SHA512_BLOCK_SIZE,
			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
			.cra_alignmask		= 0x3,
			.cra_module		= THIS_MODULE,
			.cra_init		= atmel_sha_cra_init,
			.cra_exit		= atmel_sha_cra_exit,
		}
	}
},
};

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void atmel_sha_done_task(unsigned long data)
{
	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
	int err = 0;

	if (!(SHA_FLAGS_BUSY & dd->flags)) {
		atmel_sha_handle_queue(dd, NULL);
		return;
	}

	if (SHA_FLAGS_CPU & dd->flags) {
		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
			goto finish;
		}
	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
			atmel_sha_update_dma_stop(dd);
			if (dd->err) {
				err = dd->err;
				goto finish;
			}
		}
		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
			/* hash or semi-hash ready */
			dd->flags &= ~(SHA_FLAGS_DMA_READY |
						SHA_FLAGS_OUTPUT_READY);
			err = atmel_sha_update_dma_start(dd);
			if (err != -EINPROGRESS)
				goto finish;
		}
	}
	return;

finish:
	/* finish curent request */
	atmel_sha_finish_req(dd->req, err);
}

static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
{
	struct atmel_sha_dev *sha_dd = dev_id;
	u32 reg;

	reg = atmel_sha_read(sha_dd, SHA_ISR);
	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
		atmel_sha_write(sha_dd, SHA_IDR, reg);
		if (SHA_FLAGS_BUSY & sha_dd->flags) {
			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
			if (!(SHA_FLAGS_CPU & sha_dd->flags))
				sha_dd->flags |= SHA_FLAGS_DMA_READY;
			tasklet_schedule(&sha_dd->done_task);
		} else {
			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
		}
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
{
	int i;

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
		crypto_unregister_ahash(&sha_1_256_algs[i]);

	if (dd->caps.has_sha224)
		crypto_unregister_ahash(&sha_224_alg);

	if (dd->caps.has_sha_384_512) {
		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
			crypto_unregister_ahash(&sha_384_512_algs[i]);
	}
1208 1209 1210 1211 1212 1213
}

static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
{
	int err, i, j;

1214 1215
	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
		err = crypto_register_ahash(&sha_1_256_algs[i]);
1216
		if (err)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
			goto err_sha_1_256_algs;
	}

	if (dd->caps.has_sha224) {
		err = crypto_register_ahash(&sha_224_alg);
		if (err)
			goto err_sha_224_algs;
	}

	if (dd->caps.has_sha_384_512) {
		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
			err = crypto_register_ahash(&sha_384_512_algs[i]);
			if (err)
				goto err_sha_384_512_algs;
		}
1232 1233 1234 1235
	}

	return 0;

1236 1237 1238 1239 1240 1241 1242
err_sha_384_512_algs:
	for (j = 0; j < i; j++)
		crypto_unregister_ahash(&sha_384_512_algs[j]);
	crypto_unregister_ahash(&sha_224_alg);
err_sha_224_algs:
	i = ARRAY_SIZE(sha_1_256_algs);
err_sha_1_256_algs:
1243
	for (j = 0; j < i; j++)
1244
		crypto_unregister_ahash(&sha_1_256_algs[j]);
1245 1246 1247 1248

	return err;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
{
	struct at_dma_slave	*sl = slave;

	if (sl && sl->dma_dev == chan->device->dev) {
		chan->private = sl;
		return true;
	} else {
		return false;
	}
}

static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
				struct crypto_platform_data *pdata)
{
	int err = -ENOMEM;
	dma_cap_mask_t mask_in;

1267 1268 1269
	/* Try to grab DMA channel */
	dma_cap_zero(mask_in);
	dma_cap_set(DMA_SLAVE, mask_in);
1270

1271 1272 1273 1274 1275
	dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
			atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
	if (!dd->dma_lch_in.chan) {
		dev_warn(dd->dev, "no DMA channel available\n");
		return err;
1276 1277
	}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
		SHA_REG_DIN(0);
	dd->dma_lch_in.dma_conf.src_maxburst = 1;
	dd->dma_lch_in.dma_conf.src_addr_width =
		DMA_SLAVE_BUSWIDTH_4_BYTES;
	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
	dd->dma_lch_in.dma_conf.dst_addr_width =
		DMA_SLAVE_BUSWIDTH_4_BYTES;
	dd->dma_lch_in.dma_conf.device_fc = false;

	return 0;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}

static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
{
	dma_release_channel(dd->dma_lch_in.chan);
}

static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
{

	dd->caps.has_dma = 0;
	dd->caps.has_dualbuff = 0;
	dd->caps.has_sha224 = 0;
	dd->caps.has_sha_384_512 = 0;

	/* keep only major version number */
	switch (dd->hw_version & 0xff0) {
	case 0x410:
		dd->caps.has_dma = 1;
		dd->caps.has_dualbuff = 1;
		dd->caps.has_sha224 = 1;
		dd->caps.has_sha_384_512 = 1;
		break;
	case 0x400:
		dd->caps.has_dma = 1;
		dd->caps.has_dualbuff = 1;
		dd->caps.has_sha224 = 1;
		break;
	case 0x320:
		break;
	default:
		dev_warn(dd->dev,
				"Unmanaged sha version, set minimum capabilities\n");
		break;
	}
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
#if defined(CONFIG_OF)
static const struct of_device_id atmel_sha_dt_ids[] = {
	{ .compatible = "atmel,at91sam9g46-sha" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);

static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct crypto_platform_data *pdata;

	if (!np) {
		dev_err(&pdev->dev, "device node not found\n");
		return ERR_PTR(-EINVAL);
	}

	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata) {
		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
		return ERR_PTR(-ENOMEM);
	}

	pdata->dma_slave = devm_kzalloc(&pdev->dev,
					sizeof(*(pdata->dma_slave)),
					GFP_KERNEL);
	if (!pdata->dma_slave) {
		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
		return ERR_PTR(-ENOMEM);
	}

	return pdata;
}
#else /* CONFIG_OF */
static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
{
	return ERR_PTR(-EINVAL);
}
#endif

1368
static int atmel_sha_probe(struct platform_device *pdev)
1369 1370
{
	struct atmel_sha_dev *sha_dd;
1371
	struct crypto_platform_data	*pdata;
1372 1373 1374 1375 1376
	struct device *dev = &pdev->dev;
	struct resource *sha_res;
	unsigned long sha_phys_size;
	int err;

1377 1378
	sha_dd = devm_kzalloc(&pdev->dev, sizeof(struct atmel_sha_dev),
				GFP_KERNEL);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (sha_dd == NULL) {
		dev_err(dev, "unable to alloc data struct.\n");
		err = -ENOMEM;
		goto sha_dd_err;
	}

	sha_dd->dev = dev;

	platform_set_drvdata(pdev, sha_dd);

	INIT_LIST_HEAD(&sha_dd->list);

	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
					(unsigned long)sha_dd);

	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);

	sha_dd->irq = -1;

	/* Get the base address */
	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!sha_res) {
		dev_err(dev, "no MEM resource info\n");
		err = -ENODEV;
		goto res_err;
	}
	sha_dd->phys_base = sha_res->start;
	sha_phys_size = resource_size(sha_res);

	/* Get the IRQ */
	sha_dd->irq = platform_get_irq(pdev,  0);
	if (sha_dd->irq < 0) {
		dev_err(dev, "no IRQ resource info\n");
		err = sha_dd->irq;
		goto res_err;
	}

	err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
						sha_dd);
	if (err) {
		dev_err(dev, "unable to request sha irq.\n");
		goto res_err;
	}

	/* Initializing the clock */
1424
	sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	if (IS_ERR(sha_dd->iclk)) {
		dev_err(dev, "clock intialization failed.\n");
		err = PTR_ERR(sha_dd->iclk);
		goto clk_err;
	}

	sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
	if (!sha_dd->io_base) {
		dev_err(dev, "can't ioremap\n");
		err = -ENOMEM;
		goto sha_io_err;
	}

1438 1439 1440 1441 1442 1443 1444
	atmel_sha_hw_version_init(sha_dd);

	atmel_sha_get_cap(sha_dd);

	if (sha_dd->caps.has_dma) {
		pdata = pdev->dev.platform_data;
		if (!pdata) {
1445 1446 1447 1448 1449 1450 1451 1452
			pdata = atmel_sha_of_init(pdev);
			if (IS_ERR(pdata)) {
				dev_err(&pdev->dev, "platform data not available\n");
				err = PTR_ERR(pdata);
				goto err_pdata;
			}
		}
		if (!pdata->dma_slave) {
1453 1454 1455 1456 1457 1458
			err = -ENXIO;
			goto err_pdata;
		}
		err = atmel_sha_dma_init(sha_dd, pdata);
		if (err)
			goto err_sha_dma;
1459 1460 1461

		dev_info(dev, "using %s for DMA transfers\n",
				dma_chan_name(sha_dd->dma_lch_in.chan));
1462 1463
	}

1464 1465 1466 1467 1468 1469 1470 1471
	spin_lock(&atmel_sha.lock);
	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
	spin_unlock(&atmel_sha.lock);

	err = atmel_sha_register_algs(sha_dd);
	if (err)
		goto err_algs;

1472 1473 1474
	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
			sha_dd->caps.has_sha224 ? "/SHA224" : "",
			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1475 1476 1477 1478 1479 1480 1481

	return 0;

err_algs:
	spin_lock(&atmel_sha.lock);
	list_del(&sha_dd->list);
	spin_unlock(&atmel_sha.lock);
1482 1483 1484 1485
	if (sha_dd->caps.has_dma)
		atmel_sha_dma_cleanup(sha_dd);
err_sha_dma:
err_pdata:
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	iounmap(sha_dd->io_base);
sha_io_err:
	clk_put(sha_dd->iclk);
clk_err:
	free_irq(sha_dd->irq, sha_dd);
res_err:
	tasklet_kill(&sha_dd->done_task);
sha_dd_err:
	dev_err(dev, "initialization failed.\n");

	return err;
}

1499
static int atmel_sha_remove(struct platform_device *pdev)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
{
	static struct atmel_sha_dev *sha_dd;

	sha_dd = platform_get_drvdata(pdev);
	if (!sha_dd)
		return -ENODEV;
	spin_lock(&atmel_sha.lock);
	list_del(&sha_dd->list);
	spin_unlock(&atmel_sha.lock);

	atmel_sha_unregister_algs(sha_dd);

	tasklet_kill(&sha_dd->done_task);

1514 1515 1516
	if (sha_dd->caps.has_dma)
		atmel_sha_dma_cleanup(sha_dd);

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	iounmap(sha_dd->io_base);

	clk_put(sha_dd->iclk);

	if (sha_dd->irq >= 0)
		free_irq(sha_dd->irq, sha_dd);

	return 0;
}

static struct platform_driver atmel_sha_driver = {
	.probe		= atmel_sha_probe,
1529
	.remove		= atmel_sha_remove,
1530 1531
	.driver		= {
		.name	= "atmel_sha",
1532
		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
1533 1534 1535 1536 1537
	},
};

module_platform_driver(atmel_sha_driver);

1538
MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1539 1540
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");