kexec.c 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * kexec.c - kexec system call
 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/syscalls.h>
#include <linux/ioport.h>
21 22
#include <linux/hardirq.h>

23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <asm/page.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/semaphore.h>

/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
	.name  = "Crash kernel",
	.start = 0,
	.end   = 0,
	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};

37 38 39 40 41 42 43
int kexec_should_crash(struct task_struct *p)
{
	if (in_interrupt() || !p->pid || p->pid == 1 || panic_on_oops)
		return 1;
	return 0;
}

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/*
 * When kexec transitions to the new kernel there is a one-to-one
 * mapping between physical and virtual addresses.  On processors
 * where you can disable the MMU this is trivial, and easy.  For
 * others it is still a simple predictable page table to setup.
 *
 * In that environment kexec copies the new kernel to its final
 * resting place.  This means I can only support memory whose
 * physical address can fit in an unsigned long.  In particular
 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 * If the assembly stub has more restrictive requirements
 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 * defined more restrictively in <asm/kexec.h>.
 *
 * The code for the transition from the current kernel to the
 * the new kernel is placed in the control_code_buffer, whose size
 * is given by KEXEC_CONTROL_CODE_SIZE.  In the best case only a single
 * page of memory is necessary, but some architectures require more.
 * Because this memory must be identity mapped in the transition from
 * virtual to physical addresses it must live in the range
 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 * modifiable.
 *
 * The assembly stub in the control code buffer is passed a linked list
 * of descriptor pages detailing the source pages of the new kernel,
 * and the destination addresses of those source pages.  As this data
 * structure is not used in the context of the current OS, it must
 * be self-contained.
 *
 * The code has been made to work with highmem pages and will use a
 * destination page in its final resting place (if it happens
 * to allocate it).  The end product of this is that most of the
 * physical address space, and most of RAM can be used.
 *
 * Future directions include:
 *  - allocating a page table with the control code buffer identity
 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 *    reliable.
 */

/*
 * KIMAGE_NO_DEST is an impossible destination address..., for
 * allocating pages whose destination address we do not care about.
 */
#define KIMAGE_NO_DEST (-1UL)

M
Maneesh Soni 已提交
90 91 92 93 94
static int kimage_is_destination_range(struct kimage *image,
				       unsigned long start, unsigned long end);
static struct page *kimage_alloc_page(struct kimage *image,
				       unsigned int gfp_mask,
				       unsigned long dest);
95 96

static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
97 98
	                    unsigned long nr_segments,
                            struct kexec_segment __user *segments)
99 100 101 102 103 104 105 106 107
{
	size_t segment_bytes;
	struct kimage *image;
	unsigned long i;
	int result;

	/* Allocate a controlling structure */
	result = -ENOMEM;
	image = kmalloc(sizeof(*image), GFP_KERNEL);
M
Maneesh Soni 已提交
108
	if (!image)
109
		goto out;
M
Maneesh Soni 已提交
110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	memset(image, 0, sizeof(*image));
	image->head = 0;
	image->entry = &image->head;
	image->last_entry = &image->head;
	image->control_page = ~0; /* By default this does not apply */
	image->start = entry;
	image->type = KEXEC_TYPE_DEFAULT;

	/* Initialize the list of control pages */
	INIT_LIST_HEAD(&image->control_pages);

	/* Initialize the list of destination pages */
	INIT_LIST_HEAD(&image->dest_pages);

	/* Initialize the list of unuseable pages */
	INIT_LIST_HEAD(&image->unuseable_pages);

	/* Read in the segments */
	image->nr_segments = nr_segments;
	segment_bytes = nr_segments * sizeof(*segments);
	result = copy_from_user(image->segment, segments, segment_bytes);
	if (result)
		goto out;

	/*
	 * Verify we have good destination addresses.  The caller is
	 * responsible for making certain we don't attempt to load
	 * the new image into invalid or reserved areas of RAM.  This
	 * just verifies it is an address we can use.
	 *
	 * Since the kernel does everything in page size chunks ensure
	 * the destination addreses are page aligned.  Too many
	 * special cases crop of when we don't do this.  The most
	 * insidious is getting overlapping destination addresses
	 * simply because addresses are changed to page size
	 * granularity.
	 */
	result = -EADDRNOTAVAIL;
	for (i = 0; i < nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
			goto out;
		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
			goto out;
	}

	/* Verify our destination addresses do not overlap.
	 * If we alloed overlapping destination addresses
	 * through very weird things can happen with no
	 * easy explanation as one segment stops on another.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
166
	for (i = 0; i < nr_segments; i++) {
167 168
		unsigned long mstart, mend;
		unsigned long j;
M
Maneesh Soni 已提交
169

170 171
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
M
Maneesh Soni 已提交
172
		for (j = 0; j < i; j++) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
			unsigned long pstart, pend;
			pstart = image->segment[j].mem;
			pend   = pstart + image->segment[j].memsz;
			/* Do the segments overlap ? */
			if ((mend > pstart) && (mstart < pend))
				goto out;
		}
	}

	/* Ensure our buffer sizes are strictly less than
	 * our memory sizes.  This should always be the case,
	 * and it is easier to check up front than to be surprised
	 * later on.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
188
	for (i = 0; i < nr_segments; i++) {
189 190 191 192 193
		if (image->segment[i].bufsz > image->segment[i].memsz)
			goto out;
	}

	result = 0;
M
Maneesh Soni 已提交
194 195
out:
	if (result == 0)
196
		*rimage = image;
M
Maneesh Soni 已提交
197
	else
198
		kfree(image);
M
Maneesh Soni 已提交
199

200 201 202 203 204
	return result;

}

static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
205 206
				unsigned long nr_segments,
				struct kexec_segment __user *segments)
207 208 209 210 211 212 213
{
	int result;
	struct kimage *image;

	/* Allocate and initialize a controlling structure */
	image = NULL;
	result = do_kimage_alloc(&image, entry, nr_segments, segments);
M
Maneesh Soni 已提交
214
	if (result)
215
		goto out;
M
Maneesh Soni 已提交
216

217 218 219 220 221 222 223 224 225
	*rimage = image;

	/*
	 * Find a location for the control code buffer, and add it
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
	result = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
M
Maneesh Soni 已提交
226
					   get_order(KEXEC_CONTROL_CODE_SIZE));
227 228 229 230 231 232 233
	if (!image->control_code_page) {
		printk(KERN_ERR "Could not allocate control_code_buffer\n");
		goto out;
	}

	result = 0;
 out:
M
Maneesh Soni 已提交
234
	if (result == 0)
235
		*rimage = image;
M
Maneesh Soni 已提交
236
	else
237
		kfree(image);
M
Maneesh Soni 已提交
238

239 240 241 242
	return result;
}

static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
243
				unsigned long nr_segments,
244
				struct kexec_segment __user *segments)
245 246 247 248 249 250 251 252 253 254 255 256 257 258
{
	int result;
	struct kimage *image;
	unsigned long i;

	image = NULL;
	/* Verify we have a valid entry point */
	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
		result = -EADDRNOTAVAIL;
		goto out;
	}

	/* Allocate and initialize a controlling structure */
	result = do_kimage_alloc(&image, entry, nr_segments, segments);
M
Maneesh Soni 已提交
259
	if (result)
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
		goto out;

	/* Enable the special crash kernel control page
	 * allocation policy.
	 */
	image->control_page = crashk_res.start;
	image->type = KEXEC_TYPE_CRASH;

	/*
	 * Verify we have good destination addresses.  Normally
	 * the caller is responsible for making certain we don't
	 * attempt to load the new image into invalid or reserved
	 * areas of RAM.  But crash kernels are preloaded into a
	 * reserved area of ram.  We must ensure the addresses
	 * are in the reserved area otherwise preloading the
	 * kernel could corrupt things.
	 */
	result = -EADDRNOTAVAIL;
	for (i = 0; i < nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
280

281
		mstart = image->segment[i].mem;
282
		mend = mstart + image->segment[i].memsz - 1;
283 284 285 286 287 288 289 290 291 292 293 294
		/* Ensure we are within the crash kernel limits */
		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
			goto out;
	}

	/*
	 * Find a location for the control code buffer, and add
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
	result = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
M
Maneesh Soni 已提交
295
					   get_order(KEXEC_CONTROL_CODE_SIZE));
296 297 298 299 300 301
	if (!image->control_code_page) {
		printk(KERN_ERR "Could not allocate control_code_buffer\n");
		goto out;
	}

	result = 0;
M
Maneesh Soni 已提交
302 303
out:
	if (result == 0)
304
		*rimage = image;
M
Maneesh Soni 已提交
305
	else
306
		kfree(image);
M
Maneesh Soni 已提交
307

308 309 310
	return result;
}

M
Maneesh Soni 已提交
311 312 313
static int kimage_is_destination_range(struct kimage *image,
					unsigned long start,
					unsigned long end)
314 315 316 317 318
{
	unsigned long i;

	for (i = 0; i < image->nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
319

320
		mstart = image->segment[i].mem;
M
Maneesh Soni 已提交
321 322
		mend = mstart + image->segment[i].memsz;
		if ((end > mstart) && (start < mend))
323 324
			return 1;
	}
M
Maneesh Soni 已提交
325

326 327 328
	return 0;
}

M
Maneesh Soni 已提交
329 330
static struct page *kimage_alloc_pages(unsigned int gfp_mask,
					unsigned int order)
331 332
{
	struct page *pages;
M
Maneesh Soni 已提交
333

334 335 336 337 338 339
	pages = alloc_pages(gfp_mask, order);
	if (pages) {
		unsigned int count, i;
		pages->mapping = NULL;
		pages->private = order;
		count = 1 << order;
M
Maneesh Soni 已提交
340
		for (i = 0; i < count; i++)
341 342
			SetPageReserved(pages + i);
	}
M
Maneesh Soni 已提交
343

344 345 346 347 348 349
	return pages;
}

static void kimage_free_pages(struct page *page)
{
	unsigned int order, count, i;
M
Maneesh Soni 已提交
350

351 352
	order = page->private;
	count = 1 << order;
M
Maneesh Soni 已提交
353
	for (i = 0; i < count; i++)
354 355 356 357 358 359 360
		ClearPageReserved(page + i);
	__free_pages(page, order);
}

static void kimage_free_page_list(struct list_head *list)
{
	struct list_head *pos, *next;
M
Maneesh Soni 已提交
361

362 363 364 365 366 367 368 369 370
	list_for_each_safe(pos, next, list) {
		struct page *page;

		page = list_entry(pos, struct page, lru);
		list_del(&page->lru);
		kimage_free_pages(page);
	}
}

M
Maneesh Soni 已提交
371 372
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
							unsigned int order)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * At worst this runs in O(N) of the image size.
	 */
	struct list_head extra_pages;
	struct page *pages;
	unsigned int count;

	count = 1 << order;
	INIT_LIST_HEAD(&extra_pages);

	/* Loop while I can allocate a page and the page allocated
	 * is a destination page.
	 */
	do {
		unsigned long pfn, epfn, addr, eaddr;
M
Maneesh Soni 已提交
399

400 401 402 403 404 405 406 407
		pages = kimage_alloc_pages(GFP_KERNEL, order);
		if (!pages)
			break;
		pfn   = page_to_pfn(pages);
		epfn  = pfn + count;
		addr  = pfn << PAGE_SHIFT;
		eaddr = epfn << PAGE_SHIFT;
		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
M
Maneesh Soni 已提交
408
			      kimage_is_destination_range(image, addr, eaddr)) {
409 410 411
			list_add(&pages->lru, &extra_pages);
			pages = NULL;
		}
M
Maneesh Soni 已提交
412 413
	} while (!pages);

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	if (pages) {
		/* Remember the allocated page... */
		list_add(&pages->lru, &image->control_pages);

		/* Because the page is already in it's destination
		 * location we will never allocate another page at
		 * that address.  Therefore kimage_alloc_pages
		 * will not return it (again) and we don't need
		 * to give it an entry in image->segment[].
		 */
	}
	/* Deal with the destination pages I have inadvertently allocated.
	 *
	 * Ideally I would convert multi-page allocations into single
	 * page allocations, and add everyting to image->dest_pages.
	 *
	 * For now it is simpler to just free the pages.
	 */
	kimage_free_page_list(&extra_pages);

M
Maneesh Soni 已提交
434
	return pages;
435 436
}

M
Maneesh Soni 已提交
437 438
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
						      unsigned int order)
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * Control pages are also the only pags we must allocate
	 * when loading a crash kernel.  All of the other pages
	 * are specified by the segments and we just memcpy
	 * into them directly.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * Given the low demand this implements a very simple
	 * allocator that finds the first hole of the appropriate
	 * size in the reserved memory region, and allocates all
	 * of the memory up to and including the hole.
	 */
	unsigned long hole_start, hole_end, size;
	struct page *pages;
M
Maneesh Soni 已提交
463

464 465 466 467
	pages = NULL;
	size = (1 << order) << PAGE_SHIFT;
	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
	hole_end   = hole_start + size - 1;
M
Maneesh Soni 已提交
468
	while (hole_end <= crashk_res.end) {
469
		unsigned long i;
M
Maneesh Soni 已提交
470 471

		if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
472
			break;
M
Maneesh Soni 已提交
473
		if (hole_end > crashk_res.end)
474 475
			break;
		/* See if I overlap any of the segments */
M
Maneesh Soni 已提交
476
		for (i = 0; i < image->nr_segments; i++) {
477
			unsigned long mstart, mend;
M
Maneesh Soni 已提交
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
			mstart = image->segment[i].mem;
			mend   = mstart + image->segment[i].memsz - 1;
			if ((hole_end >= mstart) && (hole_start <= mend)) {
				/* Advance the hole to the end of the segment */
				hole_start = (mend + (size - 1)) & ~(size - 1);
				hole_end   = hole_start + size - 1;
				break;
			}
		}
		/* If I don't overlap any segments I have found my hole! */
		if (i == image->nr_segments) {
			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
			break;
		}
	}
M
Maneesh Soni 已提交
494
	if (pages)
495
		image->control_page = hole_end;
M
Maneesh Soni 已提交
496

497 498 499 500
	return pages;
}


M
Maneesh Soni 已提交
501 502
struct page *kimage_alloc_control_pages(struct kimage *image,
					 unsigned int order)
503 504
{
	struct page *pages = NULL;
M
Maneesh Soni 已提交
505 506

	switch (image->type) {
507 508 509 510 511 512 513
	case KEXEC_TYPE_DEFAULT:
		pages = kimage_alloc_normal_control_pages(image, order);
		break;
	case KEXEC_TYPE_CRASH:
		pages = kimage_alloc_crash_control_pages(image, order);
		break;
	}
M
Maneesh Soni 已提交
514

515 516 517 518 519
	return pages;
}

static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
M
Maneesh Soni 已提交
520
	if (*image->entry != 0)
521
		image->entry++;
M
Maneesh Soni 已提交
522

523 524 525
	if (image->entry == image->last_entry) {
		kimage_entry_t *ind_page;
		struct page *page;
M
Maneesh Soni 已提交
526

527
		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
M
Maneesh Soni 已提交
528
		if (!page)
529
			return -ENOMEM;
M
Maneesh Soni 已提交
530

531 532 533
		ind_page = page_address(page);
		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
		image->entry = ind_page;
M
Maneesh Soni 已提交
534 535
		image->last_entry = ind_page +
				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
536 537 538 539
	}
	*image->entry = entry;
	image->entry++;
	*image->entry = 0;
M
Maneesh Soni 已提交
540

541 542 543
	return 0;
}

M
Maneesh Soni 已提交
544 545
static int kimage_set_destination(struct kimage *image,
				   unsigned long destination)
546 547 548 549 550
{
	int result;

	destination &= PAGE_MASK;
	result = kimage_add_entry(image, destination | IND_DESTINATION);
M
Maneesh Soni 已提交
551
	if (result == 0)
552
		image->destination = destination;
M
Maneesh Soni 已提交
553

554 555 556 557 558 559 560 561 562 563
	return result;
}


static int kimage_add_page(struct kimage *image, unsigned long page)
{
	int result;

	page &= PAGE_MASK;
	result = kimage_add_entry(image, page | IND_SOURCE);
M
Maneesh Soni 已提交
564
	if (result == 0)
565
		image->destination += PAGE_SIZE;
M
Maneesh Soni 已提交
566

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	return result;
}


static void kimage_free_extra_pages(struct kimage *image)
{
	/* Walk through and free any extra destination pages I may have */
	kimage_free_page_list(&image->dest_pages);

	/* Walk through and free any unuseable pages I have cached */
	kimage_free_page_list(&image->unuseable_pages);

}
static int kimage_terminate(struct kimage *image)
{
M
Maneesh Soni 已提交
582
	if (*image->entry != 0)
583
		image->entry++;
M
Maneesh Soni 已提交
584

585
	*image->entry = IND_DONE;
M
Maneesh Soni 已提交
586

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	return 0;
}

#define for_each_kimage_entry(image, ptr, entry) \
	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
		ptr = (entry & IND_INDIRECTION)? \
			phys_to_virt((entry & PAGE_MASK)): ptr +1)

static void kimage_free_entry(kimage_entry_t entry)
{
	struct page *page;

	page = pfn_to_page(entry >> PAGE_SHIFT);
	kimage_free_pages(page);
}

static void kimage_free(struct kimage *image)
{
	kimage_entry_t *ptr, entry;
	kimage_entry_t ind = 0;

	if (!image)
		return;
M
Maneesh Soni 已提交
610

611 612 613 614
	kimage_free_extra_pages(image);
	for_each_kimage_entry(image, ptr, entry) {
		if (entry & IND_INDIRECTION) {
			/* Free the previous indirection page */
M
Maneesh Soni 已提交
615
			if (ind & IND_INDIRECTION)
616 617 618 619 620 621
				kimage_free_entry(ind);
			/* Save this indirection page until we are
			 * done with it.
			 */
			ind = entry;
		}
M
Maneesh Soni 已提交
622
		else if (entry & IND_SOURCE)
623 624 625
			kimage_free_entry(entry);
	}
	/* Free the final indirection page */
M
Maneesh Soni 已提交
626
	if (ind & IND_INDIRECTION)
627 628 629 630 631 632 633 634 635 636
		kimage_free_entry(ind);

	/* Handle any machine specific cleanup */
	machine_kexec_cleanup(image);

	/* Free the kexec control pages... */
	kimage_free_page_list(&image->control_pages);
	kfree(image);
}

M
Maneesh Soni 已提交
637 638
static kimage_entry_t *kimage_dst_used(struct kimage *image,
					unsigned long page)
639 640 641 642 643
{
	kimage_entry_t *ptr, entry;
	unsigned long destination = 0;

	for_each_kimage_entry(image, ptr, entry) {
M
Maneesh Soni 已提交
644
		if (entry & IND_DESTINATION)
645 646
			destination = entry & PAGE_MASK;
		else if (entry & IND_SOURCE) {
M
Maneesh Soni 已提交
647
			if (page == destination)
648 649 650 651
				return ptr;
			destination += PAGE_SIZE;
		}
	}
M
Maneesh Soni 已提交
652

653
	return NULL;
654 655
}

M
Maneesh Soni 已提交
656 657 658
static struct page *kimage_alloc_page(struct kimage *image,
					unsigned int gfp_mask,
					unsigned long destination)
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
	/*
	 * Here we implement safeguards to ensure that a source page
	 * is not copied to its destination page before the data on
	 * the destination page is no longer useful.
	 *
	 * To do this we maintain the invariant that a source page is
	 * either its own destination page, or it is not a
	 * destination page at all.
	 *
	 * That is slightly stronger than required, but the proof
	 * that no problems will not occur is trivial, and the
	 * implementation is simply to verify.
	 *
	 * When allocating all pages normally this algorithm will run
	 * in O(N) time, but in the worst case it will run in O(N^2)
	 * time.   If the runtime is a problem the data structures can
	 * be fixed.
	 */
	struct page *page;
	unsigned long addr;

	/*
	 * Walk through the list of destination pages, and see if I
	 * have a match.
	 */
	list_for_each_entry(page, &image->dest_pages, lru) {
		addr = page_to_pfn(page) << PAGE_SHIFT;
		if (addr == destination) {
			list_del(&page->lru);
			return page;
		}
	}
	page = NULL;
	while (1) {
		kimage_entry_t *old;

		/* Allocate a page, if we run out of memory give up */
		page = kimage_alloc_pages(gfp_mask, 0);
M
Maneesh Soni 已提交
698
		if (!page)
699
			return NULL;
700
		/* If the page cannot be used file it away */
M
Maneesh Soni 已提交
701 702
		if (page_to_pfn(page) >
				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
703 704 705 706 707 708 709 710 711 712
			list_add(&page->lru, &image->unuseable_pages);
			continue;
		}
		addr = page_to_pfn(page) << PAGE_SHIFT;

		/* If it is the destination page we want use it */
		if (addr == destination)
			break;

		/* If the page is not a destination page use it */
M
Maneesh Soni 已提交
713 714
		if (!kimage_is_destination_range(image, addr,
						  addr + PAGE_SIZE))
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
			break;

		/*
		 * I know that the page is someones destination page.
		 * See if there is already a source page for this
		 * destination page.  And if so swap the source pages.
		 */
		old = kimage_dst_used(image, addr);
		if (old) {
			/* If so move it */
			unsigned long old_addr;
			struct page *old_page;

			old_addr = *old & PAGE_MASK;
			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
			copy_highpage(page, old_page);
			*old = addr | (*old & ~PAGE_MASK);

			/* The old page I have found cannot be a
			 * destination page, so return it.
			 */
			addr = old_addr;
			page = old_page;
			break;
		}
		else {
			/* Place the page on the destination list I
			 * will use it later.
			 */
			list_add(&page->lru, &image->dest_pages);
		}
	}
M
Maneesh Soni 已提交
747

748 749 750 751
	return page;
}

static int kimage_load_normal_segment(struct kimage *image,
M
Maneesh Soni 已提交
752
					 struct kexec_segment *segment)
753 754 755 756
{
	unsigned long maddr;
	unsigned long ubytes, mbytes;
	int result;
757
	unsigned char __user *buf;
758 759 760 761 762 763 764 765

	result = 0;
	buf = segment->buf;
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;

	result = kimage_set_destination(image, maddr);
M
Maneesh Soni 已提交
766
	if (result < 0)
767
		goto out;
M
Maneesh Soni 已提交
768 769

	while (mbytes) {
770 771 772
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
773

774 775 776 777 778
		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
		if (page == 0) {
			result  = -ENOMEM;
			goto out;
		}
M
Maneesh Soni 已提交
779 780 781
		result = kimage_add_page(image, page_to_pfn(page)
								<< PAGE_SHIFT);
		if (result < 0)
782
			goto out;
M
Maneesh Soni 已提交
783

784 785 786 787 788
		ptr = kmap(page);
		/* Start with a clear page */
		memset(ptr, 0, PAGE_SIZE);
		ptr += maddr & ~PAGE_MASK;
		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
M
Maneesh Soni 已提交
789
		if (mchunk > mbytes)
790
			mchunk = mbytes;
M
Maneesh Soni 已提交
791

792
		uchunk = mchunk;
M
Maneesh Soni 已提交
793
		if (uchunk > ubytes)
794
			uchunk = ubytes;
M
Maneesh Soni 已提交
795

796 797 798 799 800 801 802 803 804 805 806
		result = copy_from_user(ptr, buf, uchunk);
		kunmap(page);
		if (result) {
			result = (result < 0) ? result : -EIO;
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
		buf    += mchunk;
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
807
out:
808 809 810 811
	return result;
}

static int kimage_load_crash_segment(struct kimage *image,
M
Maneesh Soni 已提交
812
					struct kexec_segment *segment)
813 814 815 816 817 818 819 820
{
	/* For crash dumps kernels we simply copy the data from
	 * user space to it's destination.
	 * We do things a page at a time for the sake of kmap.
	 */
	unsigned long maddr;
	unsigned long ubytes, mbytes;
	int result;
821
	unsigned char __user *buf;
822 823 824 825 826 827

	result = 0;
	buf = segment->buf;
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;
M
Maneesh Soni 已提交
828
	while (mbytes) {
829 830 831
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
832

833 834 835 836 837 838 839 840
		page = pfn_to_page(maddr >> PAGE_SHIFT);
		if (page == 0) {
			result  = -ENOMEM;
			goto out;
		}
		ptr = kmap(page);
		ptr += maddr & ~PAGE_MASK;
		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
M
Maneesh Soni 已提交
841
		if (mchunk > mbytes)
842
			mchunk = mbytes;
M
Maneesh Soni 已提交
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		uchunk = mchunk;
		if (uchunk > ubytes) {
			uchunk = ubytes;
			/* Zero the trailing part of the page */
			memset(ptr + uchunk, 0, mchunk - uchunk);
		}
		result = copy_from_user(ptr, buf, uchunk);
		kunmap(page);
		if (result) {
			result = (result < 0) ? result : -EIO;
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
		buf    += mchunk;
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
861
out:
862 863 864 865
	return result;
}

static int kimage_load_segment(struct kimage *image,
M
Maneesh Soni 已提交
866
				struct kexec_segment *segment)
867 868
{
	int result = -ENOMEM;
M
Maneesh Soni 已提交
869 870

	switch (image->type) {
871 872 873 874 875 876 877
	case KEXEC_TYPE_DEFAULT:
		result = kimage_load_normal_segment(image, segment);
		break;
	case KEXEC_TYPE_CRASH:
		result = kimage_load_crash_segment(image, segment);
		break;
	}
M
Maneesh Soni 已提交
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	return result;
}

/*
 * Exec Kernel system call: for obvious reasons only root may call it.
 *
 * This call breaks up into three pieces.
 * - A generic part which loads the new kernel from the current
 *   address space, and very carefully places the data in the
 *   allocated pages.
 *
 * - A generic part that interacts with the kernel and tells all of
 *   the devices to shut down.  Preventing on-going dmas, and placing
 *   the devices in a consistent state so a later kernel can
 *   reinitialize them.
 *
 * - A machine specific part that includes the syscall number
 *   and the copies the image to it's final destination.  And
 *   jumps into the image at entry.
 *
 * kexec does not sync, or unmount filesystems so if you need
 * that to happen you need to do that yourself.
 */
struct kimage *kexec_image = NULL;
static struct kimage *kexec_crash_image = NULL;
/*
 * A home grown binary mutex.
 * Nothing can wait so this mutex is safe to use
 * in interrupt context :)
 */
static int kexec_lock = 0;

M
Maneesh Soni 已提交
911 912 913
asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
				struct kexec_segment __user *segments,
				unsigned long flags)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
	struct kimage **dest_image, *image;
	int locked;
	int result;

	/* We only trust the superuser with rebooting the system. */
	if (!capable(CAP_SYS_BOOT))
		return -EPERM;

	/*
	 * Verify we have a legal set of flags
	 * This leaves us room for future extensions.
	 */
	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
		return -EINVAL;

	/* Verify we are on the appropriate architecture */
	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
		return -EINVAL;

	/* Put an artificial cap on the number
	 * of segments passed to kexec_load.
	 */
	if (nr_segments > KEXEC_SEGMENT_MAX)
		return -EINVAL;

	image = NULL;
	result = 0;

	/* Because we write directly to the reserved memory
	 * region when loading crash kernels we need a mutex here to
	 * prevent multiple crash  kernels from attempting to load
	 * simultaneously, and to prevent a crash kernel from loading
	 * over the top of a in use crash kernel.
	 *
	 * KISS: always take the mutex.
	 */
	locked = xchg(&kexec_lock, 1);
M
Maneesh Soni 已提交
953
	if (locked)
954
		return -EBUSY;
M
Maneesh Soni 已提交
955

956
	dest_image = &kexec_image;
M
Maneesh Soni 已提交
957
	if (flags & KEXEC_ON_CRASH)
958 959 960
		dest_image = &kexec_crash_image;
	if (nr_segments > 0) {
		unsigned long i;
M
Maneesh Soni 已提交
961

962
		/* Loading another kernel to reboot into */
M
Maneesh Soni 已提交
963 964 965
		if ((flags & KEXEC_ON_CRASH) == 0)
			result = kimage_normal_alloc(&image, entry,
							nr_segments, segments);
966 967 968 969 970 971
		/* Loading another kernel to switch to if this one crashes */
		else if (flags & KEXEC_ON_CRASH) {
			/* Free any current crash dump kernel before
			 * we corrupt it.
			 */
			kimage_free(xchg(&kexec_crash_image, NULL));
M
Maneesh Soni 已提交
972 973
			result = kimage_crash_alloc(&image, entry,
						     nr_segments, segments);
974
		}
M
Maneesh Soni 已提交
975
		if (result)
976
			goto out;
M
Maneesh Soni 已提交
977

978
		result = machine_kexec_prepare(image);
M
Maneesh Soni 已提交
979
		if (result)
980
			goto out;
M
Maneesh Soni 已提交
981 982

		for (i = 0; i < nr_segments; i++) {
983
			result = kimage_load_segment(image, &image->segment[i]);
M
Maneesh Soni 已提交
984
			if (result)
985 986 987
				goto out;
		}
		result = kimage_terminate(image);
M
Maneesh Soni 已提交
988
		if (result)
989 990 991 992 993
			goto out;
	}
	/* Install the new kernel, and  Uninstall the old */
	image = xchg(dest_image, image);

M
Maneesh Soni 已提交
994
out:
995 996
	xchg(&kexec_lock, 0); /* Release the mutex */
	kimage_free(image);
M
Maneesh Soni 已提交
997

998 999 1000 1001 1002
	return result;
}

#ifdef CONFIG_COMPAT
asmlinkage long compat_sys_kexec_load(unsigned long entry,
M
Maneesh Soni 已提交
1003 1004 1005
				unsigned long nr_segments,
				struct compat_kexec_segment __user *segments,
				unsigned long flags)
1006 1007 1008 1009 1010 1011 1012 1013
{
	struct compat_kexec_segment in;
	struct kexec_segment out, __user *ksegments;
	unsigned long i, result;

	/* Don't allow clients that don't understand the native
	 * architecture to do anything.
	 */
M
Maneesh Soni 已提交
1014
	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1015 1016
		return -EINVAL;

M
Maneesh Soni 已提交
1017
	if (nr_segments > KEXEC_SEGMENT_MAX)
1018 1019 1020 1021 1022
		return -EINVAL;

	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
	for (i=0; i < nr_segments; i++) {
		result = copy_from_user(&in, &segments[i], sizeof(in));
M
Maneesh Soni 已提交
1023
		if (result)
1024 1025 1026 1027 1028 1029 1030 1031
			return -EFAULT;

		out.buf   = compat_ptr(in.buf);
		out.bufsz = in.bufsz;
		out.mem   = in.mem;
		out.memsz = in.memsz;

		result = copy_to_user(&ksegments[i], &out, sizeof(out));
M
Maneesh Soni 已提交
1032
		if (result)
1033 1034 1035 1036 1037 1038 1039
			return -EFAULT;
	}

	return sys_kexec_load(entry, nr_segments, ksegments, flags);
}
#endif

1040
void crash_kexec(struct pt_regs *regs)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	struct kimage *image;
	int locked;


	/* Take the kexec_lock here to prevent sys_kexec_load
	 * running on one cpu from replacing the crash kernel
	 * we are using after a panic on a different cpu.
	 *
	 * If the crash kernel was not located in a fixed area
	 * of memory the xchg(&kexec_crash_image) would be
	 * sufficient.  But since I reuse the memory...
	 */
	locked = xchg(&kexec_lock, 1);
	if (!locked) {
		image = xchg(&kexec_crash_image, NULL);
		if (image) {
1058
			machine_crash_shutdown(regs);
1059 1060 1061 1062 1063
			machine_kexec(image);
		}
		xchg(&kexec_lock, 0);
	}
}