coherency.c 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Coherency fabric (Aurora) support for Armada 370 and XP platforms.
 *
 * Copyright (C) 2012 Marvell
 *
 * Yehuda Yitschak <yehuday@marvell.com>
 * Gregory Clement <gregory.clement@free-electrons.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2.  This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 *
 * The Armada 370 and Armada XP SOCs have a coherency fabric which is
 * responsible for ensuring hardware coherency between all CPUs and between
 * CPUs and I/O masters. This file initializes the coherency fabric and
 * supplies basic routines for configuring and controlling hardware coherency
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/of_address.h>
#include <linux/io.h>
#include <linux/smp.h>
25 26
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
27
#include <asm/smp_plat.h>
28
#include <asm/cacheflush.h>
29
#include "armada-370-xp.h"
30
#include "coherency.h"
31

32
unsigned long coherency_phys_base;
33
static void __iomem *coherency_base;
34
static void __iomem *coherency_cpu_base;
35 36 37 38

/* Coherency fabric registers */
#define COHERENCY_FABRIC_CFG_OFFSET		   0x4

39 40
#define IO_SYNC_BARRIER_CTL_OFFSET		   0x0

41
enum {
42
	COHERENCY_FABRIC_TYPE_NONE,
43 44 45
	COHERENCY_FABRIC_TYPE_ARMADA_370_XP,
};

46
static struct of_device_id of_coherency_table[] = {
47 48
	{.compatible = "marvell,coherency-fabric",
	 .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_370_XP },
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
	{ /* end of list */ },
};

/* Function defined in coherency_ll.S */
int ll_set_cpu_coherent(void __iomem *base_addr, unsigned int hw_cpu_id);

int set_cpu_coherent(unsigned int hw_cpu_id, int smp_group_id)
{
	if (!coherency_base) {
		pr_warn("Can't make CPU %d cache coherent.\n", hw_cpu_id);
		pr_warn("Coherency fabric is not initialized\n");
		return 1;
	}

	return ll_set_cpu_coherent(coherency_base, hw_cpu_id);
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline void mvebu_hwcc_sync_io_barrier(void)
{
	writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET);
	while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1);
}

static dma_addr_t mvebu_hwcc_dma_map_page(struct device *dev, struct page *page,
				  unsigned long offset, size_t size,
				  enum dma_data_direction dir,
				  struct dma_attrs *attrs)
{
	if (dir != DMA_TO_DEVICE)
		mvebu_hwcc_sync_io_barrier();
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}


static void mvebu_hwcc_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
			      size_t size, enum dma_data_direction dir,
			      struct dma_attrs *attrs)
{
	if (dir != DMA_TO_DEVICE)
		mvebu_hwcc_sync_io_barrier();
}

static void mvebu_hwcc_dma_sync(struct device *dev, dma_addr_t dma_handle,
			size_t size, enum dma_data_direction dir)
{
	if (dir != DMA_TO_DEVICE)
		mvebu_hwcc_sync_io_barrier();
}

static struct dma_map_ops mvebu_hwcc_dma_ops = {
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
	.map_page		= mvebu_hwcc_dma_map_page,
	.unmap_page		= mvebu_hwcc_dma_unmap_page,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= mvebu_hwcc_dma_sync,
	.sync_single_for_device	= mvebu_hwcc_dma_sync,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};

static int mvebu_hwcc_platform_notifier(struct notifier_block *nb,
				       unsigned long event, void *__dev)
{
	struct device *dev = __dev;

	if (event != BUS_NOTIFY_ADD_DEVICE)
		return NOTIFY_DONE;
	set_dma_ops(dev, &mvebu_hwcc_dma_ops);

	return NOTIFY_OK;
}

static struct notifier_block mvebu_hwcc_platform_nb = {
	.notifier_call = mvebu_hwcc_platform_notifier,
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static void __init armada_370_coherency_init(struct device_node *np)
{
	struct resource res;

	of_address_to_resource(np, 0, &res);
	coherency_phys_base = res.start;
	/*
	 * Ensure secondary CPUs will see the updated value,
	 * which they read before they join the coherency
	 * fabric, and therefore before they are coherent with
	 * the boot CPU cache.
	 */
	sync_cache_w(&coherency_phys_base);
	coherency_base = of_iomap(np, 0);
	coherency_cpu_base = of_iomap(np, 1);
	set_cpu_coherent(cpu_logical_map(smp_processor_id()), 0);
}

148
static int coherency_type(void)
149 150 151 152 153
{
	struct device_node *np;

	np = of_find_matching_node(NULL, of_coherency_table);
	if (np) {
154 155 156 157 158 159
		const struct of_device_id *match =
			of_match_node(of_coherency_table, np);
		int type;

		type = (int) match->data;

160
		/* Armada 370/XP coherency works in both UP and SMP */
161
		if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
162
			return type;
163

164
		of_node_put(np);
165 166
	}

167
	return COHERENCY_FABRIC_TYPE_NONE;
168
}
169

170
int coherency_available(void)
171
{
172 173 174 175 176 177
	return coherency_type() != COHERENCY_FABRIC_TYPE_NONE;
}

int __init coherency_init(void)
{
	int type = coherency_type();
178 179 180
	struct device_node *np;

	np = of_find_matching_node(NULL, of_coherency_table);
181 182 183 184 185 186 187 188 189 190

	if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
		armada_370_coherency_init(np);

	return 0;
}

static int __init coherency_late_init(void)
{
	if (coherency_available())
191 192
		bus_register_notifier(&platform_bus_type,
				      &mvebu_hwcc_platform_nb);
193 194 195 196
	return 0;
}

postcore_initcall(coherency_late_init);