input-programming.txt 10.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Programming input drivers
~~~~~~~~~~~~~~~~~~~~~~~~~

1. Creating an input device driver
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.0 The simplest example
~~~~~~~~~~~~~~~~~~~~~~~~

Here comes a very simple example of an input device driver. The device has
just one button and the button is accessible at i/o port BUTTON_PORT. When
pressed or released a BUTTON_IRQ happens. The driver could look like:

#include <linux/input.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/irq.h>
#include <asm/io.h>

21 22
static struct input_dev *button_dev;

23
static irqreturn_t button_interrupt(int irq, void *dummy)
L
Linus Torvalds 已提交
24
{
25
	input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1);
26
	input_sync(button_dev);
27
	return IRQ_HANDLED;
L
Linus Torvalds 已提交
28 29 30 31
}

static int __init button_init(void)
{
32 33
	int error;

L
Linus Torvalds 已提交
34 35 36 37
	if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }
38 39 40 41 42 43 44 45

	button_dev = input_allocate_device();
	if (!button_dev) {
		printk(KERN_ERR "button.c: Not enough memory\n");
		error = -ENOMEM;
		goto err_free_irq;
	}

46 47
	button_dev->evbit[0] = BIT_MASK(EV_KEY);
	button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0);
48 49 50 51 52 53 54 55 56 57 58 59 60 61

	error = input_register_device(button_dev);
	if (error) {
		printk(KERN_ERR "button.c: Failed to register device\n");
		goto err_free_dev;
	}

	return 0;

 err_free_dev:
	input_free_device(button_dev);
 err_free_irq:
	free_irq(BUTTON_IRQ, button_interrupt);
	return error;
L
Linus Torvalds 已提交
62 63 64 65
}

static void __exit button_exit(void)
{
66
        input_unregister_device(button_dev);
L
Linus Torvalds 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	free_irq(BUTTON_IRQ, button_interrupt);
}

module_init(button_init);
module_exit(button_exit);

1.1 What the example does
~~~~~~~~~~~~~~~~~~~~~~~~~

First it has to include the <linux/input.h> file, which interfaces to the
input subsystem. This provides all the definitions needed.

In the _init function, which is called either upon module load or when
booting the kernel, it grabs the required resources (it should also check
for the presence of the device).

M
Matt LaPlante 已提交
83
Then it allocates a new input device structure with input_allocate_device()
84
and sets up input bitfields. This way the device driver tells the other
L
Linus Torvalds 已提交
85
parts of the input systems what it is - what events can be generated or
86 87 88
accepted by this input device. Our example device can only generate EV_KEY
type events, and from those only BTN_0 event code. Thus we only set these
two bits. We could have used
L
Linus Torvalds 已提交
89 90 91 92 93

	set_bit(EV_KEY, button_dev.evbit);
	set_bit(BTN_0, button_dev.keybit);

as well, but with more than single bits the first approach tends to be
94
shorter.
L
Linus Torvalds 已提交
95 96 97 98 99 100 101

Then the example driver registers the input device structure by calling

	input_register_device(&button_dev);

This adds the button_dev structure to linked lists of the input driver and
calls device handler modules _connect functions to tell them a new input
102 103
device has appeared. input_register_device() may sleep and therefore must
not be called from an interrupt or with a spinlock held.
L
Linus Torvalds 已提交
104 105 106 107 108 109

While in use, the only used function of the driver is

	button_interrupt()

which upon every interrupt from the button checks its state and reports it
110
via the
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

	input_report_key()

call to the input system. There is no need to check whether the interrupt
routine isn't reporting two same value events (press, press for example) to
the input system, because the input_report_* functions check that
themselves.

Then there is the

	input_sync()

call to tell those who receive the events that we've sent a complete report.
This doesn't seem important in the one button case, but is quite important
for for example mouse movement, where you don't want the X and Y values
to be interpreted separately, because that'd result in a different movement.

1.2 dev->open() and dev->close()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In case the driver has to repeatedly poll the device, because it doesn't
have an interrupt coming from it and the polling is too expensive to be done
all the time, or if the device uses a valuable resource (eg. interrupt), it
can use the open and close callback to know when it can stop polling or
release the interrupt and when it must resume polling or grab the interrupt
again. To do that, we would add this to our example driver:

static int button_open(struct input_dev *dev)
{
	if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }

        return 0;
}

static void button_close(struct input_dev *dev)
{
150
        free_irq(IRQ_AMIGA_VERTB, button_interrupt);
L
Linus Torvalds 已提交
151 152 153 154 155
}

static int __init button_init(void)
{
	...
156 157
	button_dev->open = button_open;
	button_dev->close = button_close;
L
Linus Torvalds 已提交
158 159 160
	...
}

161 162 163 164
Note that input core keeps track of number of users for the device and
makes sure that dev->open() is called only when the first user connects
to the device and that dev->close() is called when the very last user
disconnects. Calls to both callbacks are serialized.
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

The open() callback should return a 0 in case of success or any nonzero value
in case of failure. The close() callback (which is void) must always succeed.

1.3 Basic event types
~~~~~~~~~~~~~~~~~~~~~

The most simple event type is EV_KEY, which is used for keys and buttons.
It's reported to the input system via:

	input_report_key(struct input_dev *dev, int code, int value)

See linux/input.h for the allowable values of code (from 0 to KEY_MAX).
Value is interpreted as a truth value, ie any nonzero value means key
pressed, zero value means key released. The input code generates events only
in case the value is different from before.

In addition to EV_KEY, there are two more basic event types: EV_REL and
EV_ABS. They are used for relative and absolute values supplied by the
device. A relative value may be for example a mouse movement in the X axis.
The mouse reports it as a relative difference from the last position,
because it doesn't have any absolute coordinate system to work in. Absolute
events are namely for joysticks and digitizers - devices that do work in an
absolute coordinate systems.

Having the device report EV_REL buttons is as simple as with EV_KEY, simply
set the corresponding bits and call the

	input_report_rel(struct input_dev *dev, int code, int value)

195
function. Events are generated only for nonzero value.
L
Linus Torvalds 已提交
196 197 198 199 200 201 202 203 204 205 206

However EV_ABS requires a little special care. Before calling
input_register_device, you have to fill additional fields in the input_dev
struct for each absolute axis your device has. If our button device had also
the ABS_X axis:

	button_dev.absmin[ABS_X] = 0;
	button_dev.absmax[ABS_X] = 255;
	button_dev.absfuzz[ABS_X] = 4;
	button_dev.absflat[ABS_X] = 8;

207 208 209 210
Or, you can just say:

	input_set_abs_params(button_dev, ABS_X, 0, 255, 4, 8);

L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219 220
This setting would be appropriate for a joystick X axis, with the minimum of
0, maximum of 255 (which the joystick *must* be able to reach, no problem if
it sometimes reports more, but it must be able to always reach the min and
max values), with noise in the data up to +- 4, and with a center flat
position of size 8.

If you don't need absfuzz and absflat, you can set them to zero, which mean
that the thing is precise and always returns to exactly the center position
(if it has any).

221
1.4 BITS_TO_LONGS(), BIT_WORD(), BIT_MASK()
L
Linus Torvalds 已提交
222 223
~~~~~~~~~~~~~~~~~~~~~~~~~~

224
These three macros from bitops.h help some bitfield computations:
L
Linus Torvalds 已提交
225

226 227 228 229
	BITS_TO_LONGS(x) - returns the length of a bitfield array in longs for
			   x bits
	BIT_WORD(x)	 - returns the index in the array in longs for bit x
	BIT_MASK(x)	 - returns the index in a long for bit x
L
Linus Torvalds 已提交
230

231
1.5 The id* and name fields
L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The dev->name should be set before registering the input device by the input
device driver. It's a string like 'Generic button device' containing a
user friendly name of the device.

The id* fields contain the bus ID (PCI, USB, ...), vendor ID and device ID
of the device. The bus IDs are defined in input.h. The vendor and device ids
are defined in pci_ids.h, usb_ids.h and similar include files. These fields
should be set by the input device driver before registering it.

The idtype field can be used for specific information for the input device
driver.

The id and name fields can be passed to userland via the evdev interface.

248
1.6 The keycode, keycodemax, keycodesize fields
L
Linus Torvalds 已提交
249 250
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
These three fields should be used by input devices that have dense keymaps.
The keycode is an array used to map from scancodes to input system keycodes.
The keycode max should contain the size of the array and keycodesize the
size of each entry in it (in bytes).

Userspace can query and alter current scancode to keycode mappings using
EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on corresponding evdev interface.
When a device has all 3 aforementioned fields filled in, the driver may
rely on kernel's default implementation of setting and querying keycode
mappings.

1.7 dev->getkeycode() and dev->setkeycode()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getkeycode() and setkeycode() callbacks allow drivers to override default
keycode/keycodesize/keycodemax mapping mechanism provided by input core
and implement sparse keycode maps.
L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

1.8 Key autorepeat
~~~~~~~~~~~~~~~~~~

... is simple. It is handled by the input.c module. Hardware autorepeat is
not used, because it's not present in many devices and even where it is
present, it is broken sometimes (at keyboards: Toshiba notebooks). To enable
autorepeat for your device, just set EV_REP in dev->evbit. All will be
handled by the input system.

1.9 Other event types, handling output events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The other event types up to now are:

EV_LED - used for the keyboard LEDs.
EV_SND - used for keyboard beeps.

They are very similar to for example key events, but they go in the other
direction - from the system to the input device driver. If your input device
driver can handle these events, it has to set the respective bits in evbit,
*and* also the callback routine:

290
	button_dev->event = button_event;
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299 300 301 302

int button_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
{
	if (type == EV_SND && code == SND_BELL) {
		outb(value, BUTTON_BELL);
		return 0;
	}
	return -1;
}

This callback routine can be called from an interrupt or a BH (although that
isn't a rule), and thus must not sleep, and must not take too long to finish.