i915_gem_gtt.h 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Please try to maintain the following order within this file unless it makes
 * sense to do otherwise. From top to bottom:
 * 1. typedefs
 * 2. #defines, and macros
 * 3. structure definitions
 * 4. function prototypes
 *
 * Within each section, please try to order by generation in ascending order,
 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 */

#ifndef __I915_GEM_GTT_H__
#define __I915_GEM_GTT_H__

37 38
#include <linux/io-mapping.h>

39 40
#include "i915_gem_request.h"

41 42 43 44 45
#define I915_FENCE_REG_NONE -1
#define I915_MAX_NUM_FENCES 32
/* 32 fences + sign bit for FENCE_REG_NONE */
#define I915_MAX_NUM_FENCE_BITS 6

46
struct drm_i915_file_private;
47
struct drm_i915_fence_reg;
48

49 50 51
typedef uint32_t gen6_pte_t;
typedef uint64_t gen8_pte_t;
typedef uint64_t gen8_pde_t;
52 53
typedef uint64_t gen8_ppgtt_pdpe_t;
typedef uint64_t gen8_ppgtt_pml4e_t;
54

55
#define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
56 57 58 59 60 61 62 63 64

/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_CACHE_LLC		(2 << 1)
#define GEN6_PTE_UNCACHED		(1 << 1)
#define GEN6_PTE_VALID			(1 << 0)

65 66 67 68
#define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
#define I915_PDES			512
#define I915_PDE_MASK			(I915_PDES - 1)
69
#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
70 71 72

#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
73
#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
74
#define GEN6_PDE_SHIFT			22
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#define GEN6_PDE_VALID			(1 << 0)

#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)

#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
#define BYT_PTE_WRITEABLE		(1 << 1)

/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
 */
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
					 (((bits) & 0x8) << (11 - 3)))
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
#define HSW_PTE_UNCACHED		(0)
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)

/* GEN8 legacy style address is defined as a 3 level page table:
 * 31:30 | 29:21 | 20:12 |  11:0
 * PDPE  |  PDE  |  PTE  | offset
 * The difference as compared to normal x86 3 level page table is the PDPEs are
 * programmed via register.
102 103 104 105
 *
 * GEN8 48b legacy style address is defined as a 4 level page table:
 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
 * PML4E | PDPE  |  PDE  |  PTE  | offset
106
 */
107 108
#define GEN8_PML4ES_PER_PML4		512
#define GEN8_PML4E_SHIFT		39
109
#define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
110
#define GEN8_PDPE_SHIFT			30
111 112 113
/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
 * tables */
#define GEN8_PDPE_MASK			0x1ff
114 115 116 117
#define GEN8_PDE_SHIFT			21
#define GEN8_PDE_MASK			0x1ff
#define GEN8_PTE_SHIFT			12
#define GEN8_PTE_MASK			0x1ff
118
#define GEN8_LEGACY_PDPES		4
119
#define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
120

121 122
#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
123

124 125 126 127 128
#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */

129
#define CHV_PPAT_SNOOP			(1<<6)
130 131 132 133 134 135 136 137 138 139 140
#define GEN8_PPAT_AGE(x)		(x<<4)
#define GEN8_PPAT_LLCeLLC		(3<<2)
#define GEN8_PPAT_LLCELLC		(2<<2)
#define GEN8_PPAT_LLC			(1<<2)
#define GEN8_PPAT_WB			(3<<0)
#define GEN8_PPAT_WT			(2<<0)
#define GEN8_PPAT_WC			(1<<0)
#define GEN8_PPAT_UC			(0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))

141 142
enum i915_ggtt_view_type {
	I915_GGTT_VIEW_NORMAL = 0,
143 144
	I915_GGTT_VIEW_ROTATED,
	I915_GGTT_VIEW_PARTIAL,
145 146 147
};

struct intel_rotation_info {
148 149
	struct {
		/* tiles */
150
		unsigned int width, height, stride, offset;
151
	} plane[2];
152 153 154 155 156
};

struct i915_ggtt_view {
	enum i915_ggtt_view_type type;

157 158
	union {
		struct {
159
			u64 offset;
160 161
			unsigned int size;
		} partial;
162
		struct intel_rotation_info rotated;
163
	} params;
164 165 166
};

extern const struct i915_ggtt_view i915_ggtt_view_normal;
167
extern const struct i915_ggtt_view i915_ggtt_view_rotated;
168

169
enum i915_cache_level;
170

171 172 173 174 175 176 177 178 179 180 181 182
/**
 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
 * VMA's presence cannot be guaranteed before binding, or after unbinding the
 * object into/from the address space.
 *
 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
 * will always be <= an objects lifetime. So object refcounting should cover us.
 */
struct i915_vma {
	struct drm_mm_node node;
	struct drm_i915_gem_object *obj;
	struct i915_address_space *vm;
183
	struct drm_i915_fence_reg *fence;
184
	struct sg_table *pages;
185
	void __iomem *iomap;
186
	u64 size;
187
	u64 display_alignment;
188

189 190 191 192 193 194 195 196 197 198 199 200
	unsigned int flags;
	/**
	 * How many users have pinned this object in GTT space. The following
	 * users can each hold at most one reference: pwrite/pread, execbuffer
	 * (objects are not allowed multiple times for the same batchbuffer),
	 * and the framebuffer code. When switching/pageflipping, the
	 * framebuffer code has at most two buffers pinned per crtc.
	 *
	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
	 * bits with absolutely no headroom. So use 4 bits.
	 */
#define I915_VMA_PIN_MASK 0xf
201
#define I915_VMA_PIN_OVERFLOW	BIT(5)
202

203
	/** Flags and address space this VMA is bound to */
204 205 206
#define I915_VMA_GLOBAL_BIND	BIT(6)
#define I915_VMA_LOCAL_BIND	BIT(7)
#define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW)
207

208 209 210
#define I915_VMA_GGTT		BIT(8)
#define I915_VMA_CAN_FENCE	BIT(9)
#define I915_VMA_CLOSED		BIT(10)
211 212 213

	unsigned int active;
	struct i915_gem_active last_read[I915_NUM_ENGINES];
214
	struct i915_gem_active last_fence;
215

216 217 218 219 220 221 222 223 224
	/**
	 * Support different GGTT views into the same object.
	 * This means there can be multiple VMA mappings per object and per VM.
	 * i915_ggtt_view_type is used to distinguish between those entries.
	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
	 * assumed in GEM functions which take no ggtt view parameter.
	 */
	struct i915_ggtt_view ggtt_view;

225
	/** This object's place on the active/inactive lists */
226
	struct list_head vm_link;
227

228
	struct list_head obj_link; /* Link in the object's VMA list */
229 230 231 232 233 234 235 236 237 238 239 240

	/** This vma's place in the batchbuffer or on the eviction list */
	struct list_head exec_list;

	/**
	 * Used for performing relocations during execbuffer insertion.
	 */
	struct hlist_node exec_node;
	unsigned long exec_handle;
	struct drm_i915_gem_exec_object2 *exec_entry;
};

241 242 243 244
struct i915_vma *
i915_vma_create(struct drm_i915_gem_object *obj,
		struct i915_address_space *vm,
		const struct i915_ggtt_view *view);
245
void i915_vma_unpin_and_release(struct i915_vma **p_vma);
246

247 248 249 250 251
static inline bool i915_vma_is_ggtt(const struct i915_vma *vma)
{
	return vma->flags & I915_VMA_GGTT;
}

252 253 254 255 256
static inline bool i915_vma_is_map_and_fenceable(const struct i915_vma *vma)
{
	return vma->flags & I915_VMA_CAN_FENCE;
}

257 258 259 260 261
static inline bool i915_vma_is_closed(const struct i915_vma *vma)
{
	return vma->flags & I915_VMA_CLOSED;
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static inline unsigned int i915_vma_get_active(const struct i915_vma *vma)
{
	return vma->active;
}

static inline bool i915_vma_is_active(const struct i915_vma *vma)
{
	return i915_vma_get_active(vma);
}

static inline void i915_vma_set_active(struct i915_vma *vma,
				       unsigned int engine)
{
	vma->active |= BIT(engine);
}

static inline void i915_vma_clear_active(struct i915_vma *vma,
					 unsigned int engine)
{
	vma->active &= ~BIT(engine);
}

static inline bool i915_vma_has_active_engine(const struct i915_vma *vma,
					      unsigned int engine)
{
	return vma->active & BIT(engine);
}

290 291 292 293 294 295 296 297 298
static inline u32 i915_ggtt_offset(const struct i915_vma *vma)
{
	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
	GEM_BUG_ON(!vma->node.allocated);
	GEM_BUG_ON(upper_32_bits(vma->node.start));
	GEM_BUG_ON(upper_32_bits(vma->node.start + vma->node.size - 1));
	return lower_32_bits(vma->node.start);
}

299
struct i915_page_dma {
B
Ben Widawsky 已提交
300
	struct page *page;
301 302 303 304 305 306 307 308 309 310
	union {
		dma_addr_t daddr;

		/* For gen6/gen7 only. This is the offset in the GGTT
		 * where the page directory entries for PPGTT begin
		 */
		uint32_t ggtt_offset;
	};
};

311 312 313 314
#define px_base(px) (&(px)->base)
#define px_page(px) (px_base(px)->page)
#define px_dma(px) (px_base(px)->daddr)

315 316
struct i915_page_table {
	struct i915_page_dma base;
317 318

	unsigned long *used_ptes;
B
Ben Widawsky 已提交
319 320
};

321
struct i915_page_directory {
322
	struct i915_page_dma base;
323

324
	unsigned long *used_pdes;
325
	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
B
Ben Widawsky 已提交
326 327
};

328
struct i915_page_directory_pointer {
329 330 331 332
	struct i915_page_dma base;

	unsigned long *used_pdpes;
	struct i915_page_directory **page_directory;
B
Ben Widawsky 已提交
333 334
};

335 336 337 338 339 340 341
struct i915_pml4 {
	struct i915_page_dma base;

	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
};

342 343 344
struct i915_address_space {
	struct drm_mm mm;
	struct drm_device *dev;
345 346 347 348 349 350 351 352 353
	/* Every address space belongs to a struct file - except for the global
	 * GTT that is owned by the driver (and so @file is set to NULL). In
	 * principle, no information should leak from one context to another
	 * (or between files/processes etc) unless explicitly shared by the
	 * owner. Tracking the owner is important in order to free up per-file
	 * objects along with the file, to aide resource tracking, and to
	 * assign blame.
	 */
	struct drm_i915_file_private *file;
354
	struct list_head global_link;
355 356
	u64 start;		/* Start offset always 0 for dri2 */
	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
357

358 359
	bool closed;

360
	struct i915_page_dma scratch_page;
361 362
	struct i915_page_table *scratch_pt;
	struct i915_page_directory *scratch_pd;
363
	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
364 365 366 367 368

	/**
	 * List of objects currently involved in rendering.
	 *
	 * Includes buffers having the contents of their GPU caches
369
	 * flushed, not necessarily primitives. last_read_req
370 371 372 373 374 375 376 377 378 379
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * LRU list of objects which are not in the ringbuffer and
	 * are ready to unbind, but are still in the GTT.
	 *
380
	 * last_read_req is NULL while an object is in this list.
381 382 383 384 385 386 387
	 *
	 * A reference is not held on the buffer while on this list,
	 * as merely being GTT-bound shouldn't prevent its being
	 * freed, and we'll pull it off the list in the free path.
	 */
	struct list_head inactive_list;

388 389 390 391 392 393 394
	/**
	 * List of vma that have been unbound.
	 *
	 * A reference is not held on the buffer while on this list.
	 */
	struct list_head unbound_list;

395
	/* FIXME: Need a more generic return type */
396 397 398
	gen6_pte_t (*pte_encode)(dma_addr_t addr,
				 enum i915_cache_level level,
				 bool valid, u32 flags); /* Create a valid PTE */
399 400
	/* flags for pte_encode */
#define PTE_READ_ONLY	(1<<0)
401 402 403
	int (*allocate_va_range)(struct i915_address_space *vm,
				 uint64_t start,
				 uint64_t length);
404 405 406 407
	void (*clear_range)(struct i915_address_space *vm,
			    uint64_t start,
			    uint64_t length,
			    bool use_scratch);
408 409 410 411 412
	void (*insert_page)(struct i915_address_space *vm,
			    dma_addr_t addr,
			    uint64_t offset,
			    enum i915_cache_level cache_level,
			    u32 flags);
413 414 415
	void (*insert_entries)(struct i915_address_space *vm,
			       struct sg_table *st,
			       uint64_t start,
416
			       enum i915_cache_level cache_level, u32 flags);
417
	void (*cleanup)(struct i915_address_space *vm);
418 419 420 421
	/** Unmap an object from an address space. This usually consists of
	 * setting the valid PTE entries to a reserved scratch page. */
	void (*unbind_vma)(struct i915_vma *vma);
	/* Map an object into an address space with the given cache flags. */
422 423 424
	int (*bind_vma)(struct i915_vma *vma,
			enum i915_cache_level cache_level,
			u32 flags);
425 426
};

427
#define i915_is_ggtt(V) (!(V)->file)
428

429 430 431 432 433 434 435
/* The Graphics Translation Table is the way in which GEN hardware translates a
 * Graphics Virtual Address into a Physical Address. In addition to the normal
 * collateral associated with any va->pa translations GEN hardware also has a
 * portion of the GTT which can be mapped by the CPU and remain both coherent
 * and correct (in cases like swizzling). That region is referred to as GMADR in
 * the spec.
 */
436
struct i915_ggtt {
437
	struct i915_address_space base;
438
	struct io_mapping mappable;	/* Mapping to our CPU mappable region */
439

440
	size_t stolen_size;		/* Total size of stolen memory */
441
	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
442 443
	size_t stolen_reserved_base;
	size_t stolen_reserved_size;
444
	u64 mappable_end;		/* End offset that we can CPU map */
445 446 447 448 449 450 451 452
	phys_addr_t mappable_base;	/* PA of our GMADR */

	/** "Graphics Stolen Memory" holds the global PTEs */
	void __iomem *gsm;

	bool do_idle_maps;

	int mtrr;
453 454

	struct drm_mm_node error_capture;
455 456 457 458 459 460
};

struct i915_hw_ppgtt {
	struct i915_address_space base;
	struct kref ref;
	struct drm_mm_node node;
461
	unsigned long pd_dirty_rings;
B
Ben Widawsky 已提交
462
	union {
463 464 465
		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
		struct i915_page_directory_pointer pdp;	/* GEN8+ */
		struct i915_page_directory pd;		/* GEN6-7 */
B
Ben Widawsky 已提交
466
	};
467

468 469
	gen6_pte_t __iomem *pd_addr;

470 471
	int (*enable)(struct i915_hw_ppgtt *ppgtt);
	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
472
			 struct drm_i915_gem_request *req);
473 474 475
	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
};

476 477 478 479 480 481 482
/*
 * gen6_for_each_pde() iterates over every pde from start until start+length.
 * If start and start+length are not perfectly divisible, the macro will round
 * down and up as needed. Start=0 and length=2G effectively iterates over
 * every PDE in the system. The macro modifies ALL its parameters except 'pd',
 * so each of the other parameters should preferably be a simple variable, or
 * at most an lvalue with no side-effects!
483
 */
484 485 486 487 488 489 490 491 492 493 494 495 496
#define gen6_for_each_pde(pt, pd, start, length, iter)			\
	for (iter = gen6_pde_index(start);				\
	     length > 0 && iter < I915_PDES &&				\
		(pt = (pd)->page_table[iter], true);			\
	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen6_for_all_pdes(pt, pd, iter)					\
	for (iter = 0;							\
	     iter < I915_PDES &&					\
		(pt = (pd)->page_table[iter], true);			\
	     ++iter)
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511
static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
{
	const uint32_t mask = NUM_PTE(pde_shift) - 1;

	return (address >> PAGE_SHIFT) & mask;
}

/* Helper to counts the number of PTEs within the given length. This count
 * does not cross a page table boundary, so the max value would be
 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
*/
static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
				      uint32_t pde_shift)
{
512
	const uint64_t mask = ~((1ULL << pde_shift) - 1);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	uint64_t end;

	WARN_ON(length == 0);
	WARN_ON(offset_in_page(addr|length));

	end = addr + length;

	if ((addr & mask) != (end & mask))
		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);

	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
}

static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
{
	return (addr >> shift) & I915_PDE_MASK;
}

static inline uint32_t gen6_pte_index(uint32_t addr)
{
	return i915_pte_index(addr, GEN6_PDE_SHIFT);
}

static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
{
	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
}

static inline uint32_t gen6_pde_index(uint32_t addr)
{
	return i915_pde_index(addr, GEN6_PDE_SHIFT);
}

546 547 548 549
/* Equivalent to the gen6 version, For each pde iterates over every pde
 * between from start until start + length. On gen8+ it simply iterates
 * over every page directory entry in a page directory.
 */
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
#define gen8_for_each_pde(pt, pd, start, length, iter)			\
	for (iter = gen8_pde_index(start);				\
	     length > 0 && iter < I915_PDES &&				\
		(pt = (pd)->page_table[iter], true);			\
	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
	for (iter = gen8_pdpe_index(start);				\
	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
		(pd = (pdp)->page_directory[iter], true);		\
	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
	for (iter = gen8_pml4e_index(start);				\
	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
		(pdp = (pml4)->pdps[iter], true);			\
	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static inline uint32_t gen8_pte_index(uint64_t address)
{
	return i915_pte_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pde_index(uint64_t address)
{
	return i915_pde_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pdpe_index(uint64_t address)
{
	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
}

static inline uint32_t gen8_pml4e_index(uint64_t address)
{
591
	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
592 593
}

594 595 596 597 598
static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
{
	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
}

599 600 601 602
static inline dma_addr_t
i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
{
	return test_bit(n, ppgtt->pdp.used_pdpes) ?
603
		px_dma(ppgtt->pdp.page_directory[n]) :
604
		px_dma(ppgtt->base.scratch_pd);
605 606
}

607 608 609
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
610
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
611
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
612

613
int i915_ppgtt_init_hw(struct drm_device *dev);
614
void i915_ppgtt_release(struct kref *kref);
615
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
616
					struct drm_i915_file_private *fpriv);
617 618 619 620 621 622 623 624 625 626
static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_get(&ppgtt->ref);
}
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_put(&ppgtt->ref, i915_ppgtt_release);
}
627

628
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
629 630 631 632 633 634
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
void i915_gem_restore_gtt_mappings(struct drm_device *dev);

int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);

635
/* Flags used by pin/bind&friends. */
636 637 638
#define PIN_NONBLOCK		BIT(0)
#define PIN_MAPPABLE		BIT(1)
#define PIN_ZONE_4G		BIT(2)
639
#define PIN_NONFAULT		BIT(3)
640 641 642 643 644 645 646 647 648

#define PIN_MBZ			BIT(5) /* I915_VMA_PIN_OVERFLOW */
#define PIN_GLOBAL		BIT(6) /* I915_VMA_GLOBAL_BIND */
#define PIN_USER		BIT(7) /* I915_VMA_LOCAL_BIND */
#define PIN_UPDATE		BIT(8)

#define PIN_HIGH		BIT(9)
#define PIN_OFFSET_BIAS		BIT(10)
#define PIN_OFFSET_FIXED	BIT(11)
649 650
#define PIN_OFFSET_MASK		(~4095)

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags);
static inline int __must_check
i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
{
	BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW);
	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);

	/* Pin early to prevent the shrinker/eviction logic from destroying
	 * our vma as we insert and bind.
	 */
	if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0))
		return 0;

	return __i915_vma_do_pin(vma, size, alignment, flags);
}

669 670
static inline int i915_vma_pin_count(const struct i915_vma *vma)
{
671
	return vma->flags & I915_VMA_PIN_MASK;
672 673 674 675 676 677 678 679 680
}

static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
{
	return i915_vma_pin_count(vma);
}

static inline void __i915_vma_pin(struct i915_vma *vma)
{
681
	vma->flags++;
682
	GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW);
683 684 685 686 687
}

static inline void __i915_vma_unpin(struct i915_vma *vma)
{
	GEM_BUG_ON(!i915_vma_is_pinned(vma));
688
	vma->flags--;
689 690 691 692 693 694 695 696
}

static inline void i915_vma_unpin(struct i915_vma *vma)
{
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
	__i915_vma_unpin(vma);
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710
/**
 * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
 * @vma: VMA to iomap
 *
 * The passed in VMA has to be pinned in the global GTT mappable region.
 * An extra pinning of the VMA is acquired for the return iomapping,
 * the caller must call i915_vma_unpin_iomap to relinquish the pinning
 * after the iomapping is no longer required.
 *
 * Callers must hold the struct_mutex.
 *
 * Returns a valid iomapped pointer or ERR_PTR.
 */
void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
711
#define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
712 713 714 715 716 717 718 719 720 721 722 723 724 725

/**
 * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
 * @vma: VMA to unpin
 *
 * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
 *
 * Callers must hold the struct_mutex. This function is only valid to be
 * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
 */
static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
{
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
	GEM_BUG_ON(vma->iomap == NULL);
726
	i915_vma_unpin(vma);
727 728
}

729 730 731 732 733 734
static inline struct page *i915_vma_first_page(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
	return sg_page(vma->pages->sgl);
}

735
#endif