kvm_book3s_64.h 12.6 KB
Newer Older
A
Alexander Graf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright SUSE Linux Products GmbH 2010
 *
 * Authors: Alexander Graf <agraf@suse.de>
 */

#ifndef __ASM_KVM_BOOK3S_64_H__
#define __ASM_KVM_BOOK3S_64_H__

23 24
#include <linux/string.h>
#include <asm/bitops.h>
25 26
#include <asm/book3s/64/mmu-hash.h>

27 28 29 30
/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
#define PPC_MIN_HPT_ORDER	18
#define PPC_MAX_HPT_ORDER	46

31
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
32
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
A
Alexander Graf 已提交
33
{
34
	preempt_disable();
A
Alexander Graf 已提交
35 36
	return &get_paca()->shadow_vcpu;
}
37 38 39 40 41

static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
{
	preempt_enable();
}
42
#endif
A
Alexander Graf 已提交
43

44
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
45 46 47 48 49 50

static inline bool kvm_is_radix(struct kvm *kvm)
{
	return kvm->arch.radix;
}

51
#define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
52 53
#endif

54 55 56 57 58 59
/*
 * We use a lock bit in HPTE dword 0 to synchronize updates and
 * accesses to each HPTE, and another bit to indicate non-present
 * HPTEs.
 */
#define HPTE_V_HVLOCK	0x40UL
60
#define HPTE_V_ABSENT	0x20UL
61

62 63 64 65 66 67 68 69 70
/*
 * We use this bit in the guest_rpte field of the revmap entry
 * to indicate a modified HPTE.
 */
#define HPTE_GR_MODIFIED	(1ul << 62)

/* These bits are reserved in the guest view of the HPTE */
#define HPTE_GR_RESERVED	HPTE_GR_MODIFIED

71
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
72 73
{
	unsigned long tmp, old;
74 75 76 77 78 79 80 81 82
	__be64 be_lockbit, be_bits;

	/*
	 * We load/store in native endian, but the HTAB is in big endian. If
	 * we byte swap all data we apply on the PTE we're implicitly correct
	 * again.
	 */
	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
	be_bits = cpu_to_be64(bits);
83 84 85 86

	asm volatile("	ldarx	%0,0,%2\n"
		     "	and.	%1,%0,%3\n"
		     "	bne	2f\n"
87
		     "	or	%0,%0,%4\n"
88 89
		     "  stdcx.	%0,0,%2\n"
		     "	beq+	2f\n"
90
		     "	mr	%1,%3\n"
91 92
		     "2:	isync"
		     : "=&r" (tmp), "=&r" (old)
93
		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
94 95 96 97
		     : "cc", "memory");
	return old == 0;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
	hpte_v &= ~HPTE_V_HVLOCK;
	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
	hpte[0] = cpu_to_be64(hpte_v);
}

/* Without barrier */
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
	hpte_v &= ~HPTE_V_HVLOCK;
	hpte[0] = cpu_to_be64(hpte_v);
}

112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * These functions encode knowledge of the POWER7/8/9 hardware
 * interpretations of the HPTE LP (large page size) field.
 */
static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
{
	unsigned int lphi;

	if (!(h & HPTE_V_LARGE))
		return 12;	/* 4kB */
	lphi = (l >> 16) & 0xf;
	switch ((l >> 12) & 0xf) {
	case 0:
125
		return !lphi ? 24 : 0;		/* 16MB */
126 127 128 129 130
		break;
	case 1:
		return 16;			/* 64kB */
		break;
	case 3:
131
		return !lphi ? 34 : 0;		/* 16GB */
132 133 134 135 136 137 138 139 140 141 142
		break;
	case 7:
		return (16 << 8) + 12;		/* 64kB in 4kB */
		break;
	case 8:
		if (!lphi)
			return (24 << 8) + 16;	/* 16MB in 64kkB */
		if (lphi == 3)
			return (24 << 8) + 12;	/* 16MB in 4kB */
		break;
	}
143
	return 0;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
}

static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
{
	return kvmppc_hpte_page_shifts(h, l) & 0xff;
}

static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
{
	int tmp = kvmppc_hpte_page_shifts(h, l);

	if (tmp >= 0x100)
		tmp >>= 8;
	return tmp;
}

static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
{
162 163 164 165 166
	int shift = kvmppc_hpte_actual_page_shift(v, r);

	if (shift)
		return 1ul << shift;
	return 0;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
}

static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
{
	switch (base_shift) {
	case 12:
		switch (actual_shift) {
		case 12:
			return 0;
		case 16:
			return 7;
		case 24:
			return 0x38;
		}
		break;
	case 16:
		switch (actual_shift) {
		case 16:
			return 1;
		case 24:
			return 8;
		}
		break;
	case 24:
		return 0;
	}
	return -1;
}

196 197 198
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
					     unsigned long pte_index)
{
199
	int a_pgshift, b_pgshift;
200 201
	unsigned long rb = 0, va_low, sllp;

202 203 204 205
	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
	if (a_pgshift >= 0x100) {
		b_pgshift &= 0xff;
		a_pgshift >>= 8;
206
	}
207

208 209 210 211 212 213 214 215 216 217
	/*
	 * Ignore the top 14 bits of va
	 * v have top two bits covering segment size, hence move
	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
	 * AVA field in v also have the lower 23 bits ignored.
	 * For base page size 4K we need 14 .. 65 bits (so need to
	 * collect extra 11 bits)
	 * For others we need 14..14+i
	 */
	/* This covers 14..54 bits of va*/
218
	rb = (v & ~0x7fUL) << 16;		/* AVA field */
219

220 221 222 223
	/*
	 * AVA in v had cleared lower 23 bits. We need to derive
	 * that from pteg index
	 */
224 225 226
	va_low = pte_index >> 3;
	if (v & HPTE_V_SECONDARY)
		va_low = ~va_low;
227 228 229 230 231 232
	/*
	 * get the vpn bits from va_low using reverse of hashing.
	 * In v we have va with 23 bits dropped and then left shifted
	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
	 * right shift it with (SID_SHIFT - (23 - 7))
	 */
233
	if (!(v & HPTE_V_1TB_SEG))
234
		va_low ^= v >> (SID_SHIFT - 16);
235
	else
236
		va_low ^= v >> (SID_SHIFT_1T - 16);
237
	va_low &= 0x7ff;
238

239
	if (b_pgshift <= 12) {
240 241 242 243
		if (a_pgshift > 12) {
			sllp = (a_pgshift == 16) ? 5 : 4;
			rb |= sllp << 5;	/*  AP field */
		}
244
		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
245
	} else {
246 247
		int aval_shift;
		/*
248
		 * remaining bits of AVA/LP fields
249 250
		 * Also contain the rr bits of LP
		 */
251
		rb |= (va_low << b_pgshift) & 0x7ff000;
252 253 254
		/*
		 * Now clear not needed LP bits based on actual psize
		 */
255
		rb &= ~((1ul << a_pgshift) - 1);
256 257 258 259 260
		/*
		 * AVAL field 58..77 - base_page_shift bits of va
		 * we have space for 58..64 bits, Missing bits should
		 * be zero filled. +1 is to take care of L bit shift
		 */
261
		aval_shift = 64 - (77 - b_pgshift) + 1;
262 263 264
		rb |= ((va_low << aval_shift) & 0xfe);

		rb |= 1;		/* L field */
265
		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
266
	}
267
	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
268 269 270
	return rb;
}

271 272 273 274 275
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
{
	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static inline int hpte_is_writable(unsigned long ptel)
{
	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);

	return pp != PP_RXRX && pp != PP_RXXX;
}

static inline unsigned long hpte_make_readonly(unsigned long ptel)
{
	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
	else
		ptel |= PP_RXRX;
	return ptel;
}

292
static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
293
{
294
	unsigned int wimg = hptel & HPTE_R_WIMG;
295 296 297 298 299 300

	/* Handle SAO */
	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
	    cpu_has_feature(CPU_FTR_ARCH_206))
		wimg = HPTE_R_M;

301
	if (!is_ci)
302
		return wimg == HPTE_R_M;
303 304 305 306 307 308 309
	/*
	 * if host is mapped cache inhibited, make sure hptel also have
	 * cache inhibited.
	 */
	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
		return false;
	return !!(wimg & HPTE_R_I);
310 311
}

312
/*
313
 * If it's present and writable, atomically set dirty and referenced bits and
314
 * return the PTE, otherwise return 0.
315
 */
316
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
317
{
318 319 320
	pte_t old_pte, new_pte = __pte(0);

	while (1) {
321 322 323 324
		/*
		 * Make sure we don't reload from ptep
		 */
		old_pte = READ_ONCE(*ptep);
325
		/*
326
		 * wait until H_PAGE_BUSY is clear then set it atomically
327
		 */
328
		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
329 330 331 332
			cpu_relax();
			continue;
		}
		/* If pte is not present return None */
333
		if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
334
			return __pte(0);
335

336 337 338
		new_pte = pte_mkyoung(old_pte);
		if (writing && pte_write(old_pte))
			new_pte = pte_mkdirty(new_pte);
339

340
		if (pte_xchg(ptep, old_pte, new_pte))
341 342 343
			break;
	}
	return new_pte;
344 345
}

346 347 348 349
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
{
	if (key)
		return PP_RWRX <= pp && pp <= PP_RXRX;
350
	return true;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
{
	if (key)
		return pp == PP_RWRW;
	return pp <= PP_RWRW;
}

static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
{
	unsigned long skey;

	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
		((hpte_r & HPTE_R_KEY_LO) >> 9);
	return (amr >> (62 - 2 * skey)) & 3;
}

369 370 371 372 373 374 375 376 377 378 379 380 381
static inline void lock_rmap(unsigned long *rmap)
{
	do {
		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
			cpu_relax();
	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
}

static inline void unlock_rmap(unsigned long *rmap)
{
	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
}

382 383 384 385 386 387
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
				   unsigned long pagesize)
{
	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;

	if (pagesize <= PAGE_SIZE)
388
		return true;
389 390 391
	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * This works for 4k, 64k and 16M pages on POWER7,
 * and 4k and 16M pages on PPC970.
 */
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

static inline int is_vrma_hpte(unsigned long hpte_v)
{
	return (hpte_v & ~0xffffffUL) ==
		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
}

414
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
415 416 417 418 419 420 421 422 423 424
/*
 * Note modification of an HPTE; set the HPTE modified bit
 * if anyone is interested.
 */
static inline void note_hpte_modification(struct kvm *kvm,
					  struct revmap_entry *rev)
{
	if (atomic_read(&kvm->arch.hpte_mod_interest))
		rev->guest_rpte |= HPTE_GR_MODIFIED;
}
425 426 427 428 429 430 431 432 433

/*
 * Like kvm_memslots(), but for use in real mode when we can't do
 * any RCU stuff (since the secondary threads are offline from the
 * kernel's point of view), and we can't print anything.
 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
 */
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
{
434
	return rcu_dereference_raw_notrace(kvm->memslots[0]);
435 436
}

437 438
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);

439 440
extern void kvmhv_rm_send_ipi(int cpu);

441 442 443 444 445 446 447 448 449 450 451 452
static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
{
	/* HPTEs are 2**4 bytes long */
	return 1UL << (hpt->order - 4);
}

static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
{
	/* 128 (2**7) bytes in each HPTEG */
	return (1UL << (hpt->order - 7)) - 1;
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/* Set bits in a dirty bitmap, which is in LE format */
static inline void set_dirty_bits(unsigned long *map, unsigned long i,
				  unsigned long npages)
{

	if (npages >= 8)
		memset((char *)map + i / 8, 0xff, npages / 8);
	else
		for (; npages; ++i, --npages)
			__set_bit_le(i, map);
}

static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
					 unsigned long npages)
{
	if (npages >= 8)
		memset((char *)map + i / 8, 0xff, npages / 8);
	else
		for (; npages; ++i, --npages)
			set_bit_le(i, map);
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static inline u64 sanitize_msr(u64 msr)
{
	msr &= ~MSR_HV;
	msr |= MSR_ME;
	return msr;
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
{
	vcpu->arch.cr  = vcpu->arch.cr_tm;
	vcpu->arch.xer = vcpu->arch.xer_tm;
	vcpu->arch.lr  = vcpu->arch.lr_tm;
	vcpu->arch.ctr = vcpu->arch.ctr_tm;
	vcpu->arch.amr = vcpu->arch.amr_tm;
	vcpu->arch.ppr = vcpu->arch.ppr_tm;
	vcpu->arch.dscr = vcpu->arch.dscr_tm;
	vcpu->arch.tar = vcpu->arch.tar_tm;
	memcpy(vcpu->arch.gpr, vcpu->arch.gpr_tm,
	       sizeof(vcpu->arch.gpr));
	vcpu->arch.fp  = vcpu->arch.fp_tm;
	vcpu->arch.vr  = vcpu->arch.vr_tm;
	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
}

static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
{
	vcpu->arch.cr_tm  = vcpu->arch.cr;
	vcpu->arch.xer_tm = vcpu->arch.xer;
	vcpu->arch.lr_tm  = vcpu->arch.lr;
	vcpu->arch.ctr_tm = vcpu->arch.ctr;
	vcpu->arch.amr_tm = vcpu->arch.amr;
	vcpu->arch.ppr_tm = vcpu->arch.ppr;
	vcpu->arch.dscr_tm = vcpu->arch.dscr;
	vcpu->arch.tar_tm = vcpu->arch.tar;
	memcpy(vcpu->arch.gpr_tm, vcpu->arch.gpr,
	       sizeof(vcpu->arch.gpr));
	vcpu->arch.fp_tm  = vcpu->arch.fp;
	vcpu->arch.vr_tm  = vcpu->arch.vr;
	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

518
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
519

A
Alexander Graf 已提交
520
#endif /* __ASM_KVM_BOOK3S_64_H__ */